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Abstract-Current-voltage characteristics of ion transfer across the ITIES was theoretically studied, 
taking concentration polarization into account through the Nernst-Planck equation in the diffusion 
boundary layers. In the inner layer transport was modelled using either Butler-Volmer or Nemst-Planck 
equations. Potential distribution across the ideally polarizable ITIES was calculated from the Poisson- 
Bolzman equation. The current-voltage curves were of the Butler-Volmer type, but no distinction 
between the two approaches inside the inner layer could be seen because the permeability of the entire 
system was determined by the diffusion boundary layers. 
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INTRODUCTION 

Current-voltage characteristics of ion transfer (IT) 
across the interface between two immiscible electro- 
lyte solutions (ITIES) has been subject to several 
theoretical and experimental studies in the last 
decade[l]. The models used to describe IT have 
always been closely related to the models of the 
interfacial structure. In the earliest papers, the inter- 
facial region was modelled as two diffuse double 
layers back-to-back[2]. Later treatments proposed 
the existence of a compact layer[3] or an ion-free 
layer[4] which acts as an energy barrier for IT. The 
height of such a barrier has even been estimated to 
be 14-17 kJmol_‘[5]. Currently the most widely 
accepted model considers the ‘inner layer’ as a mixed 
solvent layer where dielectric properties are changing 
smoothly from one phase to another[6]. This model 
has been corroborated by recent molecular dynamics 
simulations which allow us to estimate the thickness 
of this transition region as ca. 1 nm in the case of 
water/l,Zdichloroethane interface[7]. 

The earliest models of IT assumed kinetic control 
described by Butler-Volmer type expressions and the 
first measurements yielded values for the standard 
rate constant k” of the order of 10m3 ems- ’ (eg, Ref. 
[3]). Later values, calculated from convolution 
sweep voltammetry, were of the order of 
10-l ems- ‘[S]. Quite recently, the availability of a 
micro ITIES techniques which further enhances the 
rate of mass transfer has made it possible to observe 
reversible transfer of small ions (ie, k” is at least of 
the order of 1 ems-‘)[9]. Therefore, it seems reason- 
able not to invoke the assumption of kinetic control 

7 To whom correspondence should be addressed. 

of IT. Modelling of IT across the inner layer, if 
needed at all, does not necessarily require the use of 
Butler-Volmer type equations. In fact, Kakiuchi has 
lately shown that current-voltage characteristics of 
IT can be derived from Nernst-Planck type 
equations[lO], and molecular dynamic simulations 
has shown that ionic motion across the inner layer is 
more likely similar to that in the bulk solution[7,11]. 

Regardless of the use of Butler-Volmer or Nernst- 
Planck type equations for the description of IT 
across the inner layer, the surface concentrations, ie, 
the concentrations at the two boundaries of this 
layer, have to be evaluated. Although the correction 
for the diffuse double layer (Frumkin correction) has 
often been made (eg, Ref. [12]), concentration polar- 
ization has not been systematically studied at the 
ITIES. Furthermore, the classical treatments of ion 
transport within electric double layers[13] are not 
directly applicable to the study of ITIES. In this 
paper, we use some simple models for the potential 
distribution across of the ITIES and discuss about 
the importance of the concentration polarization in 
IT in terms of the relative permeabilities of the inner 
layer and the diffusion boundary layers. 

FORMULATION OF THE PROBLEM 

The system considered here is presented in Fig. 1: 
An ITIES is created bringing an organic solution ‘0’ 
into a contact with an aqueous solution ‘w’. The 
solutions are mutually insoluble and their relative 
permittivities are E“ and E’“, respectively. Across the 
whole system a potential difference A:@ is applied. 
The base electrolytes of the two solutions are not 
able to cross the interface, so that an ideally polariz- 
able interface is formed. The potential distribution is 
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J Integrating over the DBL, equation (5) takes the 
rl form 

s w 

DBL DDL IL DDL DBL J Xbe#‘-+” dx = _DW(c;e&-‘i%o ) 
: _,., x4 

4 x0” x2” x2” x0” xb” 
Fig. 1. A schematic view of the ITIES. 

determined by the base electrolytes according to the 
Poisson-Bolzman equation. Thus, the interfacial 
region consists of an inner layer (IL) flanked by two 
diffuse double layers (DDL). 

