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An expression for the impedance due to ion transfer across the interface of immiscible electrolyte solutions
(ITIES) is derived, assuming a continuous change of the ionic resolvation energy across an interfacial layer.
The model is analogous to the Goldman constant field approximation. The result is practically identical to
the one obtained assuming an activated step occurs during the transfer, i.e., the classicaVBlitier
relationship, so that the standard rate conskrnih the Butler-Volmer theory is replaced by the quantity

D/d, whereD is the average diffusion coefficient of the transferring ion inside the interfacial layed énd

the thickness of the interfacial layer. At potentials close to the standard transfer potential, the apparent charge-
transfer coefficient takes the value of/,. Combination of the charge-transfer impedance and an inner
layer capacitance in parallel gives a complete semicircle in an impedance plot, characteristic of aRp@rallel

circuit.
Introduction find any charge-transfer resistance due to ion transfer, and
. . . concluded thak® has to take values on the order of at least 10
The mechanism of the ion transfer across molecular mterfacescm s18

is still unclear partly because both the structure of these . ) ) ) )
interfaces and the Galvani potential distribution present are still A Proposed alternative model considers the interfacial region
poorly understood. Different interfacial models have been @S @n inhomogeneous phase through which the trace ion is
proposed. In the original work of GavaéiBuck et al.2 and transff_sr_re_d. The solvent properties and salt concentrations of
Samec et aB,a sharp boundary with two ion-free inner layers, the adjoining phases are considered to vary continuously through
one at each side of the interface, was proposed, similar to ath|s_|nte_rfac|al region. This model has bee_n considered by
modified Verwey-Niessen model. This was a direct transposi- Kakiuchi? Kontturi et al.}° and Senda; who integrated the
tion of the classical electrochemical formalisms for electron- Nernst-Planck equation across the interfacial region under
transfer reactions at metallic electrodes. This interfacial model steady-state conditions. The currembltage characteristics thus
has been more recently applied to the study of interfacial obtained could be expressed as that of a first-order heteroge-
electron-transfer reactions using the scanning electrochemicaln€ous reaction, which enabled the comparison with the Butler
microscopé. In contrast to treating interfaces as molecularly Volmer approach. The fundamental result of these analyses is
sharp boundaries, a mixed solvent layer was suggested bythat the NernstPlanck model explains the salient features of
Girault and Schiffrirt More recently, comprehensive molecular the kinetic data, such as the nonlinear currerditage charac-
dynamics simulations by Benjanfiindicate that these bound-  teristics and a value close #y for the transfer coefficient.
aries are highly disordered, with “fingering” phenomena prevail- Furthermore, the formal standard rate constant can be related
ing. The possible influence of these interfacial structures on to the diffusion coefficient of the transferring ion across the
ion transfer has been evaluatéd. interfacial region and to its thickness. Quite recently, Aoki
The main question being discussed at present is whether ionpresented a more general theory of ion trari$fghich includes
transfer is a process containing an activated step correspondingthese two approaches as its limiting cases. The comparison of
for instance, to resolvation or is it just a transport problem. If the above two formalisms is not obvious for fast ion-transfer
the former approach is accepted, the potential dependence ofeactions.
the transfer current will follow a classical ButleWolmer Rate constants are conveniently measured by perturbation
relationship’ The difficulty with this model is the uncertainty  techniques, such as ac impedance spectros€opynfortu-
regarding the potential distribution across the interfacial region. nately, the classical analysis based, for example, on a Randles-
This is particularly important if it is considered that most of type equivalent circuiincludes explicitly a particular potential
the potential drop normally occurs in the organic phase. When dependence of the rate constant, in all casesegias the
the Butler-Volmer model is applied to the analysis of experi-  Butler—Volmer equation The question is whether the rate
mental data, the standard rate constafittakes rather high  constant derived from transient techniques is uniquely related
values, on the order of 0.1 cnt’s Recently, Girault et al.  tg the use of a specific kinetic model or, indeed, no particular
measured the impedance of a microhole ITIES which facilitates kinetic equation for ion transfer needs to be assumed and all
the mass transfer on both sides of the interface, but could notthe kinetic information obtained from these techniques is simply
a consequence of the diffusion and migration characteristics of

1E‘;:\S/g‘r'gityrg;’f};{g};geCh”O'OQV- an ion in an inhomogeneous region as described by the Nernst
s University of Liverpool. Planck equation. Previous theoretical ac impedance analysis
€ Abstract published ilAdvance ACS Abstract®ecember 1, 1997. in systems related to the present one has been carried out by
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and considering that the activity coefficient of the tracer ion is
independent of concentration, the flux is given by

