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Statistical geometric methods based on nearest-neighbor distributions are used, in connection with hard-
particle systems, to develop Ornstein-Zernlike-like equations that have already been of considerable value
in the statistical thermodynamic analysis of such systems and that promise to have even greater value. In
this paper, we use these equations to (1) develop a relation that is valid for a hard particle system in
unconstrained equilibrium and that shows that the insertion probability cannot vanish (short of closepacking)
in such a system, (2) study the still incompletely settled issue concerning the equality of the hard-particle
densities on the peripheries of cavities which are and are not occupied by hard particles and, in so doing,
arrive at a relation that holds in a system in stable equilibrium but fails in a metastable system, (3) provide
insight into the geometric mechanism of hard-particle phase transitions and allow simple estimates of the
freezing densities, and (4) suggest a new physical interpretation for the direct correlation function.

1. Introduction

There has been an increased interest innearest-neighbor
distributions (and neighbor distributions in general) in the
statistical mechanics of fluids and related systems.1-7 Interest
has also been focused on the functions that comprise the
neighbor distributions. In this paper, dealing with hard particle
systems, we make use of these functions to develop Ornstein-
Zernike-like equations and to derive relations that are valid on
thestablebranches of hard particle pressure-density isotherms
and that are not necessarily valid on metastable branches. We
also investigate some unresolved issues concerning the condi-
tional particle density at the surface of a cavity and find a rather
unique relation involving these densities that undergoes an
abrupt change as the system passes from stable to metastable
equilibrium. Byproducts of this study are some simple ideas
concerning the “mechanism” of hard particle phase transitions
and an alternative physical interpretation of the direct correlation
function. (See Appendix C.)
The term “statistical geometric characterization” is adopted

to imply that the analysis is conducted with the aid of neighbor
distributions and their component functions.

2. Nearest Neighbor Distribution

Consider an arbitrary point in a uniform system ofN particles
(not necessarily hard particles) contained in a volumeV.
Selecting this point as the origin, we ask for the probability
â0(r ) dr that the center of the particle nearest to the origin is
located at the pointr in the volume element dr . This probability
can be expressed as

where the notation∫r indicates that the integration is performed
throughout the volume 4πr3/3 wherer ) |r |. F is the uniform
bulk number densityN/V, andG0(r ) is defined so thatFG0(r )
is the conditional density in dr (conditional on the interior
volume 4πr3/3 being devoid of particle centers). The structure
of eq 2.1 is obvious; the factor in square brackets is the

probability that the interior volume is empty, whileFG0(r ) dr
is the chance that at least one particle center will be found in
dr , given that the interior volume is empty.
In general, we shall be interested in nearest neighbor

distributions that are spherically symmetric so that we can ask
for the probability that the center of the particle nearest to the
arbitrary point at the origin lies in the spherical shell of volume
4πr2 dr. By denoting this probability byR0(r) dr, we have

where

From these equations, it is clear thatR0(r) andâ0(r) are fully
determined byG0(r) and vice versa.
We can also place the center of a molecule at the origin and

ask for the probability that the center of the nearestother
molecule lies in dr at r . In this case, denote probability
distributions byâ(r) andR(r), dropping the zero subscript, and
eqs 2.1 and 2.3 are once again applicable to the unsubscripted
quantities.
If we consider a two-dimensional system, eqs 2.2 and 2.3

become

while, for a one-dimensional system, we define the nearest-
neighbor distribution to theright or left of the origin byR0(x),
wherexmay be positive or negative, and the equations become

For both the one- and two-dimensional systems, we denote
(similar to the three-dimensional case) the distributions about
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â0(r ) dr ) [1 -∫râ0(r ′) dr ′]FG0(r ) dr (2.1)

R0(r) dr ) [1 -∫0rR0(r′ ) dr′]4πr2FG0(r) dr (2.2)

R0(r) ) 4πr2â0(r) (2.3)

R0(r) dr ) [1 -∫0rR0(r′ ) dr′]2πrFG0(r) dr (2.4)

R0(r) ) 2πrâ0(r) (2.5)

R0(x) dx) [1 -∫0xR0(x′ ) dx′]FG0(x) dx (2.6)

R0(x) ) â0(x) (2.7)
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a particle at the origin by the same symbolswithout zero
subscripts. Again the same set of equations applies to these
quantities.
In this paper, we specialize consideration to hard particles

of diameter (spheres, disks) or length (rods)σ. Then it is
sometimes convenient to think of the “empty” interior volume
of radius r (spheres, disks) or half-lengthx (rods) as having
been created by a hard particle of radiusr - (σ/2) or half-
lengthx- (σ/2). This is so even when there is a particle at the
origin, provided thatr, x > σ.

3. Insertion Probability

The quantity in square brackets in eq 2.2, since it represents
the chance of finding an empty spherical region large enough
to accommodate a hard sphere of radiusr - (σ/2) is the
“insertion probability”8 for a sphere of this radius. For a system
of hard spheres, in thermodynamic equilibrium, it is well-
known9,10 that this insertion probability, which we now denote
byP0(r), is related to the chemical potentialµ(r - (σ/2)) of the
added hard sphere, regarded as a “solute” sphere, through the
relation

wherek is the Boltzmann constant,T the temperature, andΛ(r
- (σ/2)) the de Broglie wavelength of the solute sphere. Ifr
) σ, the solute sphere is identical to the “solvent” sphere of
radiusσ/2, and eq 3.1 is replaced by

where the addition of the factorN to the argument of the
logarithm is related to the reduction of entropy that accompanies
the indistinguishability of the solute from the solvent spheres.
These ideas can of course be extended to disks and rods.
If we consider “empty” interior volumes which we may now

refer to as “solute cavities”11-13 thatcontaina particle centered
at the origin, then the probability of observing such a cavity
cannot be regarded as an insertion probability, since the presence
of the particle at the origin blocks the addition of another
particle, but for convenience, we will continue to refer to it as
an insertion probability and denote it byP(r), again dropping
the zero subscript.
Next we derive a useful relation betweenP0(r) andG0(r) by

noting thatP0(r + dr) may be expressed as

where the right-hand side is the product of the simultaneous
probabilities that there is an empty volume of radiusr and an
empty spherical shell of volume 4πr2 dr so as to assure an empty
volume of radiusr + dr. Expanding the left side of eq 3.3 to
terms linear in dr leads to an equation for dP0/dr that can
integrated immediately, subject to the conditionP0(0) ) 1, to
yield

so thatP0(r) is fully determined by eitherG0(r) or R0(r) and

vice versa. Comparison of eq 3.4 with eqs 2.2 and 2.3 shows
that

Substitution of the first equation of eq 3.4 into eq 3.5 shows
that

so that the nearest-neighbor distributions are indeed normalized.
Equations 3.4 through 3.6 hold for disks and rods except that
for disks, 4πr2 is replaced by 2πr and for rods,r is replaced by
x and 4πr2 by unity.
The equation forP(r), similar to eq 3.4, is

In this case, the counterpart of eq 3.5 is

Substitution of eq 3.7 into eq 3.8 now shows that

so that the nearest-neighbor distribution for this case is also
normalized. It should be noted that the lower limits on the
integrals in eq 3.9 could be set to zero, sinceâ(r), R(r) ) 0 for
r < σ, due to the presence of the hard sphere centered at the
origin. Similar results apply to hard disks where 4πr2 is
replaced by 2πr and for hard rods wherer is replaced byx and
4πr2 by unity.
The above relations can be applied to crystalline solids where

