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An expression for the impedance due to ion transfer across the interface of immiscible electrolyte solutions
(ITIES) is derived, assuming a continuous change of the ionic resolvation energy across an interfacial layer.
The model is analogous to the Goldman constant field approximation. The result is practically identical to
the one obtained assuming an activated step occurs during the transfer, i.e., the classical Butler-Volmer
relationship, so that the standard rate constantk0 in the Butler-Volmer theory is replaced by the quantity
D/δ, whereD is the average diffusion coefficient of the transferring ion inside the interfacial layer andδ is
the thickness of the interfacial layer. At potentials close to the standard transfer potential, the apparent charge-
transfer coefficientR takes the value of1/2. Combination of the charge-transfer impedance and an inner
layer capacitance in parallel gives a complete semicircle in an impedance plot, characteristic of a parallelRC
circuit.

Introduction

The mechanism of the ion transfer across molecular interfaces
is still unclear partly because both the structure of these
interfaces and the Galvani potential distribution present are still
poorly understood. Different interfacial models have been
proposed. In the original work of Gavach,1 Buck et al.,2 and
Samec et al.,3 a sharp boundary with two ion-free inner layers,
one at each side of the interface, was proposed, similar to a
modified Verwey-Niessen model. This was a direct transposi-
tion of the classical electrochemical formalisms for electron-
transfer reactions at metallic electrodes. This interfacial model
has been more recently applied to the study of interfacial
electron-transfer reactions using the scanning electrochemical
microscope.4 In contrast to treating interfaces as molecularly
sharp boundaries, a mixed solvent layer was suggested by
Girault and Schiffrin.5 More recently, comprehensive molecular
dynamics simulations by Benjamin6 indicate that these bound-
aries are highly disordered, with “fingering” phenomena prevail-
ing. The possible influence of these interfacial structures on
ion transfer has been evaluated.6b

The main question being discussed at present is whether ion
transfer is a process containing an activated step corresponding,
for instance, to resolvation or is it just a transport problem. If
the former approach is accepted, the potential dependence of
the transfer current will follow a classical Butler-Volmer
relationship.7 The difficulty with this model is the uncertainty
regarding the potential distribution across the interfacial region.
This is particularly important if it is considered that most of
the potential drop normally occurs in the organic phase. When
the Butler-Volmer model is applied to the analysis of experi-
mental data, the standard rate constant,k0, takes rather high
values, on the order of 0.1 cm s-1. Recently, Girault et al.
measured the impedance of a microhole ITIES which facilitates
the mass transfer on both sides of the interface, but could not

find any charge-transfer resistance due to ion transfer, and
concluded thatk0 has to take values on the order of at least 10
cm s-1.8

A proposed alternative model considers the interfacial region
as an inhomogeneous phase through which the trace ion is
transferred. The solvent properties and salt concentrations of
the adjoining phases are considered to vary continuously through
this interfacial region. This model has been considered by
Kakiuchi,9 Kontturi et al.,10 and Senda,11 who integrated the
Nernst-Planck equation across the interfacial region under
steady-state conditions. The current-voltage characteristics thus
obtained could be expressed as that of a first-order heteroge-
neous reaction, which enabled the comparison with the Butler-
Volmer approach. The fundamental result of these analyses is
that the Nernst-Planck model explains the salient features of
the kinetic data, such as the nonlinear current-voltage charac-
teristics and a value close to1/2 for the transfer coefficientR.
Furthermore, the formal standard rate constant can be related
to the diffusion coefficient of the transferring ion across the
interfacial region and to its thickness. Quite recently, Aoki
presented a more general theory of ion transfer12which includes
these two approaches as its limiting cases. The comparison of
the above two formalisms is not obvious for fast ion-transfer
reactions.
Rate constants are conveniently measured by perturbation

techniques, such as ac impedance spectroscopy.7a Unfortu-
nately, the classical analysis based, for example, on a Randles-
type equivalent circuit,includes explicitly a particular potential
dependence of the rate constant, in all cases, giVen as the
Butler-Volmer equation. The question is whether the rate
constant derived from transient techniques is uniquely related
to the use of a specific kinetic model or, indeed, no particular
kinetic equation for ion transfer needs to be assumed and all
the kinetic information obtained from these techniques is simply
a consequence of the diffusion and migration characteristics of
an ion in an inhomogeneous region as described by the Nernst-
Planck equation. Previous theoretical ac impedance analysis
in systems related to the present one has been carried out by
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Buck et al.13a,b More recently, this analysis has been extended
by the same authors by the use of transmission lines to the study
of ion- and electron-transfer reactions in membranes.13c,d The
numerical analysis by Buck13a referred to the membrane case,
in which activated ion transfer at the membrane-solution
boundary takes place.
The purpose of the present work is to analyse the ac response

for ion transfer across the interface of immiscible electrolytes
and compare the results derived from the solution of the
diffusion and migration problem with those for which an
activated step process (the Butler-Volmer approach) was
considered. In particular, it was regarded important to be able
to ascertain if the observation of an ac response containing a
classical charge-transfer resistance would be equally well
derived from the phenomenological migration and diffusion
description of ion transport.