9c(x) AP — P(x)

=— f
J D X + c(X) X

)

wherec(x) is the concentration of the tracer ion a distamce
from the aqueous phase boundary (taken as the origin of
coordinates)f = zH/RT, and®%(x) = —u°(x)/zF. u%(x) is the
standard chemical potential of the tracer ion for the solvent
! composition at poink. The quantity«%(x) recognizes that ion
r=l] E=0 transfer occurs across an inhomogeneous interfacial region, in
Figure 1. Schematic presentation of the interfacial region. which not only potential changes but also the chemical solvation
energy gradient must be considefédThe inner potentials
Buck et al*3aP More recently, this analysis has been extended given in eq 2 are absolute quantities, but integration across the
by the same authors by the use of transmission lines to the studyinterfacial region leads to more convenient relative quantities

of ion- and electron-transfer reactions in membraie$.The expressed with reference to the either of the phases. Here, we
numerical analysis by Buékreferred to the membrane case, yse the convention?® = ®(0) — ®(0) and AL'®O = dY0)

in which activated ion transfer at the membraselution — @%(8). Hence, the more positiva"® — AY®C is made, the
boundary takes place. more the cation flux from the aqueous to the organic phase is

The purpose of the present work is to analyse the ac responseyccelerated.
for ion transfer across the interface of immiscible electrolytes  The solution of eq 2 under steady-state conditions (ss) is
and compare the results derived from the solution of the gependent on the assumptions made on the electrical and
diffusion and migration problem with those for which an  siandard chemical potentials gradient in the interfacial region.
activated step process (the Buttafolmer approach) was  For membrane or confined regions, the Goldman constant field
considered. In particular, it was regarded important to be able assumption is commonly employed to describe the potential
to ascertain if the observation of an ac response containing agjstribution8 This approximation implies that no space charges
classical charge-transfer resistance would be equally well 3re present in the interfacial phase. However, even in cases
derived from the phenomenological migration and diffusion \nere the potential distribution deviates significantly from
description of ion transport. linearity, there is little difference in the calculated values of
the current-voltage respons¥:1® The latter observation is very
Theory important, since it shows that the fine details of the interfacial
The case considered here is that of a cation from the aqueougpotential distribution have a small effect on the calculated values
phase transferring across the interface. The concentration ofof the rate constants for ion transfer. Similar arguments apply
the cation i<" in the aqueous phase actin the organic phase.  to the chemical potential contribution to the driving force for
Concentration polarization is neglected so that interfacial interfacial ion transfet?'®and therefore, (2) becomes
concentrations are equal to those in the bulk; the effect of the
concentration polarization was studied in ref 10. The reason _ [dcss(x) ]
. o e . o J=-D + ¢, {(X)G 3)
for doing this is to highlight the nature of interfacial ion transfer. ss dx s3
The diffusional components (Warburg impedance) in both .
adjoining phases can be simply taken into account in much the WhereéJssandcs{x) are the steady-state flux and ion concentra-
same way as is usually done in the impedance theory for metaltion atx. Gssis defined as
electroded? The Warburg impedance can then be subtracted w w
from the experimental daf&. Furthermore, it is assumed that G = f(A Pss — Ao @) (4)
the entire changes of the Galvani potential and standard chemical ss 0
potential of the ion take place in the interfacial region, the
thickness of which is denoted hy; see Figure 1. The latter
assumption may not be quite correct; that is, the change of
Galvani potential probably extends over a wider distance than J
J. Refining the model accordingly would, first, bring about
nn ry mathematical complications an nd, have onl
; m?nC:rSZ;eX:t (?rg tie %tn(;lel‘ r((:ec;ulg ggtvgeshivcej, s?i?(c):\?vndiln ?efelc()). %rom (.3) and .(5) the. concentra_tion digtribution of the cation is
The analysis is carried out assuming the presence of supportindn the interfacial region accordingly given by
electrolytes in both phases. Two different cases will be
considered: (i) equilibrium impedance and (ii) overpotential Cd¥) =
impedance. e — 1
Solution of the General Problem. The ion transfer is o
described as an electrodiffusion problem, and the flux of the ~ Note that eq 6 leads to correct limits{0) = ¢* and ¢s{0)

transferring ion,J, follows the phenomenological equatién = c% The system is perturbed by applying an ac potential
difference to the interfacial region in addition to the steady-

