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Ornstein—Zernike-like Equations in Statistical Geometry: Stable and Metastable Systems
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Statistical geometric methods based on nearest-neighbor distributions are used, in connection with hard-
particle systems, to develop Ornsteifiernlike-like equations that have already been of considerable value

in the statistical thermodynamic analysis of such systems and that promise to have even greater value. In
this paper, we use these equations to (1) develop a relation that is valid for a hard particle system in

unconstrained equilibrium and that shows that the insertion probability cannot vanish (short of closepacking)

in such a system, (2) study the still incompletely settled issue concerning the equality of the hard-particle

densities on the peripheries of cavities which are and are not occupied by hard particles and, in so doing,
arrive at a relation that holds in a system in stable equilibrium but fails in a metastable system, (3) provide

insight into the geometric mechanism of hard-particle phase transitions and allow simple estimates of the
freezing densities, and (4) suggest a new physical interpretation for the direct correlation function.

1. Introduction probability that the interior volume is empty, whik&e(r) dr
is the chance that at least one particle center will be found in
dr, given that the interior volume is empty.

In general, we shall be interested in nearest neighbor
distributions that are spherically symmetric so that we can ask
for the probability that the center of the particle nearest to the
arbitrary point at the origin lies in the spherical shell of volume

4qr2 dr. By denoting this probability byio(r) dr, we have

There has been an increased intereshéarest-neighbor
distributions (and neighbor distributions in general) in the
statistical mechanics of fluids and related systénisinterest
has also been focused on the functions that comprise the
neighbor distributions. In this paper, dealing with hard particle
systems, we make use of these functions to develop Ornstein
Zernike-like equations and to derive relations that are valid on
thestablebranches of hard particle presstidensity isotherms
and that are not necessarily valid on metastable branches. We
also investigate some unresolved issues concerning the condi-
tional particle density at the surface of a cavity and find a rather
unique relation involving these densities that undergoes an
abrupt change as the system passes from stable to metastable
equilibrium. Byproducts of this study are some simple ideas
concerning the “mechanism” of hard particle phase transitions
and an alternative physical interpretation of the direct correlation From these equations, it is clear thai(r) andfq(r) are fully
function. (See Appendix C.) determined byGo(r) and vice versa.

The term “statistical geometric characterization” is adopted ~ We can also place the center of a molecule at the origin and
to imply that the analysis is conducted with the aid of neighbor ask for the probability that the center of the nearester
distributions and their component functions. molecule lies in d at r. In this case, denote probability
distributions bys(r) anda(r), dropping the zero subscript, and
egs 2.1 and 2.3 are once again applicable to the unsubscripted

o(r) dr=[1— Lrao(r')dr']4m2pGo(r) (2.2
here

ar) = 4r?By(r) (2.3)

2. Nearest Neighbor Distribution

. . L . . guantities.
Consider an arbitrary point in a uniform systermoparticles If we consider a two-dimensional system, egs 2.2 and 2.3
(not necessarily hard particles) contained in a volukhe become

Selecting this point as the origin, we ask for the probability
Bo(r) dr that the center of the particle nearest to the origin is
located at the pointin the volume elementrd This probability
can be expressed as

ag(r) dr =[1 — [To(r") dr']2arpGy(r) dr  (2.4)

o) = 2715 (r) (2.5)

Bor) dr =[1 — ["By(r) dr']pGy(r) dr  (2.1)

while, for a one-dimensional system, we define the nearest-
neighbor distribution to theight or left of the origin bya(x),

where the notatiorf" indicates that the integration is performed . . ;
wherex may be positive or negative, and the equations become

throughout the volumes?3/3 wherer = |r|. p is the uniform
bulk number density\N/V, andGq(r) is defined so thapGo(r)

is the conditional density inrd(conditional on the interior o) dx=1[1— LX(IO(X' ) dx]pGy(x) dx (2.6)
volume 4tr¥/3 being devoid of particle centers). The structure
of eq 2.1 is obvious; the factor in square brackets is the oo(X) = Bo(X) (2.7)
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For both the one- and two-dimensional systems, we denote
(similar to the three-dimensional case) the distributions about
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a particle at the origin by the same symbalgthout zero vice versa. Comparison of eq 3.4 with egs 2.2 and 2.3 shows
subscripts. Again the same set of equations applies to thesethat
guantities. 0
In this paper, we specialize consideration to hard particles _ 0l
of diameter (spheres, disks) or length (rods) Then it is Bolr) =77 = PGNP(1) (3-5)

sometimes convenient to think of the “empty” interior volume

of radiusr (spheres, disks) or half-length (rods) as having Substitution of the first equation of eq 3.4 into eq 3.5 shows
been created by a hard particle of radius- (0/2) or half- that

lengthx — (0/2). This is so even when there is a particle at the

origin, provided that, x > o. L/(’)°°4m250(r) dr = j;”ao(r) dar=1 (3.6)

3. Insertion Probability so that the nearest-neighbor distributions are indeed normalized.
The quantity in square brackets in eq 2.2, since it representsEquations 3.4 through 3.6 hold for disks and rods except that

the chance of finding an empty spherical region large enough for disks, 4rr2is replaced by 2r and for rodsy is replaced by

to accommodate a hard sphere of radius- (o/2) is the x and 4rr? by unity.

“insertion probability® for a sphere of this radius. Forasystem  The equation foP(r), similar to eq 3.4, is

of hard spheres, in thermodynamic equilibrium, it is well- ;

knowrP19that this insertion probability, which we now denote  P(r) = exp{ —pf04n(r' YG(r)dr'y =1 —

by Py(r), is related to the chemical potentiglr — (0/2)) of the

r r r
added hard sphere, regarded as a “solute” sphere, through the Sa@)ydr, rzo (37)
relation
In this case, the counterpart of eq 3.5 is
A=
o 2 a(r)
r—=|=kTIn)| ~—=——-"— 3.1 r)=——=;= pG(r)P(r 3.8

ur=3) oG (3.1 P = 5= pGIOP() (38)
wherek is the Boltzmann constarif, the temperature, antl(r Substitution of eq 3.7 into eq 3.8 now shows that
— (0/2)) the de Broglie wavelength of the solute spherer If o 5 "
= 0, the solute sphere is identical to the “solvent” sphere of Jam?B(rydr = [Ta(r) dr =1 (3.9)

radiuso/2, and eq 3.1 is replaced by
so that the nearest-neighbor distribution for this case is also
’A(Q) 3N normalized. It should be noted that the lower limits on the
3.2) integrals in eq 3.9 could be set to zero, sif¢a, o(r) = 0 for
) r < g, due to the presence of the hard sphere centered at the
origin. Similar results apply to hard disks whererrs is
where the addition of the factd to the argument of the  replaced by 2r and for hard rods whereis replaced by and
logarithm is related to the reduction of entropy that accompanies 47r? by unity.
the indistinguishability of the solute from the solvent spheres.  The above relations can be applied to crystalline solids where
These ideas can of course be extended to disks and rods.  Go, Bo, @0 andG, 3, o can be considered as rotationally averaged
If we consider “empty” interior volumes which we may now quantities.
refer to as “solute cavities* 13 thatcontaina particle centered Now, Speed¥ has given proof that, as long as averages are
at the origin, then the probability of observing such a cavity taken ovemll possible (nonoverlapping) configurations of hard
cannot be regarded as an insertion probability, since the presencépheres within the volume in which they are contained, the
of the particle at the origin blocks the addition of another following relation is valid:
particle, but for convenience, we will continue to refer to it as
an insertion probability and denote it B(r), again dropping G =0, r=<o
the zero subscript. —
Next we derive a useful relation betweBg(r) andGo(r) by GN =Gy, r=o (3.10)