Theory

The case considered here is that of a cation from the aqueous
phase transferring across the interface. The concentration of
the cation iscw in the aqueous phase andco in the organic phase.
Concentration polarization is neglected so that interfacial
concentrations are equal to those in the bulk; the effect of the
concentration polarization was studied in ref 10. The reason
for doing this is to highlight the nature of interfacial ion transfer.
The diffusional components (Warburg impedance) in both
adjoining phases can be simply taken into account in much the
same way as is usually done in the impedance theory for metal
electrodes.14 The Warburg impedance can then be subtracted
from the experimental data.15 Furthermore, it is assumed that
the entire changes of the Galvani potential and standard chemical
potential of the ion take place in the interfacial region, the
thickness of which is denoted byδ; see Figure 1. The latter
assumption may not be quite correct; that is, the change of
Galvani potential probably extends over a wider distance than
δ. Refining the model accordingly would, first, bring about
unnecessary mathematical complications and, second, have only
a minor effect on the final result, as we have shown in ref 10.
The analysis is carried out assuming the presence of supporting
electrolytes in both phases. Two different cases will be
considered: (i) equilibrium impedance and (ii) overpotential
impedance.
Solution of the General Problem. The ion transfer is

described as an electrodiffusion problem, and the flux of the
transferring ion,J, follows the phenomenological equation16

whereD andc are the diffusion coefficient and concentration
of the ion being transferred andµ̃ is its electrochemical potential;
R and T have their usual significance. For a cation transfer

and considering that the activity coefficient of the tracer ion is
independent of concentration, the flux is given by

wherec(x) is the concentration of the tracer ion a distancex
from the aqueous phase boundary (taken as the origin of
coordinates),f ) zF/RT, andΦ0(x) ) -µ0(x)/zF. µ0(x) is the
standard chemical potential of the tracer ion for the solvent
composition at pointx. The quantityµ0(x) recognizes that ion
transfer occurs across an inhomogeneous interfacial region, in
which not only potential changes but also the chemical solvation
energy gradient must be considered.17 The inner potentials
given in eq 2 are absolute quantities, but integration across the
interfacial region leads to more convenient relative quantities
expressed with reference to the either of the phases. Here, we
use the convention∆o

wΦ ) Φ(0) - Φ(δ) and∆o
wΦ0 ) Φ0(0)

- Φ0(δ). Hence, the more positive∆o
wΦ - ∆o

wΦ0 is made, the
more the cation flux from the aqueous to the organic phase is
accelerated.
The solution of eq 2 under steady-state conditions (ss) is

dependent on the assumptions made on the electrical and
standard chemical potentials gradient in the interfacial region.
For membrane or confined regions, the Goldman constant field
assumption is commonly employed to describe the potential
distribution.18 This approximation implies that no space charges
are present in the interfacial phase. However, even in cases
where the potential distribution deviates significantly from
linearity, there is little difference in the calculated values of
the current-voltage response.10,19 The latter observation is very
important, since it shows that the fine details of the interfacial
potential distribution have a small effect on the calculated values
of the rate constants for ion transfer. Similar arguments apply
to the chemical potential contribution to the driving force for
interfacial ion transfer,10,19 and therefore, (2) becomes

whereJssandcss(x) are the steady-state flux and ion concentra-
tion at x. Gss is defined as

Direct integration of (3) betweenx ) 0 andx ) δ leads to

From (3) and (5) the concentration distribution of the cation is
in the interfacial region accordingly given by

Note that eq 6 leads to correct limitscss(0) ) cw andcss(δ)
) co. The system is perturbed by applying an ac potential
difference to the interfacial region in addition to the steady-
state value: ∆o

wΦ ) ∆o
wΦss + ∆o

wΦac. This results in a
perturbation of the steady-state cation distribution within the
interfacial region,c(x,t) ) css(x) + cac(x,t), which leads to an
ac current. In the present analysis, however, the boundary
concentrations remain unchanged since no mass-transfer limita-
tion outside the interfacial region is considered here.10 Hence,

Figure 1. Schematic presentation of the interfacial region.