_Dcdi ) state value: Aj® = AJ®ss + Al®,. This results in a
RT dx perturbation of the steady-state cation distribution within the
interfacial regionc(x,t) = cs{X) + cadX.t), which leads to an
whereD andc are the diffusion coefficient and concentration ac current. In the present analysis, however, the boundary
of the ion being transferred ajids its electrochemical potential;  concentrations remain unchanged since no mass-transfer limita-
R and T have their usual significance. For a cation transfer tion outside the interfacial region is considered Hérédence,

Direct integration of (3) betweern = 0 andx = ¢ leads to

¢ — %%

S5 DGss eGssﬁ -1 ()

CW(eGSi(S*X) _ 1) _ CO(eGsié*X) _ eGsﬁ)

(6)

J:
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Cad0t) = cado,t) = 0. In what follows, for the sake of Hence, inserting (14) into (13), the impedance of the system

simplicity, cs{X) and cadxt) are denoted agss and cCy can be calculated for different boundary conditions.
respectively. (i) Equilibrium Impedance. At equilibrium, no steady-state

Let us rewrite eq 2, in a form that makes explicit reference current flows through the interface adg = 0. Therefore, the
to the deviation of the flux from its steady-state valukg,by steady-state concentration is equal to the equilibrium concentra-
the applied ac signall,c tion, i.e.,Css = Ceq, Which can be calculated from (3):

d — AW _Geqx
J = ‘]SS+ Jacz _D’&(Css—i_ Ca() + (CSS+ Ca(‘)(Gss+ Gac)] Ceq(x) =ce (15)
) whereGgq corresponds to (4) in the absence of current. Taking,

as discussed above,{0) = c,dd) = 0, the solution of (10) is
whereGq = —fA{®adé. From (3) and (7), and neglecting the

second-order ac term, the ac component of the flux is given by Cac

dc,.
—JaczD—X—lrcG +c, G (8)

D
EGssGacCW
d ssTac acTss erlx + rzé(l _ erlb) _ er16 + rzx(l _ erzé)
The ac component of the concentration in the case of a g0 _ g

sinusoidal potential perturbatiomy,®,. = AYde*!, can be

expressed as,. = (9, whereAYd is the peak potential ~ wherer , are the roots of the characteristic function
perturbation,f the phase angle with respect to the exciting

potential function, and its angular frequency;is the imaginary G, oo
unit. As it will be seen, it is not necessary to calculétéo M ,= -4 (Tq)
obtain the impedance. The continuity condition of the flux is

then given by

_ e(r1+r2)x (16)

jo
+5 17)

From (16) and (17) and, after some rearrangements,
aJ ac

_8_):(:: Wacz ja)CaC (9) féc dx = DGa-CGeqCW rlz(erza _ 1)2el'16 _ r22(e|'1(§ _ 1)261’26
0 Jo nrofy +r)(E? — )
Applying (9) into (8) and after minor arrangements, (18)
0°Cye s o oo c I 0 G, £"0% *" [cosh(,0) — 1 cosh,0) — 1
o2 Cspx DT Cag  (10) Sinh(€; — 1902)] (r,0)° )

where it has been assumed th#d,. /ox = 9Gss /ox = 0 Expanding cosix &~ 1 + x2/2 + x424, sinhx ~ x + x3/6 and
according to the Goldman constant field approximation. The ysing the binomial expansion @ x)~1 ~ 1 — x, after lengthy

P’D W §3,~Ged/2
| = A(FJ - e—) (11) 5 e
X t S Cacix ~ o (19)

where the first term inside the parentheses is the current due to ) ) )
cation transfer (faradaic current) and the second term is theAlSO, the second integral term on the right-hand side of (14)
Maxwell’s displacement current (capacitive currenf).is the can be expanded to give

interfacial area and the mean permittivity of the interfacial

region. _'I'hus,_gven thoughis posit_ion dep(_endent, _the total 5 d— Wc‘}l — g Ced _ s G| 4 (Geq5)2+
current! is position independent. Since no information of the Jo Ceq X = € 0™~ I e 24
time variation of the electric field inside the interfacial region €

can be obtained from our theoretical model, an alternative (20)

approach must be followed.
Integration of (11) with respect to the spatial coordinate from Therefore (see eq 14),