noting thatPo(r + dr) may be expressed as In simple language, this implies that if a hard sphere is centered

within a spherical region whose radius is larger than its own
diameter, then another hard sphere, not being able to contact
) o ) the central sphere, cannot be aware of its presence in all
where the right-hand side is the product of the simultaneous configurations in which the empty spherical region is main-
probabilities that there is an empty volume of raditand an tained. However, Speedy presents a more rigorous argument.
empty spherical shell of volumer#* dr so as to assure anempty | ater, we argue that eq 3.10 fails for a hard-particle system
volume of radiug + dr. Expanding the left side of q 3.310  ht js not atompleteunconstrained) equilibrium. “Complete”
terms linear in d leads to an equation forRy/dr that can  gqyilibrium implies that averages are taken over “all” configura-
integrated immediately, subject to the conditiés(0) = 1, to tions limited only by the principle of no overlap, i.e., that the

Py(r + dr) = Py(n)[1 — 4rr’pGy(r) dr] (3.3)

yield averages correspond to thdl thermodynamic state of the hard-
; , ; sphere system. For example, if one included only those
Po(r) = expf —Pf; Ar(r')°Gy(r')dr} =1 - L/(),(lo(r' )dr’ configurations in, say a low density system, in which the centers
(3.4) of all spheres were fixed to the sites of a rigid lattice, eq 3.10

could certainly not hold. This would be a case in which almost
all of the most abundant configurations would be disallowed,
so thatPy(r) is fully determined by eitheo(r) or op(r) and amounting to a very severe internal configurational constraint.
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Notice, however, that at the density where the hard-sphere solid near}eit
neighbor

is stable, the crystalline configurations are thestabundant
ones, disordered structures (because of inefficient packing) being
in natural short supply. In the crystalline phase, the spheres
are not rigidly fixed to lattice sites.

This brings us to our first consideration of a metastable or |
even unstabléuid branch of the pressuralensity isotherm of !
the hard-sphere system. As in the first example presented above,
the system on this branch must be limited to configurations that
represent only a minor fraction of the total. For example,
configurations displaying the long-range order of #table
crystal must be _dlsallo_wed, otherwise, they would overwhelm Figure 1. lllustrates the basis for eq 4.1. Particle 3, the shaded patrticle,
(because of their relatively large number) the averages so th_atis the nearest neighbor to particle 1. The pair correlation function refers
the system would no longer be metastable or unstable. Thistg particles 1 and 2. The large circle is the “effective” hard sphere
severe configurational restriction could invalidate the proof that particle 2 sees.
leading to eq 3.10. We return to this point later.

Substitution of eq 3.10 into eq 3.4 yields particles—nearest neighbor ats, sphere aftr,, and effective
sphere of radiusz—(0/2) centered at the origin.
_ (92 (T h2 The structure of eq 4.1 is elementary. The dengiffy) in
Po(r) = exdf pfo A7t Go(r) dryexp{ pL4m G(r) dr} dr, may be due to theearest neighboif the center of the

nearest neighbor is inrd  This accounts for the first term on
Po(r) =Pyl0)P(r), r>o (3.11) the right of eq 4.1. If the nearest neighbor is not m,dut
rather in d3, then the density inrd is given bypg(ra,rs), i.e.,
where we have used eq 3.7. Substitution of this equation andby the density,conditional on the nearest neighbor being in
eq 3.10 into eq. 3.8 gives dr3, the probability of which ig3(r3) drs. The product of this
probability and the density conditional on its contributes to the
Po(r) overall density in d; and leads to the integrand in eq 2.1 which
Br) = PGo(r)P— is then summed over all allowable positiando yield the total
o() density when added t6(r2). The result is eq 4.1.
B(r) We refer to eq 4.1 (and equations thaF resm_amb!e it, some of
B@r) = O_, (3.12) which we discuss below) as an “Ornsteifiernike-like (OZ-
Po(0) like) equation”, because of its strong resemblance to the
Ornstein-Zernike equatiod® In many instances, this resem-
where, in the final step, we have used eq 3.5. blance is more than incidental, and we elaborate on this issue

It is clear from the foregoing that the fundamental problem in Appendix D. OZ-like equations are especially useful because
in the statistical mechanics of the hard-sphere system is theOf the penetrating insights that they afford into the physical
evaluation ofG(r) since that function can be used in eq 3.4 to features of what might appear to be a predominantly mathemati-
determinePy(o) which, in turn, can be used in eq 3.2 to evaluate €@l problem. For example, eq 4.2, below, has been used in
1 = u(ol2). For example, the central effort of scaled particle €onjunction with SPT to evaluate the hard-sphere pair correlation
theory (SPTY15.16js directed toward the evaluation Gf(r). function with an accuracy that slightly exceeds that derived from
the Percus Yevick theory! By writing OZ-like equations for
a hard sphere of arbitrary radius at the origin, a continuum of
OZ-like equations can be produced whose value in the theory

Consider now the pair correlation functig(r,)'’ between a of fluids may be considerable but has yet to be tested.
hard sphere whose center is chosen as the origin and one whose We can write the analogue of eq 4.1 for the pair correlation
center is ar,. We may express this function by the following function between an “arbitrary point” at the origin and a hard
equation: sphere at,. Since the point at the origin is arbitrary, it follows

that, in this caseg(rz) = 1 andB — fo. Then, eq 4.1 is replaced

00(r) = ) + p (BBl dry (41 Y

wherepg(r 2, 3) is the conditional density of hard-sphere centers p=Po(ry) + Pfﬁo(rs)go(rzyra) dry (4.2)

in dry, given that there is a sphere at the origin whose nearest

neighbor is in d3 atrs. Figure 1 diagrams this situation. An  Where the argument for the structure of eq 4.2 is the same as
important feature of(r»,r s) is that it must vanish ifrs) exceeds ~ that for eq 4.1. We have appended the subscript zetto

r2|; otherwise, the particle at would cease to be the nearest indicate that the function might possibly differ in eq 4.2 from
neighbor to the one at the origin. Thus, insofar as the particle its value in eq 4.1.

atr, is considered, within the integral on the right side of eq  However, it should be evident from Figure 1 that, if the sphere
4.1, there is a hard sphere of radius— (0/2) centered at the  at the origin is removed, it makes no difference to the sphere at
origin, which it cannot penetrate. This sphere is the dotted one r2 as long ag'; exceedss; i.e., in the absence of a configura-

in Figure 1. Since it is clear from the figure that — (0/2) tional constraint, the sphere et cannot sense what is at the
can never be less thar2, the sphere with center et cannot origin, in either case, as long ag> o. Thus,

sense the one at the origin (in the absence of some special

configurational constraint that might be equivalent to an 0o(rorg) =0(rprg), r3>o (4.3)
intermolecular potential). Thugy(r,,rs) may be regarded as

an unsymmetrical triplet distribution function involving the three  Now, we substitute eq 3.12 into eq 4.1 and eq 4.3 into eq 4.2,