G0, â0, R0 andG, â, R can be considered as rotationally averaged
quantities.
Now, Speedy14 has given proof that, as long as averages are

taken overall possible (nonoverlapping) configurations of hard
spheres within the volume in which they are contained, the
following relation is valid:

In simple language, this implies that if a hard sphere is centered
within a spherical region whose radius is larger than its own
diameter, then another hard sphere, not being able to contact
the central sphere, cannot be aware of its presence in all
configurations in which the empty spherical region is main-
tained. However, Speedy presents a more rigorous argument.
Later, we argue that eq 3.10 fails for a hard-particle system
that is not atcomplete(unconstrained) equilibrium. “Complete”
equilibrium implies that averages are taken over “all” configura-
tions limited only by the principle of no overlap, i.e., that the
averages correspond to thefull thermodynamic state of the hard-
sphere system. For example, if one included only those
configurations in, say a low density system, in which the centers
of all spheres were fixed to the sites of a rigid lattice, eq 3.10
could certainly not hold. This would be a case in which almost
all of the most abundant configurations would be disallowed,
amounting to a very severe internal configurational constraint.

µ(r - σ
2) ) kT ln{[Λ(r - σ

2)]
3

VP0(r)
} (3.1)

µ(σ2) ) kT ln
[Λ(σ2)]

3
N

VP0(σ)
(3.2)

P0(r + dr) ) P0(r)[1 - 4πr2FG0(r) dr] (3.3)

P0(r) ) exp{-F∫0r4π(r′)2G0(r′ ) dr′} ) 1-∫0rR0(r′ ) dr′
(3.4)

â0(r) )
R0(r)

4πr2
) FG0(r)P0(r) (3.5)

∫0∞4πr2â0(r) dr )∫0∞R0(r) dr ) 1 (3.6)

P(r) ) exp{-F∫σr4π(r′ )2G(r′ ) dr′} ) 1-

∫σrR(r′ ) dr′, r g σ (3.7)

â(r) )
R(r)

4πr2
) FG(r)P(r) (3.8)

∫σ∞
4πr2â(r) dr )∫σ∞

R(r) dr ) 1 (3.9)

G(r) ) 0, r < σ

G(r) ) G0(r), r > σ (3.10)
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Notice, however, that at the density where the hard-sphere solid
is stable, the crystalline configurations are themostabundant
ones, disordered structures (because of inefficient packing) being
in natural short supply. In the crystalline phase, the spheres
are not rigidly fixed to lattice sites.
This brings us to our first consideration of a metastable or

even unstablefluid branch of the pressure-density isotherm of
the hard-sphere system. As in the first example presented above,
the system on this branch must be limited to configurations that
represent only a minor fraction of the total. For example,
configurations displaying the long-range order of thestable
crystal must be disallowed; otherwise, they would overwhelm
(because of their relatively large number) the averages so that
the system would no longer be metastable or unstable. This
severe configurational restriction could invalidate the proof
leading to eq 3.10. We return to this point later.
Substitution of eq 3.10 into eq 3.4 yields

where we have used eq 3.7. Substitution of this equation and
eq 3.10 into eq. 3.8 gives

where, in the final step, we have used eq 3.5.
It is clear from the foregoing that the fundamental problem

in the statistical mechanics of the hard-sphere system is the
evaluation ofG0(r) since that function can be used in eq 3.4 to
determineP0(σ) which, in turn, can be used in eq 3.2 to evaluate
µ ) µ(σ/2). For example, the central effort of scaled particle
theory (SPT)10,15,16is directed toward the evaluation ofG0(r).

4. Ornstein-Zernike-like Equations

Consider now the pair correlation functiong(r2)17 between a
hard sphere whose center is chosen as the origin and one whose
center is atr2. We may express this function by the following
equation:

whereFgj(r2,r3) is the conditional density of hard-sphere centers
in dr2, given that there is a sphere at the origin whose nearest
neighbor is in dr3 at r3. Figure 1 diagrams this situation. An
important feature ofgj(r2,r3) is that it must vanish if|r3| exceeds
|r2|; otherwise, the particle atr3 would cease to be the nearest
neighbor to the one at the origin. Thus, insofar as the particle
at r2 is considered, within the integral on the right side of eq
4.1, there is a hard sphere of radiusr3 - (σ/2) centered at the
origin, which it cannot penetrate. This sphere is the dotted one
in Figure 1. Since it is clear from the figure thatr3 - (σ/2)
can never be less thanσ/2, the sphere with center atr2 cannot
sense the one at the origin (in the absence of some special
configurational constraint that might be equivalent to an
intermolecular potential). Thus,gj(r2,r3) may be regarded as
an unsymmetrical triplet distribution function involving the three

particlessnearest neighbor atr3, sphere atr2, and effective
sphere of radiusr3-(σ/2) centered at the origin.
The structure of eq 4.1 is elementary. The densityFg(r2) in

dr2 may be due to thenearest neighborif the center of the
nearest neighbor is in dr2. This accounts for the first term on
the right of eq 4.1. If the nearest neighbor is not in dr2, but
rather in dr3, then the density in dr2 is given byFgj(r2,r3), i.e.,
by the density,conditional on the nearest neighbor being in
dr3, the probability of which isâ(r3) dr3. The product of this
probability and the density conditional on its contributes to the
overall density in dr2 and leads to the integrand in eq 2.1 which
is then summed over all allowable positionsr3 to yield the total
density when added toâ(r2). The result is eq 4.1.
We refer to eq 4.1 (and equations that resemble it, some of

which we discuss below) as an “Ornstein-Zernike-like (OZ-
like) equation”, because of its strong resemblance to the
Ornstein-Zernike equation.18 In many instances, this resem-
blance is more than incidental, and we elaborate on this issue
in Appendix D. OZ-like equations are especially useful because
of the penetrating insights that they afford into the physical
features of what might appear to be a predominantly mathemati-
cal problem. For example, eq 4.2, below, has been used in
conjunction with SPT to evaluate the hard-sphere pair correlation
function with an accuracy that slightly exceeds that derived from
the Percus-Yevick theory.1 By writing OZ-like equations for
a hard sphere of arbitrary radius at the origin, a continuum of
OZ-like equations can be produced whose value in the theory
of fluids may be considerable but has yet to be tested.
We can write the analogue of eq 4.1 for the pair correlation

function between an “arbitrary point” at the origin and a hard
sphere atr2. Since the point at the origin is arbitrary, it follows
that, in this case,g(r2) ) 1 andâ f â0. Then, eq 4.1 is replaced
by

where the argument for the structure of eq 4.2 is the same as
that for eq 4.1. We have appended the subscript zero togj to
indicate that the function might possibly differ in eq 4.2 from
its value in eq 4.1.
However, it should be evident from Figure 1 that, if the sphere

at the origin is removed, it makes no difference to the sphere at
r2 as long asr3 exceedsσ; i.e., in the absence of a configura-
tional constraint, the sphere atr2 cannot sense what is at the
origin, in either case, as long asr3 > σ. Thus,

Now, we substitute eq 3.12 into eq 4.1 and eq 4.3 into eq 4.2,

Figure 1. Illustrates the basis for eq 4.1. Particle 3, the shaded particle,
is the nearest neighbor to particle 1. The pair correlation function refers
to particles 1 and 2. The large circle is the “effective” hard sphere
that particle 2 sees.