J) -Dc
RT

dµ̃
dx

(1)

J) -D[∂c(x)∂x
+ c(x)f

∂(Φ(x) - Φ0(x))
∂x ] (2)

Jss) -D[dcss(x)dx
+ css(x)Gss] (3)

Gss) -
f(∆o

wΦss- ∆o
wΦ0)

δ
(4)

Jss) DGss
cw - coeGssδ

eGssδ - 1
(5)

css(x) )
cw(eGss(δ-x) - 1)- co(eGss(δ-x) - eGssδ)

eGssδ - 1
(6)
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cac(0,t) ) cac(δ,t) ) 0. In what follows, for the sake of
simplicity, css(x) and cac(x,t) are denoted ascss and cac,
respectively.
Let us rewrite eq 2, in a form that makes explicit reference

to the deviation of the flux from its steady-state values,Jss, by
the applied ac signal,Jac:

whereGac) -f∆o
wΦac/δ. From (3) and (7), and neglecting the

second-order ac term, the ac component of the flux is given by

The ac component of the concentration in the case of a
sinusoidal potential perturbation,∆o

wΦac ) ∆o
wΦ̂ejωt, can be

expressed ascac ) ĉejω(t+θ), where∆o
wΦ̂ is the peak potential

perturbation,θ the phase angle with respect to the exciting
potential function, andω its angular frequency;j is the imaginary
unit. As it will be seen, it is not necessary to calculateθ to
obtain the impedance. The continuity condition of the flux is
then given by

Applying (9) into (8) and after minor arrangements,

where it has been assumed that∂Gac /∂x ) ∂Gss /∂x ) 0
according to the Goldman constant field approximation. The
total electric current is given by13a

where the first term inside the parentheses is the current due to
cation transfer (faradaic current) and the second term is the
Maxwell’s displacement current (capacitive current).A is the
interfacial area andε the mean permittivity of the interfacial
region. Thus, even thoughJ is position dependent, the total
currentI is position independent. Since no information of the
time variation of the electric field inside the interfacial region
can be obtained from our theoretical model, an alternative
approach must be followed.
Integration of (11) with respect to the spatial coordinate from

x ) 0 to x ) δ gives

so that in the case of a sinusoidal perturbation it must be satisfied
that

whereIac is the ac component of the current. From (8)

Hence, inserting (14) into (13), the impedance of the system
can be calculated for different boundary conditions.
(i) Equilibrium Impedance. At equilibrium, no steady-state

current flows through the interface andJss) 0. Therefore, the
steady-state concentration is equal to the equilibrium concentra-
tion, i.e.,css ) ceq, which can be calculated from (3):

whereGeqcorresponds to (4) in the absence of current. Taking,
as discussed above,cac(0) ) cac(δ) ) 0, the solution of (10) is

wherer1,2 are the roots of the characteristic function

From (16) and (17) and, after some rearrangements,

Expanding coshx ≈ 1 + x2/2 + x4/24, sinhx ≈ x + x3/6 and
using the binomial expansion (1+ x)-1 ≈ 1 - x, after lengthy
algebra (18) can be approximated to

Also, the second integral term on the right-hand side of (14)
can be expanded to give

Therefore (see eq 14),

Finally, from (13), (14), and (21) it is found that

The two contributions inside the brackets are admittance
components corresponding to a parallelRC combination. In
this case, the resistance corresponds to the charge-transfer

J) Jss+ Jac) -D[ ddx(css+ cac) + (css+ cac)(Gss+ Gac)]
(7)

-Jac) D[dcacdx
+ cssGac+ cacGss] (8)

-
∂Jac
∂x

)
∂cac
∂t

) jωcac (9)

∂
2cac

∂x2
+ Gss

∂cac
∂x

- jω
D
cac) -Gac

∂css
∂x

(10)

I ) A(FJ- ε
∂
2Φ
∂x ∂t) (11)

Iδ ) A(F∫0δJ dx+ ε
∂

∂t
∆o
wΦ) (12)

Iac
AF

) 1
δ∫0δJac dx+ jω ε

δF
∆o
wΦac (13)

∫0δJac dx) -D[Gss∫0δcac dx+ Gac∫0δcssdx] (14)

ceq(x) ) cwe-Geqx (15)

cac
D
jω
GssGacc

w
)

er1x + r2δ(1- er1δ) - er1δ + r2x(1- er2δ)

er2δ - er1δ
- e(r1+r2)x (16)

r1,2) -
Geq

2
(x(Geq

2 )2 + jω
D

(17)