\

4. Ornstein—Zernike-like Equations
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bearing in mind that the integral in eq 4.1 cannot heyes o On the other hand, at closepacking, even thoBglr) may
since thenj(rs) would vanish. Equation 4.1 becomes vanish,g(r,) will exhibit infinities corresponding to spheres in
contact. Thus, the left side of eq 4.6 may remain finite and the
Po(0)pd(ry) = Bo(ro) + o[ Borda(rora) dry  (4.4) unlikely result, eq 5.2, would not be generated.
At first sight, this result may seem to belabor the obvious

while eq 4.2 may be expressed as since one’s intuition, alone, might suggest tRafo) and the
chemical potential should not vanish or be infinite, respectively,
— = for densities smaller than that of closepacking. Furthermore,
= B,(r,) + p [ °By(ra)0y(rrs) dry+ . X :
p=Fifr) 'Of Polru(r2r3) drs there is an abundance of evidence, both theoretical and

pJ Bora(r 5 dry (45)  experimental (simulation), that this is the c4%¢?
7 On the other hand, it is possible to generate innumerable

where the notation® and /, indicates, respectively, that the cor)figurations, at densities _far below that of closepacking, for
ranges of ; arers < o andrs > 0. Subtracting eq 4.5 fromeq  Which Po(0) vanishes. In view of the above result, we have

4.4 yields shown that none of these can correspond to a state of
unconstrained equilibrium!
Py(0)(r,) = 1 — faﬁo(ra)g(rz ry) dry (4.6) As an important corollary, eq 4.6 is valid for the constraint-

free, fully equilibrated, hard sphere system!
This is in many respects a remarkable relation. Because its Returning to the consideration of states that do not correspond
validity depends upon the validity of eq 3.10 which we have to constraint-free equilibrium, we emphasize that such states
used in its derivation, we will refer to it as the “constraint-free need not be confined to any particular metastable fluid condition
condition”; i.e., it applies to a system of spheres in which of the system or, for that matter, to a metastable crystalline
averages are freely taken, restricted only by the requirementcondition. For example, the microscopic constraint might
that spheres do not overlap. We analyze some of its propertiescorrespond to the analytic continuation of the stable fluid branch

in the next section. of the pressuredensity isotherm. Perhaps a better (although
less convenient) choice can be based on the following.
5. Constraint-Free Condition Denote the density at which the hard-sphere fluid begins to

freeze byps. In the constraint-free system, abegins to exceed

pr, those configurations that correspond to a solid with long-
range order begin to become relatively abundant because of the
limited packing options available to disordered fluid configura-
tions. As p increases, the ordered configurations become
overwhelmingly abundant in comparison to the fluid configura-
tions. Therefore, to maintain the fluid branch of the phase

Referring to eq 4.6, the first thing to note is that, although it
specifies a functiomy(r,) wherer, may be much larger tham
(ro may even— ), the integral that determines this function
is limited to values of;, that aresmallerthano. Suppose we
let r, — o, Then, bothg(rz) and g(ro,r3) will become unity
(no correlation at infinite separation) and eq 4.6 will read

_ - . o 2 diagram, it is necessary to apply an extremely severe configu-

Polo) =1— f Polry) drs=1— j(; Aty Po(rs) dry ratignal constraint in or)cqer topdpigallow the maj)c/)rity of configug-
rations that the hard-sphere system would like to adopt. The
Pyo)=1- ﬁ)aao(ra) drg (5.1) most benign constraint that achieves this situation would be the
one that allows all configurations except those corresponding
which, according to eq 3.4, is a correct result. to long-range order, i.e., crystalline configurations, and therefore,
Now, let us try something else. Assume tRalo) = 0. This it might be possible to define the metastable state as that in

implies that the insertion probability is zero and that the chemical Which the system achieves equilibrium subjectly to this
potential (see eq 3.2) is infinite. But Bo(o) = 0, eq 3.5 constraintin addition to the proscription against the overlap of
requiresBo(c) = 0 so that the upper limit in the integral of eq  SPheres.

4.6 may be set to infinity without incurring any error. Then,  Generally, a metastable state corresponds to a local minimum
in this case, eq 4.6 becomes of free energy in a coarse grained region of the system’s phase
space. Then, allowing the system infinite time to achieve
fwﬂo(ra)g(rzars) dry=1 (5.2) equilibrium, the free-energy bar_ri_er_between the local minimum
and the global one (stable equilibrium) must be augmented so
At this same time, eq 3.6 may be expressed as as to completely exclude the possibility of transition to the global
minimum. The constraint may therefore be viewed as an
fwﬁO(rS) dry=1 (5.3) additional intermolecular potential or an additional potential of

mean force. The additional potential need not be pairwise

In eq 5.2,r, can be varied arbitrarily, and it would require a additive.
mathematical miracle fag(r,,r ) to compensate in just the right The choice of the analytic continuation of the stable fluid
way, at any value of r», so that the relation would continue to  isotherm as representative of the metastable fluid can only be
hold and accomplish the same end as eq 5.3 in spite of thegiven a molecular interpretation in terms of a given molecular
appearance of the additional fac@{r,rs) in the integrand. theory for the stable fluid. Usually, however, the metastable

If eq 5.2 is invalid, we must look for the invalid step that led fluid is defined in terms of some “experimental” continuation
to it. The only assumption was thBg(c) could vanish. That  of the stable branch of the isotherm. In the case of hard spheres,
was responsible for the disappearance of the left side of eq 4.6such a continuation generally means the extension of a computer
and the appearance of eq 5.2. Thus, at first, it is implied that sSimulation into the metastable regime. It has been suggested
for unconstrained equilibrium, i.e., under full thermodynamic that the terminus of such an extension is the state of “random
equilibrium, the insertion probability for the hard sphere system closepacking!
cannot vanish at any density, and therefore, the chemical We have discussed several prescriptions for the metastable
potential cannot be infinite. fluid, and it should be clear that there are many others. We
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will argue that eq 4.6 need not apply to a metastable fluid so of op+(X) and for botho.—(x) andop-(X), where the definitions
that there may be prescriptions under whigdfo) = O even are reversed. The equivalent of eq 4.1 becomes

though the system is not closepacked. TRgb) can vanish

in the absence of closepacking is easily proved by simply 09, (%) = o, (X,) + pfxza+(x3)g+(x2— X5) dx; (6.5)
demonstrating a nonclosepacked configuration for which this 0

occurs. Many such configurations can be demonstrated so that . \\hich the rationale is the same as for eq 4.1 and where