F ) â0(r2) + F∫â0(r3)gj0(r2,r3) dr3 (4.2)

gj0(r2,r3) ) gj(r2,r3), r3 > σ (4.3)

P0(r) ) exp{-F∫0σ4πr2G0(r) dr}exp{-F∫σr4πr2G(r) dr}

P0(r) ) P0(σ)P(r), r > σ (3.11)

â(r) ) FG0(r)
P0(r)

P0(σ)

â(r) )
â0(r)

P0(σ)
, r > σ (3.12)

Fg(r2) ) â(r2) + F∫â(r3)gj(r2,r3) dr3 (4.1)
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bearing in mind that the integral in eq 4.1 cannot haver3 < σ
since thenâ(r3) would vanish. Equation 4.1 becomes

while eq 4.2 may be expressed as

where the notation∫σ and∫σ indicates, respectively, that the
ranges ofr3 arer3 < σ andr3 > σ. Subtracting eq 4.5 from eq
4.4 yields

This is in many respects a remarkable relation. Because its
validity depends upon the validity of eq 3.10 which we have
used in its derivation, we will refer to it as the “constraint-free
condition”; i.e., it applies to a system of spheres in which
averages are freely taken, restricted only by the requirement
that spheres do not overlap. We analyze some of its properties
in the next section.

5. Constraint-Free Condition

Referring to eq 4.6, the first thing to note is that, although it
specifies a functiong(r2) wherer2 may be much larger thanσ
(r2 may evenf ∞), the integral that determines this function
is limited to values ofr2 that aresmaller thanσ. Suppose we
let r2 f ∞. Then, bothg(r2) andg(r2,r3) will become unity
(no correlation at infinite separation) and eq 4.6 will read

which, according to eq 3.4, is a correct result.
Now, let us try something else. Assume thatP0(σ) ) 0. This

implies that the insertion probability is zero and that the chemical
potential (see eq 3.2) is infinite. But ifP0(σ) ) 0, eq 3.5
requiresâ0(σ) ) 0 so that the upper limit in the integral of eq
4.6 may be set to infinity without incurring any error. Then,
in this case, eq 4.6 becomes

At this same time, eq 3.6 may be expressed as

In eq 5.2,r2 can be varied arbitrarily, and it would require a
mathematical miracle forgj(r2,r3) to compensate in just the right
way,at anyValueof r2, so that the relation would continue to
hold and accomplish the same end as eq 5.3 in spite of the
appearance of the additional factorgj(r2,r3) in the integrand.
If eq 5.2 is invalid, we must look for the invalid step that led

to it. The only assumption was thatP0(σ) could vanish. That
was responsible for the disappearance of the left side of eq 4.6
and the appearance of eq 5.2. Thus, at first, it is implied that
for unconstrained equilibrium, i.e., under full thermodynamic
equilibrium, the insertion probability for the hard sphere system
cannot vanish at any density, and therefore, the chemical
potential cannot be infinite.

On the other hand, at closepacking, even thoughP0(σ) may
vanish,g(r2) will exhibit infinities corresponding to spheres in
contact. Thus, the left side of eq 4.6 may remain finite and the
unlikely result, eq 5.2, would not be generated.
At first sight, this result may seem to belabor the obvious

since one’s intuition, alone, might suggest thatP0(σ) and the
chemical potential should not vanish or be infinite, respectively,
for densities smaller than that of closepacking. Furthermore,
there is an abundance of evidence, both theoretical and
experimental (simulation), that this is the case.20,10

On the other hand, it is possible to generate innumerable
configurations, at densities far below that of closepacking, for
which P0(σ) vanishes. In view of the above result, we have
shown that none of these can correspond to a state of
unconstrained equilibrium!
As an important corollary, eq 4.6 is valid for the constraint-

free, fully equilibrated, hard sphere system!
Returning to the consideration of states that do not correspond

to constraint-free equilibrium, we emphasize that such states
need not be confined to any particular metastable fluid condition
of the system or, for that matter, to a metastable crystalline
condition. For example, the microscopic constraint might
correspond to the analytic continuation of the stable fluid branch
of the pressure-density isotherm. Perhaps a better (although
less convenient) choice can be based on the following.
Denote the density at which the hard-sphere fluid begins to

freeze byFf. In the constraint-free system, asF begins to exceed
Ff, those configurations that correspond to a solid with long-
range order begin to become relatively abundant because of the
limited packing options available to disordered fluid configura-
tions. As F increases, the ordered configurations become
overwhelmingly abundant in comparison to the fluid configura-
tions. Therefore, to maintain the fluid branch of the phase
diagram, it is necessary to apply an extremely severe configu-
rational constraint in order to disallow the majority of configu-
rations that the hard-sphere system would like to adopt. The
most benign constraint that achieves this situation would be the
one that allows all configurations except those corresponding
to long-range order, i.e., crystalline configurations, and therefore,
it might be possible to define the metastable state as that in
which the system achieves equilibrium subjectonly to this
constraintin addition to the proscription against the overlap of
spheres.
Generally, a metastable state corresponds to a local minimum

of free energy in a coarse grained region of the system’s phase
space. Then, allowing the system infinite time to achieve
equilibrium, the free-energy barrier between the local minimum
and the global one (stable equilibrium) must be augmented so
as to completely exclude the possibility of transition to the global
minimum. The constraint may therefore be viewed as an
additional intermolecular potential or an additional potential of
mean force. The additional potential need not be pairwise
additive.
The choice of the analytic continuation of the stable fluid

isotherm as representative of the metastable fluid can only be
given a molecular interpretation in terms of a given molecular
theory for the stable fluid. Usually, however, the metastable
fluid is defined in terms of some “experimental” continuation
of the stable branch of the isotherm. In the case of hard spheres,
such a continuation generally means the extension of a computer
simulation into the metastable regime. It has been suggested
that the terminus of such an extension is the state of “random
closepacking”.21

We have discussed several prescriptions for the metastable
fluid, and it should be clear that there are many others. We

P0(σ)Fg(r2) ) â0(r2) + F∫σ â0(r3)gj(r2,r3) dr3 (4.4)

F ) â0(r2) + F∫σâ0(r3)gj0(r2,r3) dr3 +

F∫σ â0(r3)gj(r2,r3) dr3 (4.5)

P0(σ)g(r2) ) 1-∫σâ0(r3)gj(r2,r3) dr3 (4.6)

P0(σ) ) 1-∫σâ0(r3) dr3 ) 1-∫0σ4πr3
2â0(r3) dr3

P0(σ) ) 1-∫0σR0(r3) dr3 (5.1)

∫∞â0(r3)gj(r2,r3) dr3 ) 1 (5.2)

∫∞â0(r3) dr3 ) 1 (5.3)
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will argue that eq 4.6 need not apply to a metastable fluid so
that there may be prescriptions under whichP0(σ) ) 0 even
though the system is not closepacked. ThatP0(σ) can vanish
in the absence of closepacking is easily proved by simply
demonstrating a nonclosepacked configuration for which this
occurs. Many such configurations can be demonstrated so that
it is not even necessary to present detailed proof that eq 4.6
need not apply to a metastable system. However, there is
another issue, dealing with the applicability of eq 3.10 to a
metastable system, that is somewhat controversial and needs to
be resolved. We address this issue in section 7. The nonap-
plicability of eq 3.10 is equivalent to the nonnecessity of eq
4.6, since the former is used in the proof of the latter.
In closing this section, it is worth reiterating that although

simulative extensions of the stable fluid isotherm for a hard-
sphere system suggest thatP0(σ) does not vanish until the
random closepacking density is achieved, this represents only
one (poorly defined) of many possible metastable configurations.
Indeed, such an “experimental” isotherm may be dominated by
kinetics and unavoidable long computational relaxation times,
so the constraints to which it corresponds may never be
discovered. For this reason, among others, in this paper we
make no special appeal to this prescription of the metastable
fluid.