∫0δcac dx)
DGacGeqc

w

jω
r1
2(er2δ - 1)2er1δ - r2

2(er1δ - 1)2er2δ

r1r2(r1 + r2)(e
r2δ - er1δ)

(18)

) -
Gacc

wδ2e-Geqδ/2

sinh((r2 - r1)δ/2)[cosh(r1δ) - 1

(r1δ)
2

-
cosh(r2δ) - 1

(r2δ)
2 ]

∫0δcac dx≈ -
GacGeqc

wδ3e-Geqδ/2

12
(19)

∫0δceqdx) cwδ1- e-Geqδ

Geqδ
) cwδe-Geqδ/2(1+

(Geqδ)
2

24
+ ...)
(20)

Gac∫0δceqdx+ Geq∫0δcac dx≈
Gacδc

we-Geqδ/2(1-
(Geqδ)

2

24
+ ...) (21)

Iac) [AF2DcwRTδ
e-Geqδ/2 + jωεA

δ ]∆o
wΦac (22)
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resistance,Rct,14 and the capacitance to that of the interfacial
region of thicknessδ. Therefore, at equilibrium

and the interfacial layer capacitance takes the formC ) εA/δ;
ε ) εrε0, whereεr is the relative permittivity of the interfacial
layer andε0 ) 8.854× 10-14 F cm-1.

(ii) Overpotential Impedance. In this case a steady-state
current is flowing across the interface. Considering external
potential polarization in terms of an overpotential,η, it is found
that Gss ) Geq + Gov where Gov ) -η/δ ) -f(∆o

wΦ -
∆o
wΦeq)/δ. In order to solve (14),css (eq. 6) has to be

integrated across the interfacial region between 0 andδ. This
gives

Expanding the sinh term, this can be approximated to

The solution of (10) is here omitted, but the corresponding
integral in (14) takes the form

where r1 and r2 correspond to (17) replacingGeq with Gss.
Neglecting the last term inside the brackets, (26) simplifies to

From (13) and (14) it follows that the interfacial admittance is

given by

The form of the admittance in this case is similar to that for the
equilibrium case, as shown in (22), and therefore, the charge-
transfer resistance is given by

Results and Discussion

The approximations implicit in the series expansions made
above may seem to restrict the present analysis to potentials
close to the standard potential, while in practice the equilibrium
potential can be varied in a range of several hundred millivolts
by varying the concentration ratio of the potential-determining
ion between the two phases. Therefore, the validity of the
approximations made have been examined with numerical
simulations. Computations were carried out with Matlab for
Windows in a Pentium processor personal computer. A
simulation of the equilibrium impedance is presented in Figure
2, using the complete forms of the integrals of (18) and (20).
As can be seen, the impedance plot is similar to that of a parallel
RC circuit. The potential dependence ofRct for this case is
shown in Figure 3;Rct was obtained from the intercept of the
impedance diagram with the real impedance axis at the low-
frequency limit. A similar plot forRct in the overpotential case
ii is shown in Figure 4, using the corresponding complete
integrals given in (24) and (26).
Equations 23 and 29 describing the charge-transfer resistance

are important results. Firstly, since this is only a resistive
component, its combination in parallel with the interfacial
capacitance leads to a semicircle in the impedance plots
indistinguishablefrom an activated charge-transfer reaction.14

Secondly, the potential dependence ofRct is identical to that
predicted from the Butler-Volmer (B-V) formalism:14

with a transfer coefficientR ) 1/2. The apparent charge-transfer

Rct )
RTδ

AF2Dcw
exp[- f

2
(∆o

wΦeq- ∆o
wΦ0)] (23)

∫0δcssdx)
(cw - co)δ

Gssδ
-
(cw - coeGssδ)δ

eGssδ - 1

) cwδe-Geqδ/2[2 sinh(Geqδ/2)
Gssδ

+
sinh(Govδ/2)

sinh(Gssδ/2)]

∫0δcssdx≈ cwδe-Geqδ/2[Geqδ(1+
(Geqδ)

2

24
+ ...)

Gssδ
+

Govδ(1+
(Govδ)

2

24
+ ...)

Gssδ(1+
(Gssδ)

2

24
+ ...) ] (25)

≈ cwδe-Geqδ/2[1+
Geq(Geq- 2Gov)δ

2

24
+ ...]

∫0δcac dx)
Gac(c

w - co)δ2

cosh(r2δ) - cosh(r1δ)
×

[cosh(r1δ) - 1

(r1δ)
2

-
cosh(r2δ) - 1

(r2δ)
2 ] (26)

≈ -
Gac(c

w - co)δ2

12 [1+ 1
20
((r1δ)

2 + (r2δ)
2) + ...]