it is not even necessary to present detailed proof that eq 4'_6N/L, whereL is the length of the systempg:(x.) is the density
need no.t apply to a meFastabIe sys.teml.. However, there ISof hard-rod centers at,. The first term on the right is the
another issue, dealing with the applicability of eq 3.10 0 @ yenity contributed by the nearest neighbor if the rod center in
metastable system, that is somewhat controversial and needs t(EIXZ happens to be that of the nearest neighbor. The integrand
bg res_c_)lved. We add_ress thIS issue in section 7. The ”Onap'pa+(x3)g+(x2—x3) is the density of rod centers xgif the center
pllcab.lllty of eq 3.10 is equwglent to the nonnecessity of eq ; X, is not that of the nearest neighbor. Thus,(xs) dx
4.6, since the former is used in the proof of the latter. represents the probability that the nearest neighbor isxin d
In closing this section, it is worth reiterating that although e pg+(x2 — x3) is the conditional density at, given that
simulative extensions of the stable fluid isotherm for a hard- hore is a center atz. We do, however, note ihe following

sphere system su.ggest t“,a‘((,’) doe§ not va}nish until the important difference. Although three centers are involved, i.e.,
random closepacking density is achieved, this represents only;na one at the origin and those satand x,, respectively, we

one (poorly defined) of many possible metastable configurations. aeq not involve triplet correlation functions since, in the hard-
Indeed, such an “experimental” isotherm may be dominated by 4 system, the chance that there is a centexais not
kinetics and unavoidable long computational relaxation times, ;.q..anced by the center at the origin when it is known to be
so the constraints to which it corresponds may never be present.

discovered. For this reason, among others, in this paper we' 1o upper limit on the integral in eq 6.5 s because if
make no special appeal to this prescription of the metastableexceeds(z, the center ats will no longer be the nearest neighbor

fluid. to the one at the origin. However, because of eq 6.1, we might
. . just as well set the limit ab, sinceg: (X2 — x3) = 0 whenxz >
6. Test of the OZ Equations Using the Hard-Rod System X, SO thatx, — X3 < 0. Thus, we can write
Since relations such as eqgs 4.1, 4.2, and 4.6 will be used in
studying the applicability of eq 3.10 to a metastable fluid, it is
useful to gain further assurance concerning their validities by
referring them to a system in which all of the involved functions
are known exactly. Such a system is the one-dimensional
system of hard rods. However, before proceeding to a test of
the relations in this way, it should be emphasized that the test
is really unnecessary since the original derivations of those )
relations are presumed to be free of error. Nevertheless, thereVhere, for the same reason as in eq 6.6, we have been able to

P9 (6) = & (%) + p [ 0. (x) 0, (% — X;) dx; (6.6)
The equivalent of eq 4.2 becomes

P = 00.(%) + p.f 00 ()8, 06 — X) A (6.7)

is no harm in acquiring additional confidence by means of the 'eplacex, in the upper limit, by and where we have used

proposed test.

We consider a one-dimensional systeniNdfiard rods, each
of lengtho, in a container of length. As indicated in section
2, we denote the coordinate of position kyand the pair

the analogue of eq 4.3.
Now, in Appendix A, we show that, for the constraint-free
system,

correlation function between rods lggx). It is convenient to o (X) =fo(X)=p, O<x=o
define the “pair correlation functioto the right by g+(x) such
that o, (X) = p eX;{_ M X> g (6.8)
0+ 1—p0]
X)=9g(x), x>0
9:(9 =903 and that
= <
g+(x) 01 X O (61) (1+(X) — 0' X< o
Similarly, the correlation function to the left is denoted by
0, (X) = _ P gleofdpo)] s (6.9)
g-(®=9x, x<0 1—=po
_ Some other important results are known. These are, again for
9g-®=0 x>0 (6.2) the constraint-free systefA,
Clearly, we can write 1
Go(x)=1_ " X<o
9(¥) =9,:(x) +9-(x) (6.3) P
1
Furthermore, because of the symmetryg6f), we have G =7 o X >0 (6.10)
9-(0 =9g+(—x) (6.4)  and
As indicated in section 3, in the hard-rod syste#s(x) and GX)=0, x=<o
B(x) are identical withop(X) anda(x), respectively, and we also
define ao+(X) = Bo+(X) andar(x) = B+(X) by a+(X) = a(x), X G = 1 %> g (6.11)

> 0, ando+(X) = 0, x < 0, similar tog+(x). The same is true

1-p0o



Ornstein-Zernike-like Equations in Geometry

and finally, still for the unconstrained systefh,

0 [w(x — o))"
9:() =—) Hx—noy————
Pi= (n—1)!

e—w(x— no)

(6.12)

whereH(x — no) is the unit step functionH{ = 0, x < no; H
= 1, x > no) and where

w=—P"_

=25 (6.13)
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molecular potential (additional to the hard sphere potential)
provides a means of communication between spheres, beyond
that implicit in the hard-sphere potential itself so that the
applicability of eq 3.10, in a structurally constrained system,
must be reexamined. For example, we explained eq 3.10 as a
consequence of the fact that a hard sphere “buried” in a cavity
could not influence other hard spheres at the cavity’s periphery
because the hard sphere potential had no long-range component.
However, the additional potential corresponding to the constraint
could supply a longer range component such that spheres outside
of the cavity could sense the one in it and thereby vitiate eq

3.10.

The one-dimensional version of eq 4.6, based on the same The proof of eq 4.6, the constraint-free condition, rested on
reasoning that led to that equation, is the assumption that spheres could not sense another sphere
buried in a cavity and concomitantly on the validity of eq 3.10.
The fact that it is easy to construct nonclosepacked constrained
configurations for whichiPo(o) vanishes indicates that eq 4.6 is
invalid for these structures and therefore that eq 3.10 does not
apply. Thus, we know that there are at lessineconstrained
configurations for which eq 3.10 does not hold. The bigger
question is, does eq 3.10 fail fall states of the system subject
to a configurational constraint? In posing this question, notice
that we are not simply asking whether eq 3.10 fails for
metastable phases. For example, since a one-dimensional hard-
rod system has no phase transition, the state it achieves, when
subject to a configurational constraint, does not correspond to
and where we have used eq 6.10. a metastable phase in the conventional sense, but we can still

Now, for the hard rod system, the validity of eq 5.2 would ask whether eq 3.10 applies in the presence of the constraint.
consist of the vanishing of the right side of eq 6.14 at adensity = The question is not trivial. On the basis of the analysis
short of closepacking, i.e., faio < 1, and with the upper limit presented in ref 14, Speedy argues that eq 3.10 applies to
in the integral replaced by. This, in turn, would requir®o, - metastable as well as stable phases. Although his analysis is
(o) to vanish short of closepacking. But it is clear from eq in essence more detailed, it depends on the argument that the
6.15 thatPo+(0) = 1 — po and therefore cannot vanish fpor removal of a hard sphere from a configuration can produce a
< 1. Thus, at least for the hard rod system, we have proved cavity without eliminating any of the configurations of the

that eq 5.2 cannot be valid when the system is in unconstrainedremaining spheres that were present before the removal of the
equilibrium. sphere whose absence is responsible for the cavity. Although

Next we demonstrate the simultaneous validities of eqs 6.6 thlsf_argu{'pentl IS cc:mpeilhng, Onﬁ tﬁotl!?d%lso tarlglgue thaththe
and 6.7 by the direct substitution of egs 6.9 and 6.13 into eq configurationa’ constraint was such that It dic not allow a sphere

6.6 and the direct substitution of eqs 6.8 and 6.13 into eq 6.7. to be r_emoved (while It was mamtamed)_m_thput Some recon-
figuration of the remaining spheres. This is just what would

Working through the algebra demonstrates that the equatlonsbe required if the constraint was equivalent to an additional

are simultaneously safisfied by these substitutions. Although intermolecular potential. Thus, there is some disagreement over
we expected this result on the basis of the arguments on WhiChwhether eq 3.10 can be ap’plied to a system subject to a

their derivations are based, it is reassuring to see them Conﬁrmedconfigurational constraint.
starting from another point of departure.