6. Test of the OZ Equations Using the Hard-Rod System

Since relations such as eqs 4.1, 4.2, and 4.6 will be used in
studying the applicability of eq 3.10 to a metastable fluid, it is
useful to gain further assurance concerning their validities by
referring them to a system in which all of the involved functions
are known exactly. Such a system is the one-dimensional
system of hard rods. However, before proceeding to a test of
the relations in this way, it should be emphasized that the test
is really unnecessary since the original derivations of those
relations are presumed to be free of error. Nevertheless, there
is no harm in acquiring additional confidence by means of the
proposed test.
We consider a one-dimensional system ofN hard rods, each

of lengthσ, in a container of lengthL. As indicated in section
2, we denote the coordinate of position byx and the pair
correlation function between rods byg(x). It is convenient to
define the “pair correlation functionto the right” by g+(x) such
that

Similarly, the correlation function to the left is denoted by

Clearly, we can write

Furthermore, because of the symmetry ofg(x), we have

As indicated in section 3, in the hard-rod system,â0(x) and
â(x) are identical withR0(x) andR(x), respectively, and we also
defineR0+(x) ) â0+(x) andR+(x) ) â+(x) by R+(x) ) R(x), x
> 0, andR+(x) ) 0, x < 0, similar tog+(x). The same is true

of R0+(x) and for bothR-(x) andR0-(x), where the definitions
are reversed. The equivalent of eq 4.1 becomes

for which the rationale is the same as for eq 4.1 and whereF )
N/L, whereL is the length of the system.Fg+(x2) is the density
of hard-rod centers atx2. The first term on the right is the
density contributed by the nearest neighbor if the rod center in
dx2 happens to be that of the nearest neighbor. The integrand,
FR+(x3)g+(x2-x3) is the density of rod centers atx3 if the center
at x2 is not that of the nearest neighbor. Thus,R+(x3) dx3
represents the probability that the nearest neighbor is in dx3,
while Fg+(x2 - x3) is the conditional density atx2, given that
there is a center atx3. We do, however, note the following
important difference. Although three centers are involved, i.e.,
the one at the origin and those atx3 andx2, respectively, we
need not involve triplet correlation functions since, in the hard-
rod system, the chance that there is a center atx2 is not
influenced by the center at the origin when it is known to be
present.
The upper limit on the integral in eq 6.5 isx2 because ifx3

exceedsx2, the center atx3 will no longer be the nearest neighbor
to the one at the origin. However, because of eq 6.1, we might
just as well set the limit at∞, sinceg+(x2 - x3) ) 0 whenx3 >
x2 so thatx2 - x3 < 0. Thus, we can write

The equivalent of eq 4.2 becomes

where, for the same reason as in eq 6.6, we have been able to
replacex2, in the upper limit, by∞ and where we have used
the analogue of eq 4.3.
Now, in Appendix A, we show that, for the constraint-free

system,

and that

Some other important results are known. These are, again for
the constraint-free system,22

and

G(x) ) 1
1- Fσ

, x> σ (6.11)

g+(x) ) g(x), x> 0

g+(x) ) 0, x< 0 (6.1)

g-(x) ) g(x), x< 0

g-(x) ) 0, x> 0 (6.2)

g(x) ) g+(x) + g-(x) (6.3)

g-(x) ) g+(-x) (6.4)

Fg+(x2) ) R+(x2) + F∫0x2R+(x3)g+(x2 - x3) dx3 (6.5)

Fg+(x2) ) R+(x2) + F∫0∞R+(x3)g+(x2 - x3) dx3 (6.6)

F ) R0+(x2) + F∫0∞R0+(x3)g+(x2 - x3) dx3 (6.7)

R0+(x) ) â0+(x) ) F, 0< xe σ

R0+(x) ) F exp[-
F(x- σ)
1- Fσ ], x> σ (6.8)

R+(x) ) 0, xe σ

R0+(x) ) F
1- Fσ

e-[F(x-σ)/(1-Fσ)], x> σ (6.9)

G0(x) ) 1
1- Fx

, xe σ

G0(x) ) 1
1- Fσ

, x> σ (6.10)

G(x) ) 0, xe σ
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and finally, still for the unconstrained system,23

whereH(x - nσ) is the unit step function (H ) 0, x < nσ; H
) 1, x > nσ) and where

The one-dimensional version of eq 4.6, based on the same
reasoning that led to that equation, is

where, for the constraint-free case,

and where we have used eq 6.10.
Now, for the hard rod system, the validity of eq 5.2 would

consist of the vanishing of the right side of eq 6.14 at a density
short of closepacking, i.e., forFσ < 1, and with the upper limit
in the integral replaced by∞. This, in turn, would requireP0+-
(σ) to vanish short of closepacking. But it is clear from eq
6.15 thatP0+(σ) ) 1 - Fσ and therefore cannot vanish forFσ
< 1. Thus, at least for the hard rod system, we have proved
that eq 5.2 cannot be valid when the system is in unconstrained
equilibrium.

Next we demonstrate the simultaneous validities of eqs 6.6
and 6.7 by the direct substitution of eqs 6.9 and 6.13 into eq
6.6 and the direct substitution of eqs 6.8 and 6.13 into eq 6.7.
Working through the algebra demonstrates that the equations
are simultaneously satisfied by these substitutions. Although
we expected this result on the basis of the arguments on which
their derivations are based, it is reassuring to see them confirmed
starting from another point of departure.

7. Nonequality ofG and G0 in a Structurally
Constrained System

The structure of a hard sphere system in in part defined by
its pair correlation functiong(r). The introduction of a severe
structural constraint is therefore likely to generate an altered
function g′(r). A constraint severe enough to exclude the
dominant configurations of a system is surely expected to perturb
g(r), and this would include a constraint necessary to maintain
the hard-sphere system in a metastable fluid state by the
exclusion of crystalline configurations. Certainly, fluid and
crystalline correlation functions will differ.

As indicated earlier, a configurational constraint is equivalent
to the introduction of an additional intermolecular potential that
may or may not be pairwise additive. Indeed, an alteration of
g(r) corresponds, by definition, to the appearance of an
additional potential of mean force. This additional inter-

molecular potential (additional to the hard sphere potential)
provides a means of communication between spheres, beyond
that implicit in the hard-sphere potential itself so that the
applicability of eq 3.10, in a structurally constrained system,
must be reexamined. For example, we explained eq 3.10 as a
consequence of the fact that a hard sphere “buried” in a cavity
could not influence other hard spheres at the cavity’s periphery
because the hard sphere potential had no long-range component.
However, the additional potential corresponding to the constraint
could supply a longer range component such that spheres outside
of the cavity could sense the one in it and thereby vitiate eq
3.10.
The proof of eq 4.6, the constraint-free condition, rested on