x=0tox = gives s s

\ ; Gacfy CoqdX + Geg [ Coe X ~
16 = A(F [Pk + A (12) 2

07 T ng-copr  Co)

Gacéc e 1—74' (21)
so that in the case of a sinusoidal perturbation it must be satisfied

that Finally, from (13), (14), and (21) it is found that
E= 1 °3 dx+jwiAWCI> (13) APDCY G2, . €Al \w
AE oJovac SE "0 Yac ac= RTO g of +Ja)€ AgPye (22)

wherel is the ac component of the current. From (8 L L .
ac P ®) The two contributions inside the brackets are admittance

components corresponding to a parale combination. In

o) o) o)
0 Jpc X = _D[GSSch) Cac X + Gy this case, the resistance corresponds to the charge-transfer

Yedd  (14)
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resistanceR.,* and the capacitance to that of the interfacial ; T T
region of thicknes®. Therefore, at equilibrium 40 Qe B
; ol -50 mV
Ri= AFZDCWEX‘{_E(AO cDeq — A (I)O) (23) C\)} o
5 o
N 20
and the interfacial layer capacitance takes the f@rm ¢A/d; ' y fomv ; g
€ = €€, Whereg, is the relative permittivity of the interfacial 1obe g i o
layer andeo = 8.854 x 10714 F cnrL. D, + 4 J0mV L x i i o
(i) Overpotential Impedance. In this case a steady-state f i X i i A
current is flowing across the interface. Considering external 610 20 3 4 5 6 7 0 9%
potential polarization in terms of an overpotentiglit is found Zpou | Q
that Gss = Geq + Gov Where Goy = —7/0 = —f(AJD — Figure 2. Numerical simulation of the equilibrium impedaneg=
Ag®eg)/5. In order to solve (14),css (€Q. 6) has to be  40,6/A =107 cmandDc* = 10 mol cnt s°L f = 0.01-100
integrated across the interfacial region between 0@and his kHz, 5 points per decade. Numerical values indicate values of
gives A\gl(beq - A;V‘I)o used.
iven b
f =) (€' — ceGs@)cS g y
0 SS 55 G __ | 2 W~ Ged/2
S e 1 ac _ AF°Dc"e [ 1 2
| . D RTS ll - ZlGeq(Geq+ 2G, )0+ .|+
_ (se Ge2 2 sinhG,0/2) ~ sinh(G,,0/2) 0 ~ac A
GO sinh(G.V/2) jog (28)
Expanding the sinh term, this can be approximated to The form of the admittance in this case is similar to that for the
equilibrium case, as shown in (22), and therefore, the charge-
(G qé)z transfer resistance is given by
S G o1+ ;4 + RT3 f
C. Ox ~ Ve G2 + ={—" exg—+(AVD,, — AVD
L/;) SS Gssé Rct AFZDCW 2( 0 *eq 0 0) X
e [1 + 5;8edGeq + 2G, )0+ ] (29)
(God) )
1+ + ...
OVCS( 24 (25) Results and Discussion
c.ol1+ 355) The approximations implicit in the series expansions made
5O 24 above may seem to restrict the present analysis to potentials

close to the standard potential, while in practice the equilibrium
Ge(Geq — 2G,,)0° potential can be varied in a range of several hundred millivolts
24 t .. by varying the concentration ratio of the potential-determining
ion between the two phases. Therefore, the validity of the
approximations made have been examined with numerical
simulations. Computations were carried out with Matlab for
Windows in a Pentium processor personal computer. A
w ) simulation of the equilibrium impedance is presented in Figure
f C, o= G {c" — )0 « 2, using the comple_te forms of the _intggr_als of (18) and (20).
0 cosh¢,0) — coshg,0) As can bg seen, the |mp_edance plot is similar to that of a pgrallel
] RC circuit. The potential dependence Bf; for this case is
(26)

~ Ve Cef! 2’1 +

The solution of (10) is here omitted, but the corresponding
integral in (14) takes the form

shown in Figure 3R; was obtained from the intercept of the
impedance diagram with the real impedance axis at the low-
frequency limit. A similar plot folR in the overpotential case
(" — ii is shown in Figure 4, using the corresponding complete
~ a—[l + ((r 0)? + (r0)) + . ] integrals given in (24) and (26).
Equations 23 and 29 describing the charge-transfer resistance

