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The interplay between cooperativity and
diversity in model threshold ensembles

Javier Cervera, José A. Manzanares and Salvador Mafe

Departament de Termodinàmica, Universitat de València, Burjassot 46100, Spain

The interplay between cooperativity and diversity is crucial for biological

ensembles because single molecule experiments show a significant degree of

heterogeneity and also for artificial nanostructures because of the high individ-

ual variability characteristic of nanoscale units. We study the cross-effects

between cooperativity and diversity in model threshold ensembles composed

of individually different units that show a cooperative behaviour. The units are

modelled as statistical distributions of parameters (the individual threshold

potentials here) characterized by central and width distribution values. The

simulations show that the interplay between cooperativity and diversity

results in ensemble-averaged responses of interest for the understanding of

electrical transduction in cell membranes, the experimental characterization

of heterogeneous groups of biomolecules and the development of biologically

inspired engineering designs with individually different building blocks.
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1. Introduction
Single-cell dynamic heterogeneity in a population allows fast responses to

environmental changes [1,2]. The observed behaviour emerges as a statistical

average of the whole cell ensemble that may however show a significant diver-

sity at the single-cell level [2]. The diversity of the basic units in complex

biological systems, such as a biomembrane [3,4] and the brain [5,6], increases

functionality and reliability. In particular, a certain level of neural response

diversity can be beneficial to coding and decoding processes [6,7]. Cooperativ-

ity is also a universal characteristic of biological macromolecules, playing a

crucial role in enzyme catalysis [8] and ligand binding [9]. The steepness of

the stimulus–response to a range of physico-chemical changes in the external

environment allows making appropriate decisions in biological systems

[9,10]. This is the case of the cells forming the immune system, where the

response should be suppressed at low input levels while it should be reinforced

when the input exceeds some fixed value [11].

Systems composed of coupled threshold nanostructures may trigger a

response over a relatively narrow input region, e.g. a particular potential

window for the ion channels in a cell membrane [3,12,13]. A sigmoidal depen-

dence between the system response (conductance, ligand binding, etc.) and the

external stimulus (applied potential, ligand concentration, etc.) is typically

observed [3,9,10,14–16]. The cooperative response is enhanced when many

nominally identical units act in concert, as occurs in a thermodynamic phase

transition [14]. However, only a fraction f , 1 of the responsive units should

be expected to act cooperatively in a real biological system because of the

inherent ensemble heterogeneity revealed by experimental single molecule

methods and simulations [9,12,13,16].

The interplay between cooperativity and diversity in a system formed by a

finite number of threshold nanostructures constitutes a question of biological rel-

evance because single molecule experiments show a significant heterogeneity in

ensembles of biological macromolecules with respect to ligand binding, folding

and activity [9]. Remarkably, this question arises also in nanoscience because

nanostructures tend to show different individual characteristics [17] and digital

switching is central to information processing schemes.

The fundamental physical concepts of biochemical cooperativity and regu-

lation have been discussed in previous monographs [14,15]. A recent study has
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also emphasized the implications of molecular heterogeneity

for the cooperative effects observed in ensembles of biological

macromolecules [9]. Simulations and single molecule exper-

iments show that this heterogeneity tends to decrease the

observed ensemble cooperativity from the intrinsic value

characteristic of individual molecules [9]. However, these

studies concentrate on chemical binding and folding processes

where ligand affinity is the main issue. Alternatively, we study

here ensembles of threshold nanostructures making use of a

canonical model that incorporates the experimental character-

istics observed in the current–applied potential curves of ideal

ion channels. Because of the diversity, the units in the ensem-

ble do not show identical individual properties and should

then be modelled as a statistical distribution of physical charac-

teristics described by central and width distribution values

[9,13,17–20]. This problem is relevant to clusters of pores in

biomembranes [3,4,13,16], populations of channels and cell sen-

sing domains [3,21,22] and voltage-gated channels in simple

neuronal models [12,18,19,23]. Artificial threshold potential

units, such as field-effect nanowires [17,24], carbon nano-

tubes [25] and single electron transistors based on monolayer

protected metallic clusters, show also a high individual

variability [17,19].
2. Theoretical model
We consider ensembles composed by N units with different

threshold potentials. The conductances Gi ¼ 0 (closed state)

and G (open state) of threshold unit i occur with probabilities

1 2 Po,i(V ) and Po,i(V ) dictated by the externally applied

potential V and the individual threshold potential Vth,i

[3,18,26]. The statistical distributions for Vth,i should be

obtained from the variability observed in the individual elec-

trical characteristics [5,18,27]. In some biological systems, the

diversity can be controlled by mutation and expression [28].