the assumption that spheres could not sense another sphere
buried in a cavity and concomitantly on the validity of eq 3.10.
The fact that it is easy to construct nonclosepacked constrained
configurations for whichP0(σ) vanishes indicates that eq 4.6 is
invalid for these structures and therefore that eq 3.10 does not
apply. Thus, we know that there are at leastsomeconstrained
configurations for which eq 3.10 does not hold. The bigger
question is, does eq 3.10 fail forall states of the system subject
to a configurational constraint? In posing this question, notice
that we are not simply asking whether eq 3.10 fails for
metastable phases. For example, since a one-dimensional hard-
rod system has no phase transition, the state it achieves, when
subject to a configurational constraint, does not correspond to
a metastable phase in the conventional sense, but we can still
ask whether eq 3.10 applies in the presence of the constraint.
The question is not trivial. On the basis of the analysis

presented in ref 14, Speedy argues that eq 3.10 applies to
metastable as well as stable phases. Although his analysis is
in essence more detailed, it depends on the argument that the
removal of a hard sphere from a configuration can produce a
cavity without eliminating any of the configurations of the
remaining spheres that were present before the removal of the
sphere whose absence is responsible for the cavity. Although
this argument is compelling, one could also argue that the
configurational constraint was such that it did not allow a sphere
to be removed (while it was maintained) without some recon-
figuration of the remaining spheres. This is just what would
be required if the constraint was equivalent to an additional
intermolecular potential. Thus, there is some disagreement over
whether eq 3.10 can be applied to a system subject to a
configurational constraint.
Without claiming to fully resolve this disagreement, we offer,

in the present section, evidence that eq 3.10 fails in the presence
of a configurational constraint severe enough to alterg(r). Our
proof makes use of eqs 4.1 and 4.2. Actually, our analysis will
involve the hard rod system, and so we look for alterations in
g+(x). Because the proof is only given for a one-dimensional
system, we will not be able to claim with certainty that eq 3.10
fails for higher dimensional systems. Furthermore, we cannot
say anything about metastablephasessince there is no phase
transition in the hard rod system. On the other hand, we do
not believe (although we cannot yet prove it) that the issue of
the validity of eq 3.10 is connected to the existence or
nonexistence of a phase transition but only to the effects of a
configurational constraint.
What we shall be able to show is that for ahard rodsystem,

subject to a constraint severe enough to alterg+(x), eq 3.10
must fail. This means that, in this particular situation, Speedy’s
argument must fail. Whether it fails in general remains to be
proved.
Our proof proceeds as follows: eq 2.6 written forG0+ and

its analogue forG+ show thatG0+ and G+ are entirely

g+(x) )
ω

F
∑
n)1

∞

H(x- nσ)
[ω(x- nσ)]n-1

(n- 1)!
e-ω(x-nσ) (6.12)

ω ) F
1- Fσ

(6.13)

P0+(σ)g+(x2) ) 1-∫0σR0+(x3)g+(x2 - x3) dx3 (6.14)

P0+(x) ) exp{-F∫0xG0+(x) dx} ) 1- Fx, xe σ

P0+(x) ) (1- Fσ) exp{-
F(x- σ)
1- Fσ }, x> σ (6.15)
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determined byR0+ andR+. Furthermore,R+(x2) andR0+(x2)can
be obtained by Laplace transforming eqs 6.6 and 6.7, respec-
tively. The results are

and

wheres is the transform parameter and the accent signifies the
Laplace transform. In arriving at these results, the convolution
theorem has been used. Now we already know that the
constraint-freeR0+, R+, andg+ satisfy both eqs 6.6 and 6.7.
Hence, the constraint-free transforms derived from these func-
tions satisfy eqs 7.1 and 7.2. The proof of the above was
obtained by direct substitution.
The application of the structural constraint will, by definition,

manifest itself in the appearance of an altered correlation
functiong′+(x) as well as altered nearest-neighbor distributions
R′0+(x) andR′+(x). These functions will satisfy the analogues
of eqs 7.1 and 7.2; namely,

We can show the following. If eq 3.10 is still applicable in the
presence of a structural constraint, then theĝ′+ that solves eqs
7.3 and 7.4 is identical with the constraint-freeĝ+ that solves
eqs 7.1 and 7.2, even whenR′0+(x) andR′+(x), the structurally
altered nearest-neighbor distributions, remain in the equations;
i.e., the resultg′+(x) ) g+(x) is generated, contradicting the
fact that we began the analysis with the assumption that the
correlation function was altered by the constraint. The origin
of this contradiction must be the assumption that the “buried”
rod atx ) 0 in eq 6.6 cannot be sensed by the rod atx2 and
that, concomitantly, eq 3.10 remains valid even in the presence
of the constraint, since this was theonlyassumption made. We
are thus forced to conclude that eq 3.10 fails in the presence of
the structural constraint.
The details of the mathematical analysis leading to this

conclusion can be found in Appendix B, where it is also shown
why the same proof cannot be given for higher dimensional
systems.
Nevertheless, by using the idea that a configurational

constraint is equivalent to an intermolecular potential of
considerable range, we think that it is highly plausible that eq
3.10 will fail in a constrained hard-particle system of any
dimensionality. Equation 3.10 then becomes a rather unique
relation, especially in multidimensional systems where phase
transitions are possible. In those cases, it represents a condition
that holds on a stable isotherm but fails to hold on a metastable
one.
In closing this section, it is worth noting that Rintoul et al.24

have shown that eq 3.10 is invalid in a wholly nonequilibrium
system such as that produced by random sequential adsorption
(RSA). They speculate that it is not valid in general for
nonequilibrium systems.

8. Speculation on the Mechanistic Features on the
Hard-Sphere and Hard-Disk Phase Transitions

The Helmholtz free energiesF of hard-sphere and hard-disk
systems may be expressed as25

whereD is the dimensionality of the system,nc is the ratio of
the number of “cavities” to the number of particles,V is the
average “volume” of a cavity, ands is its average “surface area”.
The precise definition of a cavity may be found in refs 26 and
27. In terms of the above variables, the insertion probability is
given by

Now, in the case of hard spheres, for example,s/V varies,
approximately, asV-1/3 at densities near closepacking,28 while
-(ln V), arising from the first term in curly brackets in eq 8.1,
cannot by itself overcome theV-1/3 in the last term so as to
ensure thatF f +∞ at closepacking. This task must then be
left to nc, which must then decrease exponentially in order for
F to avoid becoming-∞ at closepacking. Indeed, it can be
shown almost exactly (see section 7 of ref 28) that the
asymptotic behavior ofF near the closepacking density is
dominated by the lnncV term in eq 8.1. From various
approximate theories as well as from simulation,29 it appears
as though the same is true near the freezing densityFf. We
assume that the same is true at densities in the range extending
from just belowFf to closepacking. In this range, we therefore
concentrate on the logarithmic term in eq 8.1 and write

This equation shows that, to maintain the Helmholtz free energy
as small as possible,P0(σ) should be as large as possible and
that, in the absence of a structural constraint, the equilibrium
configuration of the system will be that for which this is
achieved, subject only to the requirement that spheres do not
overlap. However, attention should be drawn to one qualifica-
tion. This concerns the fact thatP0(σ) is a quantity obtained
by averaging the available space overall configurations of the
hard particles. There are configurations having very large values
of available spaceswhich are, at the same time, very rare so
that there is more to the problem than a simple maximization
of available space. We discuss this point, further, below.
In order to speculate on the mechanistic features of the hard-

sphere phase transition, we start by assuming that a fluid-solid
phase transitiondoesexist. Before proceeding, we note that
statistical geometric methods25,30 have allowed some exact
statements concerning the structure of the hard-sphere phase
transition. For example, it can be shown thatncV has the same
value in the coexisting liquid and solid phases, whilencs is less
in the coexisting solid phase than in the fluid.30 This implies
thats/V decreases on going from the coexisting fluid to the solid
and suggests that the cavities in the solid are more spherical.
Furthermore, it has been shownexactly30 that the density at
whichncshas a maximum cannot lie in the coexistence region.
In contrast to theseexactresults, our present discussion, although
motivated by statistical geometric considerations, is presented
as an exercise in physical intuition, aimed at illuminating the
geometric features of the transition mechanism. Nevertheless,