Por(0)9:(%) = 1= [0, (X0, 06 — X)) dXg  (6.14)

where, for the constraint-free case,

Por() =exp{—p [0 Go () o} =1—px, x=o0

Po. (%) = (1 — po0) exp{— "1(’(_—_;)‘;)}, x>o (6.15)

Without claiming to fully resolve this disagreement, we offer,
in the present section, evidence that eq 3.10 fails in the presence
of a configurational constraint severe enough to afer. Our
proof makes use of eqs 4.1 and 4.2. Actually, our analysis will
involve the hard rod system, and so we look for alterations in
0+(x). Because the proof is only given for a one-dimensional
system, we will not be able to claim with certainty that eq 3.10
fails for higher dimensional systems. Furthermore, we cannot
strucFuraI 'constraint is thgrefore likely to generate an altered fgﬁ;{;gahliﬂgtﬁg %lgrén fgzsghsﬁﬁesgmﬁ ethgtfelrshg?](i h@zed o
function g'(r). A constraint severe enough to exclude the | pojieve (although we cannot yet prove it) that the issue of
dominant cc_)nflguratlgns of a system |s_surely expected to p_ertu_rbthe validity of eq 3.10 is connected to the existence or
g(r), and this would include a constraint necessary to maintain noneyistence of a phase transition but only to the effects of a
the hard-sphere system in a metastable fluid state by theconfigurational constraint.
exclusion of crystalline configurations. Certainly, fluid and What we shall be able to show is that fohard rod system,
crystalline correlation functions will differ. subject to a constraint severe enough to aifefx), eq 3.10

As indicated earlier, a configurational constraint is equivalent must fail. This means that, in this particular situation, Speedy’s
to the introduction of an additional intermolecular potential that argument must fail. Whether it fails in general remains to be
may or may not be pairwise additive. Indeed, an alteration of proved.

g(r) corresponds, by definition, to the appearance of an  Our proof proceeds as follows: eq 2.6 written 8§+ and
additional potential of mean force. This additional inter- its analogue forG; show thatGy+ and G; are entirely

7. Nonequality of G and Gp in a Structurally
Constrained System

The structure of a hard sphere system in in part defined by
its pair correlation functiomy(r). The introduction of a severe
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determined byio+ andos. Furthermorep(X) andog+(Xz)can

Reiss et al.

8. Speculation on the Mechanistic Features on the

be obtained by Laplace transforming eqs 6.6 and 6.7, respec-Hard-Sphere and Hard-Disk Phase Transitions

tively. The results are

. PYy
& 1+ 00, (7
and
s P
- _ 7.2
" TSI+ o) 72

wheres s the transform parameter and the accent signifies the
Laplace transform. In arriving at these results, the convolution
theorem has been used. Now we already know that the
constraint-freeno, o, and gy satisfy both eqs 6.6 and 6.7.
Hence, the constraint-free transforms derived from these func-
tions satisfy eqs 7.1 and 7.2. The proof of the above was
obtained by direct substitution.

The application of the structural constraint will, by definition,
manifest itself in the appearance of an altered correlation
functiong'+(x) as well as altered nearest-neighbor distributions
o'o+(X) anda'+(X). These functions will satisfy the analogues
of eqs 7.1 and 7.2; namely,

o oo
L= 1+ pgr+ (73)

6y =P
s(1+p0;)

We can show the following. If eq 3.10 is still applicable in the
presence of a structural constraint, then ghethat solves egs
7.3 and 7.4 is identical with the constraint-frge that solves
egs 7.1 and 7.2, even whetp+(x) anda’+(X), the structurally

AT

(7.4)

The Helmholtz free energids of hard-sphere and hard-disk
systems may be expressedas

(8.1)

whereD is the dimensionality of the system is the ratio of
the number of “cavities” to the number of particlesjs the
average “volume” of a cavity, argis its average “surface area”.
The precise definition of a cavity may be found in refs 26 and
27. In terms of the above variables, the insertion probability is
given by

Nnw

Po(0) = V;

(8.2)

Now, in the case of hard spheres, for exampe, varies,
approximately, ag—13 at densities near closepackitfgwhile
—(In v), arising from the first term in curly brackets in eq 8.1,
cannot by itself overcome the 13 in the last term so as to
ensure thaF — +oo at closepacking. This task must then be
left to n;, which must then decrease exponentially in order for
F to avoid becoming- at closepacking. Indeed, it can be
shown almost exactly (see section 7 of ref 28) that the
asymptotic behavior oF near the closepacking density is
dominated by the Innv term in eq 8.1. From various
approximate theories as well as from simulat#iit, appears

as though the same is true near the freezing depsityWe
assume that the same is true at densities in the range extending
from just belowps to closepacking. In this range, we therefore
concentrate on the logarithmic term in eq 8.1 and write

AD

(8.3)

F = NKTIn
VPy(0)

altered nearest-neighbor distributions, remain in the equations; )
i.e., the resulig'+(x) = g+(x) is generated, contradicting the  This equation shows that, to maintain the Helmholtz free energy
fact that we began the analysis with the assumption that theas small as possibl®y(c) should be as large as possible and
correlation function was altered by the constraint. The origin that, in the absence of a structural constraint, the equilibrium
of this contradiction must be the assumption that the “buried” configuration of the system will be that for which this is
rod atx = 0 in eq 6.6 cannot be sensed by the rodwaand achieved, subject only to the requirement that spheres do not
that, concomitantly, eq 3.10 remains valid even in the presenceoverlap. However, attention should be drawn to one qualifica-
of the constraint, since this was thaly assumption made. We  tion. This concerns the fact th&(o) is a quantity obtained
are thus forced to conclude that eq 3.10 fails in the presence ofby averaging the available space oadirconfigurations of the
the structural constraint. hard particles. There are configurations having very large values
The details of the mathematical analysis leading to this Of available spacewhich are, at the same time, very rare so
conclusion can be found in Appendix B, where it is also shown that there is more to the problem than a simple maximization

why the same proof cannot be given for higher dimensional of available space. We discuss this ppint, further, below.
systems. In order to speculate on the mechanistic features of the hard-

Nevertheless, by using the idea that a configurational sphere phas_e_ transition_, we start by assumipg that a-fkotid
Lo . . phase transitiomloesexist. Before proceeding, we note that
constraint is equivalent to an intermolecular potential of statistical geometric metho$0 have allowed some exact
considerable range, we think that it is highly plausible that eq statements concerning the structure of the hard-sphere phase
3.10 will fail in a constrained hard-particle system of any transition. For example, it can be shown that has the same
dimensionality. Equation 3.10 then becomes a rather unique i