A univalent tracer cation is transferred across the 
interface. Its bulk concentrations are cr and c:, and 
standard electrochemical potentials p”+ and p’s’, in 
the appropriate phases. Since concentration polar- 
ization is more important when the transferring ion 
is a tracer ion, the existence of the diffusion bound- 
ary layers (DBL) has to be considered (see Fig. 1). 
The DDLs are then considered to be part of the cor- 
responding DBLs. The other quantities in the differ- 
ent layers are explained the best in Fig. 1. 

The ion flux across this composite system 
(IL + DBLs) can formally be expressed as 

J = _p(c;eA:“-A:‘O _ cob) (1) 

where P is the permeability of the system, A,“4 = 4; 
- & is the applied potential difference in RT/F 

units, and A~c$’ = (~‘3 w - poso)/RT is the dimen- 
sionless standard transfer potential; F, R and T have 
their usual significance. At steady state the ion flux is 
continuous and expressions similar to equation (1) 
can be written for each layer. Thus, 

J = _P” (cwe&-@’ 
DBL b 

_ c;e”‘i - G@ 
) (2) 

J = _ P,,(~;~“? - A:@’ _ c; e*;) (3) 

J = - pODBL(c; ebB - cg) (4) 

Here 4; and & are the potentials at the boundaries 
of the IL (see Fig. 1). Also, it has been assumed that 
the standard chemical potential of the tracer changes 
from p”* w to p”,O inside the IL. 

The permeabilities of the DBLs can easily be 
obtained from generalized Nernst-Planck equations. 
The flux of the tracer in the aqueous DBL is given 
by 

(5) 

(6) 

so that 

p;BL = * 

D” 

s 

Xb (7) 
e#-@ dx 

X4 

Analogously, 

J%BL = 

D” 

s 

x; 03) 
e4-@’ dx 

X”b 

We have mentioned in the Introduction that IT 
across the IL can be modelled either from Nernst- 
Planck or Butler-Volmer equations: If the former 
approach is followed, the permeability P,, is given 
by 

pN-P = 
D'L 

IL rx: 

J- e”-*’ dx 
1; 

(9) 

If the flux is described by the Butler-Volmer type 
equation 

J = -k 0 w aWY-*9-AzW) _ C;e’“-‘wY-cpwP~, [cze 1 

the P,, is given by 
p&Z-V = kOeca - 1 Ml - AZ401 - a& 

(10) 

(11) 

Finally, the permeability of the composite system 
can be obtained from equations (l)-(4) as 

1 1 1 1 

P = K + PI, + poDBL (12) 

In the next sections, these permeabilities will be cal- 
culated using different potential distributions, and 
the IL effects will be analyzed. 

POTENTIAL DISTRIBUTION FROM 
POISSON-BOLZMAN EQUATION 

Poisson-Bolzman equation takes the following 
form in the different parts of the system under study: 

* = 2~“’ sinh(+ - A”I#J) 
dx2 0 x > XT (134 

ZO x; < x < x; (13b) 

x < x; (13c) 

Its solution is 

4=AJJ4-4tanh-’ 

x (tanhC(Ao”9 - dW41 expCK’“K - x)11 

x > x; (14a) 
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Fig. 2. Current-voltage curves for Poisson-Bolzman poten- 
tial distribution; Nernst-Planck approach inside the IL 
with different ratios of DW/Dn : 0 (No IL, solid); 10’ (long 

dashed); lo3 (dashed); 104 (dotted). 

A:+ - A:@ 

Fig 3. Current-voltage curves for Poisson-Bolzrnan poten- 
tial distribution, Butler-Volmer approach inside the IL with 
e = 0.5 and different values of k” (ems-‘): co (reversible, 

solid); 10-i (long dashed); 10-s (dashed); 10m3 (dotted). 

1, I I 
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Fig. 4. Current-voltage curves for Poisson-Bolztnan poten- 
tial distribution, Butler-Volmer approach inside the IL with 
k” = 10-2cms-1 and different values of a: 0.8 (solid); 0.6 

(long dashed); 0.4 (dashed); 0.2 (dotted). 