R̂+ )
Fĝ+

1+ Fĝ+
(7.1)

R̂0+ ) F
s(1+ Fĝ+)

(7.2)

R̂′+ )
Fĝ′+

1+ Fĝ′+
(7.3)

R̂′0+ ) F
s(1+ Fĝ′+)

(7.4)

F ) NkT{ln ΛD

ncV
- 1- σs

2DV} (8.1)

P0(σ) )
NncV
V

(8.2)

F = NkT ln( ΛD

VP0(σ)) (8.3)
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based on these features, we shall be able to make an interesting
estimate of the freezing densities for both spheres and disks.
We introduce the following fluid model. We assume that

near the freezing density, the fraction of the total volume not
covered by spheres or disks, i.e., l- y wherey is the packing
fraction, will be partitioned into small recognizable “interstices”
bounded by sphere surfaces or disk edges. An interstice may
be defined as a “cage” produced by particles, such that if a
sphere or disk were placed in it, that particle could not escape
unless one or several of the caging particles were moved. It is
clear that “cavities”, as they are defined26,27 in statistical
geometric developments, are contained within interstices. A
cavity is a portion of the “available space”10 in the system. A
point in the available space cannot be closer thanσ to the center
of a hard sphere or disk. The cavity is thereforesmaller than
the interstice.
It is appropriate to present our approach in a more organized

and detailed manner. We begin by indicating that our analysis
will be based on several principles, some of which are exact:
1. We assumeat the outset that a fluid-solid transition

(freezing transition)doesoccur.
2. In accordance with the discussion surrounding eq 8.3, we

require the system to configure itself so that, at any density,
P0(σ) is as large as possible.
3. The system should be as uniform as possible. It is true

that certain nonuniform configurations can be found such that
P0(σ) is very large. For example, all the spheres or disks could
be closepacked into one “corner” of the total volumeV. This
would leave an enormous unoccupied volume and correspond
to an exceedingly large insertion probability. However, it must
be remembered thatP0(σ) is an average quantity; i.e., it is
averaged over all configurations of the spheres or disks except
those that involve overlap. The nonuniform configurations are
so few in number that they carry very little weight in the average
and can be disregarded. The exception occurs at densities
corresponding to the coexistence regime of the phase transition.
There the system is clearly nonuniform (because any uniform
distribution at those densities could requireP0(σ) to vanish),
but the individual coexisting phaseswill be uniform. The
requirement for uniformity should operate, to a degree, on the
microscopic as well as the macroscopic level, i.e., very
“structured”, even if still fluid phases would be of low
probability and bring little weight to the average. However,
on the microscopic level, the importance of such locally
nonuniform phases depends on the balance between the insertion
probability that they correspond to and the number of configura-
tions that they represent.
4. We assume that, in the fluid, at a density near the freezing

transition, P0(σ) is always very small. This assumption is
supported by computations based on various approximate
analytical theories and by simulation studies. For example, in
the case of hard disks, simulation22 indicates thatP0(σ) = 10-6

at the freezing transition. Furthermore, almost any reasonable
model of the fluid shows (on the basis of continuity within the
model) that, whenP0(σ) is very small, it quickly becomes zero
with only a very slight increase of density.
5. The analysis of section 5 has shown thatP0(σ) cannot

vanish on the stable isotherm. We assume, therefore, that in
the absence of some additional constraint that preventsP0(σ)
from vanishing (i.e., in the absence of a constraint that maintains
a metastable state), the fluid, whenP0(σ) becomes very small,
avoids this catastrophe by undergoing a phase transition and
escaping to the crystalline state. As indicated above, this allows
the insertion probability to remain nonzero through the introduc-
tion of the nonuniformity implicit in the coexistence of the two

phases. In accordance with the discussion in item 4, we can
use the density at whichP0(σ) vanishes (within the model) as
a marker, i.e., as a close upper limit for the density at which
the insertion probability becomes small. The assumption that
the insertion probability is small in the coexisting solid at the
phase transition can account for the observation thatP0(σ) is
small, in the coexisting fluid, since it has been proved,
exactly,25,30 that the fluid phase must have a nonzero insertion
probability equal to that in the coexisting solid multiplied by
the ratio of the density of the liquid to that of the solid.
In the interest of expositional simplicity, we begin our analysis

(based on the above five principles) with hard disks. We build
on an idea that the fluid, very near the freezing density, may be
regarded as a locally distorted, simple crystalline lattice, such
that the local distortions destroy any long-range order. The
interstices mentioned earlier are then, in fact, the interstices in
this quasilattice. For hard disks, the simplest structures that
we can consider are those in which the disks are located at the
sites of simple square and hexagonal lattices. The packing
fractiony, i.e., the fraction of the total area of the system covered
by the disks, is given by

For the simple square and hexagonal latticesycp, the values of
y at closepacking areπ/4 andπ/2x3, respectively. However,
we are not interested in the densest arrangements but are
interested in those that contain cavities and possess the
maximumP0(σ). In order to create these cavities, we can either
expand the lattices considerably so that cavities appear or expand
them only slightly, while removing disks so that cavities appear
at the positions of the vacancies that are consequently formed.
In the first case, we get loose simple square and hexagonal
lattices withw, the number of cavities per disk, equal to 2 and
1, respectively (see Figure 2). In the second case, we get
“hollowed” square and hexagonal lattice (Figure 3) withw equal
to 1/3 and1/2, respectively. The hollowed hexagonal structure
is a “honeycomb” lattice. In order to determine which of these
four structures has the largestP0(σ), we can regard the cell
volume as composed of three domains, namely, filled space

Figure 2. Loose square (upper) lattice, loose hexagonal (lower) lattice,
showing interstices (shaded) and cavities (clear).

y) πσ2F/4 (8.4)
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(covered by a portion of a disk), interstitial space (outside of
both the filled space and cavity space), and cavity space. These
domains are indicated by solid, shaded, and unshaded regions
in Figures 2 and 3. Denoting the cavity space byVc, the filled
space byVf, and the interstitial space byVi, we can write

whereV is the cell volume.
Now, for a given packing fractiony, it is clear, from eq 8.5,

that the structures with maximumP0(σ) are those with minimum,
Vi, i.e., with minimum shaded area or, in other words, those in
which there is overlapping of the shaded areas of neighboring
disks. It can be shown that this situation corresponds to the
hollowed structures. For example, in the simple square lattice
with lattice parametera such thatx2σ e a e 2σ, we have

while the hollowed square structure, withσ e a e x2σ,

and Table 1 clearly shows that, for any given value ofy, P0(σ)
is larger for the hollowed structure than for the simple one. The
same conclusion applies to the hexagonal case, and in ac-

cordance with the principle enunciated in item 2 above, this
requires the system to select the hollowed structures.
In the hollowed square structure,P0(σ) vanishes wheny )

yf ) 6π/32 ) 0.589, while in the honeycomb structure it
vanishes wheny ) π/3x3 ) 0.605. These two values are
essentially the same from the point of view of an estimate of
the freezing density, but again, the principle in item 2 requires
us to select the hexagonal structure. At this point, it is necessary
to reemphasize that we are not really dealing with a crystal but
rather with a fluid represented by a locally distorted crystal.
Thus, slight distortions of some quasihexagonal “vacancies” will
allow some other distorted vacancies to contain cavities even
aty) yf ) 0.605. Thus,P0(σ) cannot be expected to vanish at
a value ofy precisely equal 0.605 but instead at some higher
density. Computer simulation29,31,32 indicates the freezing
transition to occur at