In the case of ion channels, for instance, the different

charge distributions along the channels influence the values

of Vth,i [3,18,27] and then the channels may show different

values of the individual current Ii ¼ GVPo,i(V ) for the same

potential V (note that Ii takes high values only for those

units in the ensemble having Vth,i , V [3]).

We assume that a fraction (1 2 f ) of the N units does not

show cooperativity. For a non-cooperative unit i of threshold

potential Vth,i, the open-state probability at potential V is

Po,i(V) ¼ exp[zF(V � Vth,i)=RT]

1þ exp[zF(V � Vth,i)=RT]
, (2:1)

where F is the Faraday constant, R is the gas constant and

T ¼ 300 K. As (dPo,i=dV)Vth,i
¼ zF=4RT, the parameter z

gives the threshold sensitivity in the transition region between

the high and low conductance states (in the case of ion chan-

nels, z is the number of charges involved in gating [3]). In

the argument of the exponential in equation (2.1), the electrical

energy zFV must surpass the effective threshold energy zFVth,i

in order to drive the channel to the open state (the energies are

scaled in terms of the thermal energy per mole, RT). We have

considered the threshold potential Vth,i and the effective gating

charge z here because these parameters are characteristic of

voltage-gated channels, with values in the range Vth,i ¼

20280 mV and z ¼ 226 [3,12,16,18,20]. Note also that these

electrically sensitive channels are basic elements of the biologi-

cal membranes in both excitable and non-excitable cells.
We will use z ¼ 4 for all N units in the ensemble, a typical

value for ion channels [3,13]. However, the ensemble-

averaged response may exhibit an effective parameter zeff

that can be significantly different from z. In particular, diver-

sity should give an extended system response (zeff , z) that

may be interpreted as an apparent negative cooperativity,

as we will show later.

The remaining fN units in the ensemble have the same

threshold potential V8th and form a cooperative cluster.

Using a self-consistent, mean-field approach [12,14], their

open-state probability is

Po,c(V) ¼ exp[zF(V � Vo
th)=RT þ aPo,c(V)]

1þ exp[zF(V � Vo
th)=RT þ aPo,c(V)]

, (2:2)

where a is a dimensionless parameter characterizing

the coupling between cooperative units (a is the molar inter-

action energy divided by the thermal energy RT [12,14]).

As Po,c(Vo
th � RTa=2zF) ¼ 1=2 and (dPo,c=dV)Po,c¼1=2 ¼

zF=((4� a)RT), the cooperativity should give a reduction in

the effective threshold potential and an increase in the

effective value of z.

From equations (2.1) and (2.2), the ensemble-averaged

open-state probability is

�Po(V) ¼ 1

N

X(1�f)N

i¼1

Po,i(V)þ f Po,c(V): (2:3)

The probability of equation (2.3) incorporates explicitly the

effects of the cooperativity and diversity. These effects are

described by the effective values of the threshold potential,

determined by the condition �Po(Vth,eff) ¼ 1=2, and the par-

ameter zeff ; (4RT=F)(d �Po=dV) �Po¼1=2: Alternatively, zeff and

Vth,eff may be determined by fitting �Po(V) in equation (2.3)

to the phenomenological equation

�Po,eff(V) ¼ exp[zeffF(V � Vth,eff)=RT]

1þ exp[zeffF(V � Vth,eff)=RT]
: (2:4)

This fitting would be the usual experimental procedure if we

were to assume a homogeneous ensemble and could be

done by minimization of the function d(zeff, Vth,eff) ¼P2Vo
th

V¼0 (�Po,eff � �Po)
2
, where V runs over all the potential

values considered.

The simulations are implemented and conducted in stan-

dard Python programming language. The code can also be

written in Fortran (or another compiled language) to opti-

mize the numerical performance. To assess the goodness of

the average probability fitting, we have used the parameter

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
V [ �Po(V)� �Po,eff(V)]

2

P
V [ �Po(V)]

2

vuut , (2:5)

where the sum extends over all the values of potential V. The

numerator of this parameter indicates the deviation between

the average open probability and the effective probability

obtained with the fitted values zeff and Vth,eff. The denomi-

nator is a normalizing factor. The above parameter gives

the relative average error.