. . are important results. Firstly, since this is only a resistive
Wherer% andrz correspo_nd_to (17) replacinGeq W't_h G_S? component, its combination in parallel with the interfacial
Neglecting the last term inside the brackets, (26) simplifies to capacitance leads to a semicircle in the impedance plots

indistinguishablefrom an activated charge-transfer reactién.

cosh(,0) — 1 3 cosh¢,0) —
(r0)° (r0)°

G,C Wo2e Cedl2 ] Secondly, the potential dependenceRyf is identical to that
j(; Ca OX & -2 sinhGH/2) ~ predicted from the ButlerVolmer ¢~V) formalismi4
12
GacGe qC Geq(3/2 B RT
B 27 Ry = o @XPE (A g — ATDT)] - (30)

From (13) and (14) it follows that the interfacial admittance is with a transfer coefficientt = 1/,. The apparent charge-transfer
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different. As mentioned above, the idea behind the Butler
Volmer equation is that in the transition from water to the
organic phase a potential dependent rate-determining step is
~ present. In contrast, the treatment of ion transfer as a diffusion
< and migration problem does not make any assumptions regard-
ing the individual steps occurring during transfer, but rather
S treats it as a continuous migration and diffusion through an
N interfacial regiorP~1? The average diffusion coefficient for this
process contains, in this case, the information on resolvation
2 S phenomena, through the incidence of an average friction
1 D coefficient that incorporates resolvation energy considerations.
0 ~ To give an idea of the order of magnitude of the quantities
200 -150 -100 50 0 50 100 150 200 discussed, fork’® = 0.22 cm s (for example, for the

A"D. - AD® | mV _tetraethylammonlum transfer across the watgtrobenzene

o e interface),D = 107 cn? s”1 for 6 = 4.5 nm. The value ob

Figure 3. Potential dependence of the equilibrium charge-transfer estimated in the interfacial region for this valueksfis lower
res!star_me. Straight line corresponds to (23). Parameters are the samghan that in the adjoining phases, as expected if a resolvation
as in Figure 2. process occurs during the transfer. The difference with the
activated step approach is mainly in the possibility that
resolvation occurs continuously during transfer. However, the
; ; ; ; ; : ; recent results of Girault et &for ion transfer across the water/
7 ; i i § i : § 1,2-dichloroethane interface give values®fmuch closer to
\c%/cw S VDR those in the bulk phases. This gives additional support to the

A L AN 2 0 O
/

InR,, / Q]

/

~

8 ; : r ! ; : :

: : : idea of treating the structure of these liquid/liquid interfaces as
| \ | i i i : a mixed solvent layet. Of course, the value of its thickness,

P~ \ 0, is arbitrarily chosen, and future work is required to understand
= o \\\ 3 | ; g the dynamics of resolvation. A.Iead !n this direqtion is the
E : \\ advanced molf_e_cul_ar dynam|c§ 5|mula_t|ons of Ben_jamln ét al.

4 ; : NN : : : These nonequilibrium calculations for ion transfer indicate that

E i i \ i : surface roughness due to the phenomena of “fingefiagt

i i § i P — the associated transfer of water of hydration into the organic

300 150 300 S0 0 50 100 1so 200 phase are responsible for the increased friction coefficient for

ionic movement. This implies that the solvent exchange process

AYD - AVD° / mV occurs at a much faster rate than ionic migration through the

Figure 4. Potential dependence of the charge-transfer resistance atthlcknessé.

the concentration ratios/c” = 0.01 ) and 0.1 (- - -), corresponding )
to equilibrium potentialsAY®eq — AYDO = —118 and—59 mV, Conclusions
respectively. Parameters are the same as in Figure 2.

In[R,, / Q]

It has been shown that the ac impedance technique, commonly
employed to obtain rate constants for charge-transfer reactions
across immiscible interfaces, gives values that are indistinguish-
RTAINR, able for an activated step, or from a migration and diffusion

=« (31) model. The apparent charge-transfer coefficient takes the value
F dA‘(’,VQDeq of 1/, at potentials close to the standard transfer potential. This
shows that it is not necessary to interpret these rate constants
and from the potential dependence of the simulation results s resulting from a single rate-determining step, but a resolvation
shown in Figure 3, a value af = ¥/, can be calculated at model affecting the average diffusion coefficient (or friction
potentials close the equilibrium potential. This is strictly in coefficient) of the transferred ion across the interfacial region

agreement with the theoretical calculations presented in (23)can account for the measured rate constants.

and (29). It should be stressed, though, that the physical
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