Thus, the prediction of a freezing density

is in reasonable agreement with that predicted by simulation.
The above degree of correspondence between the estimated

and simulated results was obtained through the application of
the principles embodied in items 1-5 above. For example, a
larger value ofP0(σ), at a giveny, could be obtained by
considering a compact, simple square lattice (i.e., witha ) σ)
and removing alternating lattice lines parallel to one of the two
crystal axes. But this arrangement would be very nonuniform,
since it alternates closepacked and void lines and in accordance
with item 3 would be poorly weighted in the average config-
uration. Even more important, such an arrangement would not
allow P0(σ) to vanish (even when it was closepacked) so that
no phase transition could be anticipated, contrary to our
assumption in item 1. Similar arguments rule out distributions
with both closepacked and void domains as well as structures
where bases do not allow the insertion probability to vanish.
Furthermore, although we can think of other structures obtained
from simple square and hexagonal lattices, obtained by intro-
ducing vacancies having more complicated patterns it seems
unreasonable that the cavities in a fluid would exhibit that degree
of cooperation necessary to match such complicated pictures.
Thus, we are left with the simplest, uniform, hollowed structures
considered above.
Next, we turn to the consideration of the hard sphere system,

using, as much as possible, the same approach as in the case of
disks. The simplest hollowed structure, having a high degree
of overlap of shaded interstitial volumes, can be obtained by
stacking honeycomb lattice planes in place of hexagonal lattice
planes that would produce a cubic closepacked (ccp) three-
dimensional lattice. In other words, we produce the simple
hollowed three-dimensional lattice by creating vacancies in a
three-dimensional ccp lattice in a manner similar to the
production of the two-dimensional hollowed lattice by creating
vacancies in the planar hexagonal lattice (see Figure 4). For
this three-dimensional lattice,P0(σ) will vanish when the
honeycomb structures become closepacked. For hard spheres,
the packing fraction is given by

and the three-dimensional closepacking density in question can
be shown to correspond to

Figure 3. Hollowed square (upper) lattice, hollowed hexagonal (lower)
lattice, showing interstices (shaded) and cavities (clear).

TABLE 1: Dependence of the Insertion Probability Po(σ)
on Packing Fraction y for the Simple and Hollowed Square
Lattices

Po(σ)

32y/π simple sq. lattice hollowed sq. lattice

3 0.038 02 0.107 30
3.5 0.008 55 0.063 82
4 0 0.036 79

P0(σ) )
Vc
V

)
V - Vf - Vi

V
) 1- y-

Vi
V

(8.5)

P0(σ) ) 1-x16y
π

- 1-

8y
π (arcsinx π

16y
- arcsinx1- π

16y) (8.6)

P0(σ) ) 1
2

- 4y
3

+

16y
3π

arcsinx π
16y

- arcsinx1- π
16y

- 1
2x32y

3π
- 1 (8.7)

y= 0.69 (8.8)

yf g 0.605 (8.9)

y) πσ3F/6 (8.10)

y) x2π/9) 0.494 (8.11)
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The freezing density obtained by means of computer simula-
tion31,32 corresponds to

These estimates of the freezing densities were obtained using
an extremely simple method and lend support to the mechanistic
picture expressed by that method. The mechanistic picture of
the phase transition, rather than the successful numerical
prediction, should be regarded as the most important result of
the above analysis.
We note that our estimate ofFf differs in a somewhat

fundamental way from previous estimates, based on the
comparisons of the pressures and chemical potentials for model
fluid and solid phases, i.e., determining the density at which
the p’s andµ’s are, respectively, equal. This method is also
involved implicitly in density functional approaches33,34where
static density modes for the solid have to be selected and where
direct correlation functions need to be computed from some
model theory (e.g., the Percus-Yevick theory) of the fluid. In
the present method, the particular properties of the solid are
never specified.
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Appendix A

In this appendix, we derive the hard-rod nearest-neighbor
distributions R0+(x) and R+(x) for the constraint-freefully
equilibrated system.
We begin with R0+(x) which, according to the one-

dimensional version of eq 3.5, is given by

whileP0+(x) is given by the one-dimensional version of eq 3.4,
namely,

Substitution of eq A2 into eq (A1) gives

Now it is well-known that, for the fully equilibrated constraint-
free system,G0+(x) is given by eq 6.10 which, for convenience,

we repeat here as

Substitution of eq A4 into eq A3 then yields

For the derivation ofR+(x), we replace eq A1 by

with P+(x) given by

Now, obviously,

and since eq 3.10 holds in the constraint-free system,

Substitution of eqs A8 and A9 into eq A6 into which eq A7
has been substituted gives

Appendix B

In this appendix, we prove that, in a hard rod system, a
constraint severe enough to alterg(x) invalidates eq 3.10.
The proof proceeds as follows. First, we show thatR′0+(x)

is independent of the constraint in the interval 0< x e σ as
long as that constraint does not violate the hard rod nature of
the particles, i.e., as long as hard rod overlap remains forbidden.
The basis for this result is the fact that the center of only one
hard rod can lie in the interval 0< x e σ. In that case, the
chance that the center of at least one rod will be found between
0 andx is Fx, and the chance that there will not be at least one
rod center between 0 andx, i.e., the chance that the interval is
empty, must then be 1- Fx. But the chance that the interval
is empty isP′ox(x) so that

independent of the presence of the constraint, i.e.,P′0+(x) )
P0+(x) in the relevant interval.
The one-dimensional analogue of eq 3.4 is

so that we obtain, by differentiation,

Figure 4. Hollowed three-dimensional lattice created by introducing
vacancies into the cubic closepacked lattice.

yf ) 0.492 (8.12)

R0+(x) ) FG0+(x)P0+(x) (A1)

P0+(x) ) exp{-F∫0xG0+(x′ ) dx′} (A2)

R0+(x) ) FG0+(x) exp{-F∫0xG0+(x′ ) dx′} (A3)

G0+(x) ) 1
1- Fx

, xe σ

G0+(x) ) 1
1- Fσ

, x> σ (A4)

R0+(x) ) F, xe σ

R0+(x) ) F exp{-
F(x- σ)
1- Fσ ), x> σ (A5)

R+(x) ) FG+(x)P+(x) (A6)

P+(x) ) exp{-F∫0xG+(x′ ) dx′} (A7)

G+(x), R+(x) ) 0, xe σ (A8)

G+(x) ) G0+(x) ) 1
1-Fσ

, x> σ (A9)

R+(x) ) 0, xe σ

R+(x) ) F
1- Fσ

exp{-
F(x- σ)
1- Fσ }, x> σ (A10)

P′0+(x) ) 1- Fx, 0< xe σ (B1)

P′0+(x) ) exp{-F∫0xG′0+(x′) dx′} (B2)

G′0+(x) ) - 1
F
∂ ln P′0+(x)

∂x
(B3)
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which shows thatG′0+(x) is fully determined byP′0+(x). Then,
since in the interval 0< x e σ, P′0+(x) is independent of the
constraint, the same must be true ofG′0+(x); i.e., G′0+(x) )
G0+(x) in the relevant interval. ButR′0+(x) is given by the one-
dimensional analogue of eq 3.5; namely,