4=4tanh-’ 

x; < x < x; (14b) 

x {tanh(&/4) exp[rc’(x - x;)]} 

x < x; (14c) 

where KW = (2F%“,/&“&, RT)“2 and K” = 
(2F2c”,/e”e, RT)‘*’ are the inverse Debye lengths, 
and c; and c$ the base electrolyte concentrations in 
the respective phase; a0 is the vacuum permittivity, 
and 

D rr 2.5%“ sinh(&/2) = ~YK’” sinh[(Ard - 9;)/2] 

(15) 

is the electric displacement in the IL. Note that the 
relative permittivity has been assumed to vary lin- 
early from .s” to es across the IL. If the linear profile 
is also assumed for the standard transfer potential 

x > x; 

x - x; 
A,“+” - 

XT - x; 
x; < x < x; (16) 

10 x < x; 
the following expressions can be obtained after some 
cumbersome algebra: 

(17) 

&I, = 
D” 

(18) 
x; - x~+~(eo22- 1) 

K0 

PN-P = 
IL 

(x; - x;){rCB + 1, (0 + QW”l - r(B + 1, W4°)} 

(19) 

where fI = so (E’” - E”), b = D(x; - x;)/(.? - E’), and 
y is the incomplete Gamma function. 

Figure 2 shows the J vs. A,“4 - Azr#~’ curves in a 
dimensionless form for D” = D” = 10e5 cm’s_‘, and 
different values of D”-. The following parameter 
values have been used: xt - x; = x02 - xt = 
10e3 cm, x; - x02 = 1 nm, l/lc” = 1 nm, l/~” = 3 nm, 
and c; = ~0, = 10mM. The solid line corresponds to 
a calculation with no inner layer and can also be 
interpreted as the limit of the patterned lines when 
DIL tends to infinity. Since PgBL x PO& x 
10-2cms-1 when A”# = A,“4’, and Pkp z DIL/(x; 
- x:) = 10’ cm- ’ DpL, Fig. 2 clearly shows that IL 

effects are important only if DIL c lo-* cm2 s-r. But 
if the IL is taken as a mixed solvent layer flanked 

by aqueous and organic solutions and 
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Dosw x 10-5cm2s-1, it is hard to explain why DrL 1 

should take that low values. 
Analogously, the ion flux can be calculated from 

Butler-Volmer description making user of equations 
(ll), (17-18). Figure 3 shows the simulation with the 

u5 _ 
’ 

same parameter values as in Fig. 2, with u = 0.5 and 
different values of k”. The solid line corresponds to 
the reversible case, when k” + co, and coincides with 
the solid line in Fig. 2. Again, IL are appreciable 
only when k” c 10-2cm-’ which again is too low 
a value in the view of the latest results. Figure 4 
shows the simulation with the same parameter 
values as in Fig. 2, while k” = 10-2cms-’ and CI is 
varied; taking k” = lo- ’ cm s- ’ the effect of cz is 1 
only vaguely noticeable. -4 -2 0 2 4 

A:+ - A:@ 

LINEAR POTENTIAL DISTRIBUTION 

It is reasonable to ask if the potential distribution 
has any effect on the results obtained in the previous 
section. Here the fluxes are calculated using equation 
(16) and replacing equations (14) by the following 
linear profile 

A:4 x > x;r 

0 = A,wd F 

1 

- x”o 
x”o < x < x; (20) 

0 x < x”o 

where xg and x$ are the positions at the outer 
boundaries of the DDLs and are taken so that XT 
- x; = l/k” and x; - xt = l/k’. In this case it is 

easy to show that 

GIL = 

Fig. 5. As in Fig. 2, but the linear potential distribution 
(equation (16) and (20)). 

D” 
69, = - 

x”o - x; (25) 

PfJL-P + co (26) 
prL- v = koe(’ - 1 ,(G& - fl@) (27) 

The solid line in Fig. 5 can be viewed as representa- 
tive of this stepwise profile. 