∫0δcac dx≈ -
Gacc

wδ2e-Geqδ/2

12
2 sinh(Geqδ/2)≈

-
GacGeqc

wδ3e-Geqδ/2

12
(27)

Figure 2. Numerical simulation of the equilibrium impedance.εr )
40, δ/A ) 10-7 cm-1 andDcw ) 10-15 mol cm-1 s-1. f ) 0.01-100
kHz, 5 points per decade. Numerical values indicate values of
∆o
wΦeq - ∆o

wΦ0 used.

Iac

∆o
wΦac

) AF2Dcwe-Geqδ/2

RTδ [1- 1
24
Geq(Geq+ 2Gov)δ

2 + ...] +

jωεA
δ

(28)

Rct ) { RTδ
AF2Dcw

exp[- f
2
(∆o

wΦeq- ∆o
wΦ0)]} ×

[1+ 1
24
Geq(Geq+ 2Gov)δ

2 + ...] (29)

Rct
B-V ) RT

AF2k0cw
exp[-Rf(∆o

wΦeq- ∆o
wΦ0)] (30)

10804 J. Phys. Chem. B, Vol. 101, No. 50, 1997 Kontturi et al.



coefficient derived from the present work is given by

and from the potential dependence of the simulation results
shown in Figure 3, a value ofR ) 1/2 can be calculated at
potentials close the equilibrium potential. This is strictly in
agreement with the theoretical calculations presented in (23)
and (29). It should be stressed, though, that the physical
meaning ofR from the Butler-Volmer and from the solution
of the Nernst-Planck equations is quite different. In the former
case, the transfer involves a single activated step, which could
be, for instance, a potential dependent ionic resolvation pro-
cess.17 However, in the Nernst-Planck case,R ) 1/2 occurs
as a natural consequence of the form of the diffusion and
migration equation combined with the symmetry of the Goldman
approximation. The similarity between (23) and (30) holds as
long as the equilibrium potential is close to the standard transfer
potential. However, since the potential dependence ofRct is
different in the two formalisms, the comparison is not straight-
forward at other potentials, while keeping the apparent standard
rate constant defined ask0 ) D/δ.
Although the two formalisms lead to identical relationships

between the charge-transfer resistance and the potential, the
physical models underlying the two approaches are very

different. As mentioned above, the idea behind the Butler-
Volmer equation is that in the transition from water to the
organic phase a potential dependent rate-determining step is
present. In contrast, the treatment of ion transfer as a diffusion
and migration problem does not make any assumptions regard-
ing the individual steps occurring during transfer, but rather
treats it as a continuous migration and diffusion through an
interfacial region.9-12 The average diffusion coefficient for this
process contains, in this case, the information on resolvation
phenomena, through the incidence of an average friction
coefficient that incorporates resolvation energy considerations.
To give an idea of the order of magnitude of the quantities

discussed, fork0 ) 0.22 cm s-1,15 (for example, for the
tetraethylammonium transfer across the water-nitrobenzene
interface),D ) 10-7 cm2 s-1 for δ ) 4.5 nm. The value ofD
estimated in the interfacial region for this value ofk0 is lower
than that in the adjoining phases, as expected if a resolvation
process occurs during the transfer. The difference with the
activated step approach is mainly in the possibility that
resolvation occurs continuously during transfer. However, the
recent results of Girault et al.8 for ion transfer across the water/
1,2-dichloroethane interface give values ofD much closer to
those in the bulk phases. This gives additional support to the
idea of treating the structure of these liquid/liquid interfaces as
a mixed solvent layer.5 Of course, the value of its thickness,
δ, is arbitrarily chosen, and future work is required to understand
the dynamics of resolvation. A lead in this direction is the
advanced molecular dynamics simulations of Benjamin et al.6

These nonequilibrium calculations for ion transfer indicate that
surface roughness due to the phenomena of “fingering”6 and
the associated transfer of water of hydration into the organic
phase are responsible for the increased friction coefficient for
ionic movement. This implies that the solvent exchange process
occurs at a much faster rate than ionic migration through the
thicknessδ.

Conclusions

It has been shown that the ac impedance technique, commonly
employed to obtain rate constants for charge-transfer reactions
across immiscible interfaces, gives values that are indistinguish-
able for an activated step, or from a migration and diffusion
model. The apparent charge-transfer coefficient takes the value
of 1/2 at potentials close to the standard transfer potential. This
shows that it is not necessary to interpret these rate constants
as resulting from a single rate-determining step, but a resolvation
model affecting the average diffusion coefficient (or friction
coefficient) of the transferred ion across the interfacial region
can account for the measured rate constants.
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