Next, if eq 3.10 applies in the presence of the constraint (note
that at this point we make the assumption), then the one-
dimensional analogue of eq 3.12, whose derivation depended
on the assumption of the validity of eq 3.10, must also hold.
This analogue is

where we have used the fact thatP0+(σ), since it lies in the
interval 0< x e σ, is independent of the constraint.
Now we can write

wheresagain is the transform parameter and where the integral
involving R′+(x) ) 0, x < σ, and where

In eq B6, we have used eqs B4 and B5.
Substitution of eq B6 into eqs 7.3 and 7.4, followed by the

elimination ofR′+ between the equations, yields the relation

Because of eq B4,R*0+ is the same function when eq B6 is
written for R̂0+. Therefore,R̂0+ ) R*0+ + P0+(σ)R̂+. Then,
beginning with eqs 7.1 and 7.2 and eliminatingR̂+ between
these equations, we find following a route similar to that which
led to eq B8

Comparison of the right-hand sides of eqs B8 and B9 then shows
that

Thus, we arrive at a contradiction which proves that, at least
for the hard rod system, eq 3.10 must fail in the presence of a
structural constraint capable of alteringg+(x).
The same proof cannot be carried out for the hard-sphere

(disk) system sincegj in eqs 4.1 and 4.2 is not the same asg,
and therefore, the analogues of eqs 7.1 and 7.2 are not available.
However, a somewhat different but related proof might be
possible. In any event, eq 3.10 is invalid for the structurally
constrained hard-rod system, and we believe that it is also likely
invalid for higher dimensional systems. Since a metastable
phase must, as we have argued, be defined by a severe structural

constraint, this implies that eq 3.10, and therefore eq 4.6 that
follows from it, need not hold in such a phase.

Appendix C

In this appendix, we discuss a physical interpretation of the
direct correlation function (DCF). We have referred to eqs 4.1
and 4.2 as Ornstein-Zernike (OZ)-like equations. Indeed, the
analogue of eq 4.1 for the one-dimensional hard rod system
can actually be converted to the standard OZ form, and in that
guise, it suggests a physical interpretation of the direct correla-
tion function which may be more satisfactory than the conven-
tional one. To motivate the analysis leading to these results,
we define the total correlation functionsh+(x) andh-(x) to the
right and left, respectively. Thus, we write

and from eqs 6.1 and 6.2, it follows that

and

where

Note, however, thath(x) * h+(x) + h-(x).
For the hard-rod system, eq 2.7 and the similar equation for

R(x) indicate thatâ0(x) andâ(x) are identical withR0(x) and
R(x), respectively, and we also defineR0+(x) ) â0+(x) and
R+(x) ) R(x), x > 0, R+(x) ) 0, x < 0, in a manner similar to
that for g+(x). The same is true for bothR-(x) andR0-(x),
where the definitions are reversed. Then, the densityFg+(x2)
of hard rod centers at some pointx2 may be expressed as

for which the rationale is the same as for eq 4.1 and whereF )
N/L, whereL is the length of the system andFg+(x2) is the
density of hard-rod centers atx2. The first term on the right is
the density contributed by the nearest neighbor if the rod center
in dx2 happens to be that of the nearest neighbor. The integrand,
FR+(x3)g+(x2 - x3) is the density of rod centers atx3 if the
center atx2 is not that of the nearest neighbor. Thus,R+(x3)
dx3 represents the probability that the nearest neighbor is in dx3,
while Fg+(x2-x3) is the conditional density atx2 given that there
is a center atx3.
Although three centers are involved, i.e., the one at the origin

and those atx3 andx2, respectively, we need not involve triplet
correlation functions since, in the constraint-free hard rod
system, the chance that there is a center atx2 is not influenced
by the center at the origin when it is known to be present.
The upper limit on the integral in eq C6 isx2 because ifx3

exceedsx2, the center atx3 will no longer be the nearest neighbor
to the one at the origin. However, because of eq 6.1, we might

R′0+(x) ) FP′0+(x)G′0+(x) ) FP0+(x)G0+(x) )
R0+(x), 0< xe σ (B4)

R′0+(x) ) P′0+(σ)R′+(x) ) P0+(σ)R′+(x), x> σ (B5)

R̂′0+ )∫0σe-sxR′0+(x) dx+∫σ∞
e-sxR′0+(x) dx)

∫0σe-sxR0+(x) dx+ P0+(σ)∫0∞e-sxR′+(x)dx)

R*0+ + P0+(σ)R̂′+ (B6)

R*0+ )∫0σe-sxR0+(x) dx (B7)

ĝ′+ )
1- s

F
R*0+

s[R*0+ + P0+(σ)]
(B8)

ĝ+ )
1- s

F
R*0+

s[R*0+ + P0+(σ)]
(B9)

ĝ′+ ) ĝ+ (B10)

h+(x) ) g+(x) - 1

h-(x) ) g-(x) - 1 (C1)

h+(x) ) h(x), x< 0

h+(x) ) -1, x< 0 (C2)

h-(x) ) h(x), x< 0

h-(x) ) -1, x> 0 (C3)

h-(x) ) h+(-x) (C4)

h(x) ) g(x) - 1 (C5)

Fg+(x2) ) R+(x2) + F∫0x2R+(x3)g+(x2 - x3) dx3 (C6)
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just as well set the limit at∞, sinceg+(x2 - x3) ) 0 whenx3 >
x2 so thatx2 - x3 < 0. Thus, we can write

Substitution of eq C1 into eq C7 yields

where we use the normalization condition

Then, by using the definition

and substituting eq C10 into eq C8, we may write

sincec+(x3) vanishes whenx3 is negative sincec+(x3) is defined
to the rightand may be set to zero on the left. Therefore, eq
C11 may be rewritten as

Note that this equation is valid even whenx2 is negative since
it then givesh+(x2) ) -1. Equation C12 is exactly of the form
of the Ornstein-Zernike equation with the nearest-neighbor
distribution (essentiallyc+(x)) playing the role of the “direct
correlation function”. Although this result (as an exact relation)
is limited to hard rods, it suggests that, in general, the DCF
might be considered as a distortion (even though at times severe)
of the nearest-neighbor function. For example, the nearest-
neighbor function remains short ranged even at the critical
temperature, a property that derives from the DCF as a
mathematical construct (i.e., as the solution of the Ornstein-
Zernike equation) notwithstanding its use as a convenient
intermediate function, in density functional theory,34 and its
description in terms of diagrammatic expansions.35 In contrast,
the above interpretation assures its short-range nature on purely

physical grounds since the nearest-neighbor distribution is
always short ranged. If one is pressed to offer a physical
interpretation, the distortion of the nearest-neighbor distribution
seems, therefore, to be particularly appropriate. The DCF is of
course not “direct”.
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Fg+(x2) ) R+(x2) + F∫0∞R+(x3)g+(x2 - x3) dx3 (C7)

Fh+(x2) ) R+(x2) + F∫0∞R+(x3)h+(x3 - x3) dx3 (C8)

∫0∞R+(x3) dx3 ) 1 (C9)

c+(x) )
R+(x)

F
(C10)

h+(x2) ) c+(x2) + F∫0∞c+(x3)h+(x3 - x3) dx3 (C11)

h+(x2) ) c+(x2) + F∫-∞

∞
c+(x3)h+(x3 - x3) dx3 (C12)
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