The distribution of the threshold potentials Vth,i for the

non-cooperative units (i ¼ 1, 2, . . ., (1 2 f )N ) is generated

using the algorithm described in appendix A. The above

model equations contain the basic characteristics of ensem-

bles composed of systems with different nanostructures

acting cooperatively [17,29]. We evaluate �Po(V) from equation

http://rsif.royalsocietypublishing.org/
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Figure 1. (a) A typical distribution of threshold potentials [13,18,20,27] for
N ¼ 100 units with z ¼ 4. The 15 units forming a central cooperative cluster
of interaction parameter a ¼ 2 have the common threshold potential
V o

th ¼ 54 mV, whereas the other (uncoupled) 85 units have values distributed
around V o

th with a width 2V o
thd, where d ¼ 0.5 is the diversity parameter.

(b) Individual open-state probabilities Po,i (grey curves), ensemble-averaged
probabilities �Po (bold solid curve) and phenomenological probability �Po,eff (V )
(dashed curve). The resulting effective values are zeff ¼ 2.8 and Vth,eff ¼

53 mV. Inset: for an ensemble where both the threshold potentials and the
parameters z of the units followed statistical distributions with d ¼ 0.5 and
f ¼ 0.15, the effective values would be zeff ¼ 2.5 and Vth,eff¼ 52 mV.
(Online version in colour.)
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(2.3) and fit the result obtained to the phenomenological

equation (2.4) for a large number of statistical distributions

(figure 1a) obtained with the algorithm in appendix A. The

distributions are characterized by prescribed values of the

diversity (d) and cooperativity ( f and a) parameters. We

assume that the threshold units in the tails of the distribution

have individual properties so different with respect to the

central value characteristic of the cooperative cluster that

they cannot be coupled together.
3. Results and discussion
Figure 1b shows the individual open-state probabilities (grey

curves) for the threshold units in the ensemble of figure 1a at

potential V. The effective open-state probability �Po,eff(V)

(dashed curve) is obtained by fitting equation (2.4) to

equation (2.3) for the ensemble-averaged probability �Po

(bold solid curve). This fitting gives the effective values

zeff ¼ 2.8 and Vth,eff ¼ 53 mV for an ensemble with diversity

parameter d ¼ 0.5 and fraction of cooperative units f ¼ 0.15,

with z ¼ 4 and the central threshold potential Vo
th ¼ 54 mV:

The units with low threshold potentials respond at low

potentials, whereas those having high threshold potentials
do not saturate to Po,i(V ) ¼ 1 at high potentials V in the

range Vo
th , V , Vth,i: As expected, the diversity allows a

wide response modulation with respect to an individual

response (no diversity), which may be an advantage when

an extended response over V=Vo
th is desirable [13,19]. How-

ever, this diversity effect may be problematic if digital (on/

off ) ensemble-averaged responses are required.

Note that statistical distributions similar to that of figure 1a
for the threshold potential could also be expected for the

parameter z of the units. The inset of figure 1b shows the indi-

vidual open-state probabilities obtained with distributions of

Vth,i and zi. for d ¼ 0.5. We concentrate, however, on the case

z ¼ 4 to better show the interplay between diversity and coop-

erativity. Extensions to statistical distributions with multiple

variables [17] can also be considered at the price of increasing

the complexity of the system response.

Figure 2a,b shows the effects of cooperativity ( f ) and

diversity (d) on the effective values of the threshold potential

Vth,eff and parameter zeff for a ¼ 2. Note that Vth,eff remains

approximately constant with d but it decreases significantly

with f because the fraction of units acting cooperatively

http://rsif.royalsocietypublishing.org/
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gives a significant response at potentials close to Vo
th

(figure 1a,b). Also, zeff increases to 6.5 with increasing f
because of the concerted response of the cooperative units

while it decreases to zeff ¼ 3.5 with increasing d because of

the extended response characteristic of diversity. Diversity

and cooperative effects can coexist in the ensemble response

for intermediate values of d and f. For the results of figure

2, parameter 1 gives a maximum relative error of 4%. The

error distribution is Gaussian-like, with a maximum at 1.5%

and a width of 0.5% (data not shown).

The above effects are clearly shown in figure 3a for the

fixed values d ¼ 0.25 ( f variable) and f ¼ 0.5 (d variable).

The grey zones around the bold curves characterize the

range of values obtained as a result of the randomness
introduced in the distributions (see also figure 2b). The

interplay between diversity and cooperativity gives phenom-

enological, effective ensemble values zeff that deviate

significantly from the individual value z ¼ 4 of all

units. Therefore, the fitting results can be interpreted as

effectively positive (zeff . 4) or effectively negative (zeff , 4)

cooperativity [9].