APPARENT CHARGE TRANSFER 
COEFFICIENTS 

D” 
&BL = x; - xz 

(22) 

6 - 4+ A,“4 (coy - 1) 

-J = her - k,c”, (28) 

where k, and k, are the forward and backward trans- 
fer rate constants, a comparison with equation (1) 
gives 

k, = p&-~W+O; k, = P (2% 

Now, comparing this with the Butler-Volmer for- 
malism, the apparent charge transfer coefficient tz,pp 

X4’ --- 

PN-P = XT - x; > 
IL eo~-~w _ ,A (23) 1 .._.... ,. ,’ 

,/ 

1 
4 

If the flux is written using a formal kinetic equa- 
tion 

In Fig. 5 a simulation parallel to Fig. 2 is present- 
ed, but now the potential distribution is linear 
instead of Poisson-Bolzman distribution in Fig. 2. In 

0.5 

Fig. 6 the same simulation is carried out replacing 
equation (23) by the Butler-Volmer permeability pre- 

eu” 

sented in equation (11). As can be seen, in both cases, 
b 

the linear profile provides the better estimate for the 
a; o 
7‘ 

tracer flux the greater PIL is. 
Finally, it is interesting to consider the limiting 

case where IL is absent, ie, the potential distribution 
is a single step of the height A,“4 at the interface. 
Then, 

nw A:+ - A(\:@ 
P;I;,, = - w * (x;: - x;)eL@-w (24) Fig. 6. As in Fig. 3, but the linear potential distribution. 
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is given by (see equation (12)) 

4nh) d 
a =-=- 

a” d A:4 d A:4 

1 
x +++- 

IL &IL >I (30) 

In the case of the stepwise potential distribution this 
can be solved easily, and at equilibrium A,“4 = Ard” 
the results are for the Nernst-Planck approach inside 
the IL (see Fig. 7) 

x”o - x; 

aN-P = 
D" 

SPP x:: - 
(31) 

x : x”, - x”h 

-+--QT D" 

and for the Butler-Volmer approach inside the IL 

xz - x: a 
--l-- 

aB-V _ 
D" ’ k" 

IPP - xr - x; 
+ 

x”o - x; 1 
(32) 

- - 
D” D” + T;ij 

For the other cases discussed above, it is easier to 
simulate kf and obtain the slope In k, vs. A,“4 
- A,“b” graphically. Following the trend in Fig. 7, 

the common feature then is the aapp is smaller at 
negative and greater at positive overpotentials than 
those given in equation (31) or (32), depending on 
the transfer mechanism through the IL. 

Note that aapp depends on potential through the 
surface concentrations. In Fig. 8 the surface concen- 
tration of the tracer on the aqueous side is simulated 
in the case of the stepwise potential profile with 
c; = c$. As can be seen, the surface concentrations 
are very different from the bulk concentrations even 
assuming slow kinetic control across the IL which 
confirms the significance of the DBLs. When the 
DBLs can be eliminated, as in the case of the micro 
ITIES[9], the overall permeability of the system 
increases, resulting in high rates of transfer. Our own 
preliminary measurements with the rotating diffu- 

- 0.8 

- 0.6 

A:+ - A:Q 

Fig. 7. In k, vs. A:4 - A,“#’ curves (left y axis) and appar- 
ent charge transfer coefftcients a_,s (right y axis) for the 
stepwise potential distribution. Solid lines: equation (26), 
dotted lines: equation (27) with k” = 10-2cm s-t and 

a = 0.5. 

2 

1.5 

t’ 
$ 1 

0.5 

0 
-4 -2 0 2 4 

Fig. 8. Surface concentration of the tracer on the aqueous 
side in the case of the stepwise potential profile when c; = 
c$: reversible (solid), k” = 10-r (long dashed), lo-* 
(dashed) and 10-j (dotted ems-r. The concentration on 
the organic side is symmetrical’ with respect to the zero 

overpotential line. 

sion cell (for the description of the set-up, see Ref. 
[14]) have shown that extrapolating to the infinite 
rotating speed, where the thickness of the DBLs 
approaches zero, very high current densities are 
obtained. These measurements are still underway 
and will appear in a subsequent paper. 