. . X - 8 value in the coexisting liquid and solid phases, whijgis less
relation, especially in multidimensional systems where phase i ihe coexisting solid phase than in the fidf.This implies

transitions are possible. In those cases, it represents a condition, 4t ¢/, decreases on going from the coexisting fluid to the solid
that holds on a stable isotherm but fails to hold on a metastable 5,4 suggests that the cavities in the solid are more spherical.
one. Furthermore, it has been shovexactly that the density at

In closing this section, it is worth noting that Rintoul e?&l.  which nss has a maximum cannot lie in the coexistence region.
have shown that eq 3.10 is invalid in a wholly nonequilibrium  In contrast to thesexactresults, our present discussion, although
system such as that produced by random sequential adsorptiommotivated by statistical geometric considerations, is presented
(RSA). They speculate that it is not valid in general for as an exercise in physical intuition, aimed at illuminating the
nonequilibrium systems. geometric features of the transition mechanism. Nevertheless,
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based on these features, we shall be able to make an interesting {a)
estimate of the freezing densities for both spheres and disks.
We introduce the following fluid model. We assume that
near the freezing density, the fraction of the total volume not

covered by spheres or disks, i.e5ly wherey is the packing
fraction, will be partitioned into small recognizable “interstices”
bounded by sphere surfaces or disk edges. An interstice may
be defined as a “cage” produced by particles, such that if a
sphere or disk were placed in it, that particle could not escape
unless one or several of the caging particles were moved. ltis
clear that “cavities”, as they are defirféd’ in statistical
geometric developments, are contained within interstices. A
cavity is a portion of the “available spad€’in the system. A
point in the available space cannot be closer ihémthe center

of a hard sphere or disk. The cavity is therefereallerthan

the interstice.

It is appropriate to present our approach in a more organized
and detailed manner. We begin by indicating that our analysis
will be based on several principles, some of which are exact:

1. We assumeat the outset that a fluidsolid transition
(freezing transitiondoesoccur.

2. In accordance with the discussion surrounding eq 8.3, we
reqUIrg the system to co'nflgure itself so that, at any density, Figure 2. Loose square (upper) lattice, loose hexagonal (lower) lattice,
Po(0) is as large as possible. showing interstices (shaded) and cavities (clear).

3. The system should be as uniform as possible. It is true
that certain nonuniform configurations can be found such that phases. In accordance with the discussion in item 4, we can
Po(o) is very large. For example, all the spheres or disks could use the density at whicRg(o) vanishes (within the model) as
be closepacked into one “corner” of the total volume This a marker, i.e., as a close upper limit for the density at which
would leave an enormous unoccupied volume and correspondthe insertion probability becomes small. The assumption that
to an exceedingly large insertion probability. However, it must the insertion probability is small in the coexisting solid at the
be remembered thd®y(o) is an average quantity; i.e., it is  phase transition can account for the observation fh6t) is
averaged over all configurations of the spheres or disks exceptsmall, in the coexisting fluid, since it has been proved,
those that involve overlap. The nonuniform configurations are exactly,?5-30that the fluid phase must have a nonzero insertion
so few in number that they carry very little weight in the average probability equal to that in the coexisting solid multiplied by
and can be disregarded. The exception occurs at densitieghe ratio of the density of the liquid to that of the solid.
corresponding to the coexistence regime of the phase transition. In the interest of expositional simplicity, we begin our analysis
There the system is clearly nonuniform (because any uniform (based on the above five principles) with hard disks. We build
distribution at those densities could requig(c) to vanish), on an idea that the fluid, very near the freezing density, may be
but theindividual coexisting phaseswill be uniform. The regarded as a locally distorted, simple crystalline lattice, such
requirement for uniformity should operate, to a degree, on the that the local distortions destroy any long-range order. The
microscopic as well as the macroscopic level, i.e., very interstices mentioned earlier are then, in fact, the interstices in
“structured”, even if still fluid phases would be of low this quasilattice. For hard disks, the simplest structures that
probability and bring little weight to the average. However, we can consider are those in which the disks are located at the
on the microscopic level, the importance of such locally sites of simple square and hexagonal lattices. The packing
nonuniform phases depends on the balance between the insertiofractiony, i.e., the fraction of the total area of the system covered
probability that they correspond to and the number of configura- by the disks, is given by
tions that they represent.

4. We assume that, in the fluid, at a density near the freezing y = na’pld (8.4)
transition, Po(o) is always very small. This assumption is
supported by computations based on various approximateFor the simple square and hexagonal lattizgsthe values of
analytical theories and by simulation studies. For example, in y at closepacking arel/4 andn;/2\/§, respectively_ However,
the case of hard disks, simulatfiindicates thaPy(c) = 10°° we are not interested in the densest arrangements but are
at the freezing transition. Furthermore, almost any reasonableinterested in those that contain cavities and possess the
model of the fluid shows (on the basis of continuity within the maximumPy(c). In order to create these cavities, we can either
model) that, wherPo(0) is very small, it quickly becomes zero  expand the lattices considerably so that cavities appear or expand
with only a very slight increase of density. them only slightly, while removing disks so that cavities appear

5. The analysis of section 5 has shown tRafo) cannot at the positions of the vacancies that are consequently formed.
vanish on the stable isotherm. We assume, therefore, that inin the first case, we get loose simple square and hexagonal

(k)

the absence of some additional constraint that previes(ts lattices withw, the number of cavities per disk, equal to 2 and
from vanishing (i.e., in the absence of a constraint that maintains 1, respectively (see Figure 2). In the second case, we get
a metastable state), the fluid, whBg(c) becomes very small,  “hollowed” square and hexagonal lattice (Figure 3) witequal

avoids this catastrophe by undergoing a phase transition andto /3 and/,, respectively. The hollowed hexagonal structure
escaping to the crystalline state. As indicated above, this allowsis a “honeycomb” lattice. In order to determine which of these
the insertion probability to remain nonzero through the introduc- four structures has the largeBg(o), we can regard the cell
tion of the nonuniformity implicit in the coexistence of the two volume as composed of three domains, namely, filled space
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(a) cordance with the principle enunciated in item 2 above, this
requires the system to select the hollowed structures.