Figure 3b shows the ratio (1� �Po,a¼2)=(1� �Po,a¼0) as a func-

tion of f (d ¼ 0.25) and as a function of d ( f ¼ 0.5), where 1� �Po

is the ensemble-averaged probability of the closed state. This

probability constitutes then a measure of the error obtained

when trying to drive the ensemble from the closed to the

open (conductive) state at a given potential V. Note that

1� �Po,a¼2 , 1� �Po,a¼0 because of the enhanced response

characteristic of the ensemble coupling at a ¼ 2. The ratio

(1� �Po,a¼2)=(1� �Po,a¼0) can then be regarded as the relative

change obtained in the ensemble switching error because of

the effects of the diversity d and the cooperativity f. The diver-

sity may increase the error ratio to values close to unity,

making almost negligible the constructive role of

cooperativity in decreasing the switching error.

The negative effect of diversity for digital switching at

fixed cooperative fraction f can be counteracted by increasing

the coupling parameter a. Figure 3c shows that the error ratio

(1� �Po,a)=(1� �Po,a¼0) decreases with increasing a at constant f
and d (note that the range of a values considered does not

include the critical value a ¼ 4 [29]) while it remains approxi-

mately constant with the number of units N. However, the

fluctuations of the ratio (1� �Po,a)=(1� �Po,a¼0) with respect

to the average value tend to decrease significantly with N.

We have considered so far the ensemble response to static

potentials V. The ensemble response to a time-dependent

potential V(t) is characterized by the correlation coefficient

C between the input signal V(t) and the output average

current per unit, �I(t), as

C ¼ kV�Il� kVlk�I lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kV2l� kVl2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�I 2l� k�I l2

q , (3:1)

where the angle brackets denote time averages over the

period t of the external potential

V(t) ¼ V0þV1 cos(2pt=t): (3:2)

The signal V(t) of offset potential V0 and amplitude V1 is

applied to all individual units in a parallel ensemble, assum-

ing no time delay in the ensemble response. To this end, the

period t should be much longer than the characteristic

response time of the system (the adiabatic limit). This con-

dition is approximately valid for nanostructures such as ion

channels [30] and nanopores [31] because of the small

solution volumes involved.

Figure 4a shows the unit average current characterizing

the response to the time-dependent sub-threshold potential

of equation (3.2). The grey zones around the bold curves

correspond to the range of values obtained for the different

distributions of threshold potentials (figure 1a). Figure 4b
shows the correlation C between the input V(t) and the

output �I(t) signals for different values of f and d. The combi-

nation of a high cooperativity with a low diversity gives a

high output (current) at the price of a low output/input corre-

lation. When f is close to zero, the diversity allows for a better

reconstruction of the weak input signal. This significant

increase of the correlation with increasing ensemble diversity

http://rsif.royalsocietypublishing.org/
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occurs because low threshold units detect the low values of

the input signal while high threshold units avoid saturation

at the high values of the signal [19].

It is in order now to discuss the biological relevance of the

physical results obtained. In particular, these results show

some of the essential physical trends that are characteristic

of the following.

(i) Mechano-sensitive channels forming self-organized

clusters over the cell surface membrane. In this case,

the collective response is based on cooperative gating

of the elastic interactions in spatially organized mem-

brane proteins [32,33]. Note in this context the close

analogy between mechanically and electrically sensitive

channels. Indeed, fig. 2 of [34] shows that similar gating

effects are obtained in mechanically and electrically sen-

sitive ion channels if we substitute elastic forces for

electrical forces. The diversity and coupling effects

described here can then be relevant to mechano-electri-

cal transduction because these effects can modulate the

collective response in the presence of large stimuli,

avoiding saturation and allowing operating ranges

with different sensing degrees (see figures 2b, 3a and

4a here). Moderate threshold diversity may also allow

for the extended dynamic range [13,19] required for

monitoring a continuously changing ambient, while
cooperativity should provide a more robust response

for a prescribed stimuli region.

(ii) For the case of electrically sensitive channels, patches

of leaky domains (low threshold potential channels)

may coexist with other low conductive domains

(high threshold potential channels) thus allowing

a heterogeneous transmission of electrical signals

across the membrane that may be relevant to cell

growth and differentiation [12,13,22].

(iii) Biochemical systems characterized by a significant mol-

ecular heterogeneity, as revealed by single molecule

experimental methods [9]. We have shown how diver-

sity can produce ensemble-averaged cooperative effects

that differ significantly from those expected for identi-

cal threshold potential units (figures 2a,b and 3a), in

qualitative agreement with recent experiments and

simulations of ligand binding to macromolecules [9].

Note that equation (2.1) and figure 1b are formally ana-

logous to the Hill equation for describing ligand

binding (see eqn (1) and fig. 1b of [9]) if we change

the potential-dependent Boltzmann factor to the

ligand concentration [9,14,15]. Indeed, the results in

figure 3a for the threshold sensitivity in the transition

region between the high and low conductance states

here can be compared qualitatively with those of

fig. 1c of [9] for the cooperative parameter describing

binding cooperativity in a heterogeneous population

of molecules.