DISCUSSION 

The simulations above show that the inner layer is 
hardly recognizable when realistic parameter values 
are used for the estimation of the permeabilities of 
the different layers. This is not surprising in the view 
of equation (12): first, the thickness of the IL is 
several orders of magnitude smaller than the thick- 
ness of the DBLs, and second, the potential drop 
across the IL is small, as frequently mentioned in the 
literaturecl]. Both of these factors make the integral 
in equation (9) negligible when compared with the 
those in equation (7) and (8), and DIL cannot com- 
pensate for this difference. If Butler-Volmer type 
equation is used for the flux across the IL, a simple 
order of magnitude analysis shows that k” should be 
less than ca. 10-2cms-1 to make IL ‘visible’. In the 
simulations, we have assumed the thickness of the 
DBLs to be 10e3cm (while they are typically of the 
order of 10-2cm [lS]) to emphasize the contribu- 
tion of the IL. 

In the absence of the effect of the IL the potential 
distribution also has very small significance because 
the thickness of the DDL, where the potential dis- 
tribution takes place, is only a few Debye lengths, ie 
a few nanometers. In the simulations, CT = c$ = 
0.01 M which is the practical lower limit for the base 
electrolyte in order for the trace-ion assumption to 
be valid (trace-ion concentration ~2% of the base 
electrolyte concentration) but still to have detectable 
currents; higher concentrations correspond to 
shorter Debye lengths accordingly. This means that 
the potential distribution can be approximated by a 
stepwise profile with sufficient accuracy, and that 
Frumkin correction is not important at steady state. 
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If the IL were visible, then the potential distribution 
would be important (compare Figs. 2 and 5 or 3 and 
6) because it affects the potential drop across the IL 
and the assumption of the inner layer as an ion free 
layer in equation (13b) should be reconsidered. 

Hence, the shape of the current-voltage curve 
resembles an apparent Butler-Volmer behaviour, but 
has its origin in the concentration polarization. Even 
if there were kinetic control of the current at the 
interface, or if the interfacial region imposed an extra 
friction to the ionic movement, the always present 
transport in the DBLs would screen these pheno- 
mena. 

It is interesting that the apparent charge transfer 
coefficient aaPP can also be obtained from the present 
model. This coefficient is potential dependent and 
has a value of ca. 0.5 in the vicinity of the equi- 
librium, as in Ref. [lo], because it is determined by 
the potential dependent permeabilities in the differ- 
ent layers (see equation (30)). At the equilibrium the 
driving force of the transfer is zero, and the ion ‘sees’ 
only the interfacial structure in terms of the per- 
meabilities. Equation (31) can be rewritten in the 
form of 

N-P _ GBL 
a wp - pw 

DBL + ‘:BL 
(33) 

So, equal permeabilities in the DBLs mean a sym- 
metrical potential barrier which has to be overcome, 
resulting in the value 0.5 for claPP. If the Butler- 
Volmer type equation is assumed the ‘true’ coeff- 
cient c( is obtained at the limit Pz;P, -+ cc (see 
equation (32)). 

CONCLUSIONS 

It can be concluded that a steady state current- 
voltage curve tells very little about the interfacial 
structure or the mechanisms of IT unless the mass 
transfer resistance of the DBLs can be eliminated. 
Transient methods, which are not treated here, are 
usually utilized in order to get any information of 
the kinetics of IT, but these methods are, however, 
subject to the uncompensated ir drop and capacitive 
current which are quite difficult to take into account 
in the modelling of the system, as presented here. 
Since ac impedance measurements at the ITIES can 
be safely carried out only within the polarization 
window where no faradaic bias current is flowing, 
these are subject to only periodical concentration 
polarization which can be eliminated, and thus P s 
P IL ; that is why data obtained from UC measure- 
ments results in higher values of k” than those 
obtained from dc measurements[16]. The problem 

associated to ac impedance is that measurements are 
usually carried out in the vicinity of zero current 
where the structure of the interface is probably dif- 
ferent from that in the presence of substantial 
flux[17]. Therefore, perhaps the most suitable 
methods for the study of IT in the future could be 
based on the use of micro ITIES[18] or a rotating 
diffusion cell. 
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