In the hollowed square structurBg(o) vanishes whery =
yi = 67/32 = 0.589, while in the honeycomb structure it
vanishes whery = 7/3v/3 = 0.605. These two values are
essentially the same from the point of view of an estimate of
the freezing density, but again, the principle in item 2 requires
us to select the hexagonal structure. At this point, it is necessary
to reemphasize that we are not really dealing with a crystal but
rather with a fluid represented by a locally distorted crystal.
Thus, slight distortions of some quasihexagonal “vacancies” will
allow some other distorted vacancies to contain cavities even
aty = yr = 0.605. ThusPy(o) cannot be expected to vanish at
a value ofy precisely equal 0.605 but instead at some higher
density. Computer simulatidh3132 indicates the freezing
transition to occur at

y=0.69 (8.8)
Thus, the prediction of a freezing density
y; = 0.605 (8.9)
Figure 3. Hollowed square (upper) lattice, hollowed hexagonal (lower) ) ) ) )
lattice, showing interstices (shaded) and cavities (clear). is in reasonable agreement with that predicted by simulation.
The above degree of correspondence between the estimated
TABLE 1: Dependence of the Insertion Probability Po() and simulated results was obtained through the application of
Egﬁl—;’;cskmg Fraction y for the Simple and Hollowed Square the principles embodied in items-5 above. For example, a
larger value ofPy(0), at a giveny, could be obtained by
Po(0) considering a compact, simple square lattice (i.e., &ith o)
3lm simple sq. lattice hollowed sq. lattice and removing alternating lattice lines parallel to one of the two
3 0.038 02 0.107 30 crystal axes. But this arrangement would be very nonuniform,
35 0.008 55 0.063 82 since it alternates closepacked and void lines and in accordance
4 0 0.036 79 with item 3 would be poorly weighted in the average config-

uration. Even more important, such an arrangement would not
allow Pg(0) to vanish (even when it was closepacked) so that
neho phase transition could be anticipated, contrary to our
Sétssumption initem 1. Similar arguments rule out distributions
with both closepacked and void domains as well as structures
where bases do not allow the insertion probability to vanish.
Furthermore, although we can think of other structures obtained

(covered by a portion of a disk), interstitial space (outside of
both the filled space and cavity space), and cavity space. Thes
domains are indicated by solid, shaded, and unshaded regio
in Figures 2 and 3. Denoting the cavity spacedsythe filled
space by, and the interstitial space hy, we can write

1% UV— Vs — U U;
Plo)=—=—"T=1-y—— (8.5)  from simple square and hexagonal lattices, obtained by intro-
v v v ducing vacancies having more complicated patterns it seems
whereu is the cell volume. unreasonable that the cavities in a fluid would exhibit that degree

Now, for a given packing fractiow, it is clear, from eq 8.5,  Of cooperation necessary to match such complicated pictures.
that the structures with maximuRg(o) are those with minimum, Thus_, we are left with the simplest, uniform, hollowed structures
vi, i.e., with minimum shaded area or, in other words, those in considered above. , _
which there is overlapping of the shaded areas of neighboring N&Xt, we turn to the consideration of the hard sphere system,
disks. It can be shown that this situation corresponds to the USiNg, @ much as possible, the same approach as in the case of
hollowed structures. For example, in the simple square lattice diSks. The simplest hollowed structure, having a high degree

with lattice parametea such thatv/2o < a < 20, we have of overlap of shaded interstitial volumes, can be obtained by
- stacking honeycomb lattice planes in place of hexagonal lattice

16y planes that would produce a cubic closepacked (ccp) three-
Poo)=1—4/——-1— dimensional lattice. In other words, we produce the simple
& hollowed three-dimensional lattice by creating vacancies in a
8y| i [T ; _ T three-dimensional ccp lattice in a manner similar to the
arcsi arcsin, /1 (8.6) ) _ : ; .
7T 1ley 1oy production of the two-dimensional hollowed lattice by creating

vacancies in the planar hexagonal lattice (see Figure 4). For

while the hollowed square structure, with< a < v/20, this three-dimensional latticePo(o) will vanish when the
1 4 honeycomb structures become closepacked. For hard spheres,
Py(o) = 5~ Ey + the packing fraction is given by
— 3
1—3%/arcsirk /%y_ arcsin\/ —%y—% %y_ 1 (8.7) y=no"pl6 (8.10)
and the three-dimensional closepacking density in question can
and Table 1 clearly shows that, for any given valug,d®o(o) be shown to correspond to

is larger for the hollowed structure than for the simple one. The
same conclusion applies to the hexagonal case, and in ac- y= V2719 = 0.494 (8.11)
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we repeat here as

1
Gy (¥) = - ox X=<o
G()=—r— x>0 (A4)
o+ 1— pO"
.}%H‘/:?. Substitution of eq A4 into eq A3 then yields
O’O—O—(X) =p X=o0
p(x—0)
A (¥) = p eXF{ - 1——p0)’ x>0 (A5)
Figure 4. Hollowed three-dimensional lattice created by introducing o
vacancies into the cubic closepacked lattice. For the derivation ofv(x), we replace eq Al by
The freezing density obtained by means of computer simula- o (X) = pG, (P (X (AB)
tion3132 corresponds to ) )
with P4(x) given by
y; = 0.492 (8.12) y
P.(x) = exp{—p [, G, (x ) dx} (A7)

These estimates of the freezing densities were obtained using
an extremely simple method and lend support to the mechanisticNow, obviously,
picture expressed by that method. The mechanistic picture of
the phase transition, rather than the successful numerical G0, 0,(x)=0, x=o (A8)
prediction, should be regarded as the most important result of ) . )
the above analysis. and since eqg 3.10 holds in the constraint-free system,
We note that our estimate of; differs in a somewhat 1
fundamental way from previous estimates, based on the G, (X) =Gy () = o5 X >0 (A9)
comparisons of the pressures and chemical potentials for model po
fluid and solid phases, i.e., determining the density at which gypstitution of eqs A8 and A9 into eq A6 into which eq A7
the p's andy’s are, respectively, equal. This method is also pas heen substituted gives
involved implicitly in density functional approachés*where
static density modes for the solid have to be selected and where o0, (X)=0, x=<o
direct correlation functions need to be computed from some
model theory (e.g., the Percu¥evick theory) of the fluid. In o
the present method, the particular properties of the solid are o () = 1_—p0ex
never specified.

—pl(x_—_p?}, x>0 (A10)
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In this appendix, we prove that, in a hard rod system, a
constraint severe enough to altKk) invalidates eq 3.10.

The proof proceeds as follows. First, we show that (x)
is independent of the constraint in the intervakOx < o as
long as that constraint does not violate the hard rod nature of
the particles, i.e., as long as hard rod overlap remains forbidden.
In this appendix, we derive the hard-rod nearest-neighbor The basis for this result is the fact that the center of only one

Appendix A

distributions ao+(x) and a+(x) for the constraint-freefully hard rod can lie in the interval & x < ¢. In that case, the

equilibrated system. chance that the center of at least one rod will be found between
We begin with ao+(x) which, according to the one- 0 andxis px, and the chance that there will not be at least one

dimensional version of eq 3.5, is given by rod center between 0 andli.e., the chance that the interval is

empty, must then be + px. But the chance that the interval
0oy (X) = pGqo 1 (X)Po; (X) (A1) is empty isP'ox(X) SO that
while Pg+(x) is given by the one-dimensional version of eq 3.4, Ppu®=1—-px, O0<x=<o (B1)
namely,

independent of the presence of the constraint, R&.,(X) =

_ o . , Po+(X) in the relevant interval.
Por(x) = ex{ pj; Go (X' ) X} (A2) The one-dimensional analogue of eq 3.4 is
Substitution of eq A2 into eq (Al) gives Po.(X) = exp{ —p LXG'0+(X') dx} (B2)

Ao (X) = pGyi(X) exp{ —p L/;XG0+(X' )X} (A3) so that we obtain, by differentiation,

19N Po.()

Now it is well-known that, for the fully equilibrated constraint- Gy (X) =
o+ X

free systemGo+(X) is given by eq 6.10 which, for convenience, (®3)



5980 J. Phys. Chem., Vol. 100, No. 14, 1996 Reiss et al.

which shows thaG'o+(x) is fully determined byP'o+(X). Then, constraint, this implies that eq 3.10, and therefore eq 4.6 that
since in the interval 6< x < g, P'o+(X) is independent of the follows from it, need not hold in such a phase.

constraint, the same must be true @b.(X); i.e., G'o+(X) =

Go+(X) in the relevant interval. Buk'o+(X) is given by the one-  Appendix C

dimensional analogue of eq 3.5; namely, In this appendix, we discuss a physical interpretation of the

, . . _ _ direct correlation function (DCF). We have referred to egs 4.1
@0 (X) = PP’ ()G’ () = pPo ()Co4(X) = and 4.2 as OrnsteinZerniké (OZ))-Iike equations. Indeed(,qthe

(), O<x=o (B4) analogue of eq 4.1 for the one-dimensional hard rod system

can actually be converted to the standard OZ form, and in that

Next, if eq 3.10 applies in the presence of the constraint (note guise, it suggests a physical interpretation of the direct correla-

that at this point we make the assumption), then the one- tion function which may be more satisfactory than the conven-

dimensional analogue of eq 3.12, whose derivation dependedtional one. To motivate the analysis leading to these results,

on the assumption of the validity of eq 3.10, must also hold. we define the total correlation functiohs(x) andh_(x) to the

This analogue is right and left, respectively. Thus, we write
oo (X) =Py (o) (X) =Py (0)o'  (X), x>0 (B5) hy(®=0g,(x) —1
where we have used the fact thad. (o), since it lies in the h-.()=g_.(x) — 1 (C1)
interval 0 < x < g, is independent of the constraint.
Now we can write and from eqgs 6.1 and 6.2, it follows that
dro+ — t/(‘)geisx(l'o_,_(X) dX + ‘/:oefsxayo_'—(x) dX — h+(X) - h(X), X<0
Je o, (x) dx + Py, (0) [ e ¥, ()dx = h)=-1, x<0 (C2)

a*g, + Poy(0)d’, (B6) h.() =h(X), x<0
wheres again is the transform parameter and where the integral
involving o’ +(X) = 0, X < ¢, and where h.}=-1, x>0 (C3)

o, = [e g, (9 dx @7 2
h_(x) = h,(—x) (C4)
In eq B6, we have used eqs B4 and B5.
Substitution of eq B6 into eqs 7.3 and 7.4, followed by the where
elimination ofa'+ between the equations, yields the relation

h(x) =g(x) — 1 (C5)
s
. 1- ;a*o+ Note, however, thal(x) = hi(x) + h_(x).
0 =S 15 (B8) For the hard-rod system, eq 2.7 and the similar equation for

= *
Sa¥or + Poy(0)] a(x) indicate thatBy(X) and B(x) are identical withao(x) and

o(x), respectively, and we also defirme(X) = So+(X) and
o (X) = a(X), x > 0, a+(X) = 0,x < 0, in a manner similar to
that for g+(x). The same is true for both-(x) and oo (X),
where the definitions are reversed. Then, the density(xy)
of hard rod centers at some potmay be expressed as

Because of eq B4qg, is the same function when eq B6 is
written for &o+. Therefore,do+ = o, + Po+(0)&+. Then,
beginning with eqs 7.1 and 7.2 and eliminatifig between
these equations, we find following a route similar to that which
led to eq B8

X
1- §0L3+ P9+ (%) = o (X)) + p L 0, (X)g, (6 — X;) dxg (C6)
9+ = sm*~|——pP(o)] (B9) for which the rationale is the same as for eq 4.1 and wpere
or o N/L, whereL is the length of the system ana;(x,) is the
Comparison of the right-hand sides of eqs B8 and B9 then showsdensity O,f hard'rPd centers &L The first term on the right is
that the density contributed by the nearest neighbor if the rod center
in dx, happens to be that of the nearest neighbor. The integrand,
g. =0, (B10) pa(X3)g+(%2 — X3) is the density of rod centers a if the
center atx; is not that of the nearest neighbor. Thuas,(X3)
Thus, we arrive at a contradiction which proves that, at least dxs represents the probability that the nearest neighbor igsin d
for the hard rod system, eq 3.10 must fail in the presence of awhile pg+(x;—xs) is the conditional density at given that there
structural constraint capable of alterigg(x). is a center aks.

The same proof cannot be carried out for the hard-sphere Although three centers are involved, i.e., the one at the origin
(disk) system sinc@ in eqs 4.1 and 4.2 is not the samegs and those ax; andx,, respectively, we need not involve triplet
and therefore, the analogues of eqs 7.1 and 7.2 are not availablecorrelation functions since, in the constraint-free hard rod
However, a somewhat different but related proof might be system, the chance that there is a centeg & not influenced
possible. In any event, eq 3.10 is invalid for the structurally by the center at the origin when it is known to be present.
constrained hard-rod system, and we believe that it is also likely ~ The upper limit on the integral in eq C6 % because if;
invalid for higher dimensional systems. Since a metastable exceedsy, the center ats will no longer be the nearest neighbor
phase must, as we have argued, be defined by a severe structurab the one at the origin. However, because of eq 6.1, we might
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just as well set the limit ab, sinceg+(x2 — X3) = 0 whenxz >
Xo SO thatxo — X3 < 0. Thus, we can write

PO (%) = 0.(%) + p [0, (X)9. 06 — Xg) dg  (C7)

Substitution of eq C1 into eq C7 yields

P, (%) = 0, (%) + p f 0, (XN, (% — X5) dx (C8)

where we use the normalization condition

Jo o) dxg =1 (C9)
Then, by using the definition
o, (X
c.(9) = p( ) (C10)

and substituting eq C10 into eq C8, we may write

h.(%) = €. (%) + p [ C (X, (X; — Xg) dxy (C11)

sincecy(X3) vanishes wheRrgs is negative sincet(xs) is defined
to the rightand may be set to zero on the left. Therefore, eq
C11 may be rewritten as

h,(%) = €.(%) + p " C (XN, (%, — Xg) dxy (C12)

Note that this equation is valid even whenis negative since

it then givesh(xz) = —1. Equation C12 is exactly of the form
of the Ornsteir-Zernike equation with the nearest-neighbor
distribution (essentiallyc+(x)) playing the role of the “direct
correlation function”. Although this result (as an exact relation)
is limited to hard rods, it suggests that, in general, the DCF

might be considered as a distortion (even though at times severe)

of the nearest-neighbor function. For example, the nearest-
neighbor function remains short ranged even at the critical
temperature, a property that derives from the DCF as a
mathematical construct (i.e., as the solution of the Ornstein
Zernike equation) notwithstanding its use as a convenient
intermediate function, in density functional theéfyand its
description in terms of diagrammatic expansiénsn contrast,

J. Phys. Chem., Vol. 100, No. 14, 1996981

physical grounds since the nearest-neighbor distribution is
always short ranged. If one is pressed to offer a physical
interpretation, the distortion of the nearest-neighbor distribution
seems, therefore, to be particularly appropriate. The DCF is of
course not “direct”.
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