(iv) Fluctuations in biological nanoscale systems due to

diversity effects. We have shown here that the tails

in the statistical distributions of the properties charac-

teristic of molecular populations (figure 1a) provide a

natural flexibility that can be exploited in biological

features. In noisy gene expression, for example, genetic

circuits acting as switches must make a trial bet-

ween two different outcomes (e.g. pathogens making

probabilistic choices between latency or activity; see

fig. 2 of [35]) and the tails of the statistical

distributions are crucial in the system response to

environmental fluctuations [35].

(v) Digital switching schemes based on cooperative nanos-

tructures showing different individual characteristics

[17,29]. The diversity observed in natural systems com-

posed of many interacting units allows for modulating

the collective response to weak external signals [1,2,11].

This fact suggests bioengineering schemes based on

populations with distributed thresholds similar to

those of figure 1a. The variability in the individual

responses should permit the processing of a wide

range of input signals, avoiding saturation (figure 4a
and Cervera et al. [17]). In turn, the cooperativity may

decrease the switching errors produced when trying

to drive the system from the closed to the open state

at potential V (figure 3b,c), yielding an approximately

defined digital response [29].

4. Conclusion
The interplay between cooperativity and diversity is at the

interface between biology and nanoscale engineering. A com-

plex system formed by many basic units coupled together can

work reliably over an extended range of inputs despite the

high individual variability of the units. For instance,

http://rsif.royalsocietypublishing.org/
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biological cell ensembles may show a high heterogeneity but

the individual differences are usually normalized in a func-

tional tissue [36]. How could this regulation leading to a

correct average behaviour be achieved? This question has

also significant implications for nanoscience and biologically

inspired designs [17,19,24,25,29,37,38] because of the variabil-

ity characteristic of individual nanostructures coupled in

close packed configurations.

We have addressed here the problem of threshold ensem-

bles processing both static and time-dependent electrical

signals. The simulations show that the interplay between

cooperativity and diversity ultimately results in ensemble-

averaged responses characterized by an extended dynamic

range, but still showing approximately defined on and off
states. The model results should be of interest for ion

channels performing mechanical and electrical transduction

in cell membranes, biochemical ensembles of molecules

characterized by a significant heterogeneity and biologi-

cally inspired schemes for information processing based on

nanoscale building blocks.
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Appendix A
The distribution of threshold potentials Vth,i of the non-

cooperative units (i ¼ 1, 2, . . ., (12f )N ) (figure 1a) is gener-

ated using the following algorithm. The values are
distributed in the range (1� d)Vo
th � Vth,i � (1þ d)Vo

th,

where Vo
th is the central value and d is the relative width.

The above range is divided into (2J þ 1) intervals of

identical width DV ¼ 2dVo
th=(2J þ 1), which are numbered

as j ¼ 2J,2J þ 1, . . . , 0, . . . , J21, J. The threshold poten-

tial values Vth,i within interval j are generated randomly

and hence are slightly different. The fraction of thres-

hold potentials that lie within interval j is also generated

randomly but it follows approximately a Gaussian prob-

ability distribution. The probability that Vth,i is in any

interval j in the range 2k � j � k is Pk ¼
Pk

j¼0 pj, where

pj ¼ (1=S) exp[�2d j2=((2J þ 1)2(1� f ))] is the probability

that Vth,i lies in the intervals 2j or þ j and S is determined

by the normalization condition, PJ ¼
PJ

j¼0 pj ¼ 1:

To ensure that d is the relative width of the distribution, one

threshold potential is located at one end of the range by gener-

ating a random number r1 and assigning Vth,1 ¼ (1� d)Vo
th if

r1 , 0.5 or Vth,1 ¼ (1þ d)Vo
th if r1 . 0.5. The generation of the

remaining threshold potentials requires three random numbers

between 0 and 1, ri, si and ti, for each Vth,i. The number ri

determines the interval j where Vth,i lies. As 0 , Pk � 1 for

any k (0 � k � J ), ri can be compared to the cumulative prob-

abilities fP0, P1, . . . , PJ ¼ 1g, which satisfy Pk , Pkþ1 for 0 �
k , J. If Pj is the smallest probability that is larger than ri, then

Vth,i lies in the intervals 2j or þj and its random value is

Vth,i ¼ Vo
th þ (0:5� si þ j sgn(ti � 0:5))DV: Actually, only low

(si , 0.45) or high (si . 0.55) values of si are accepted to avoid

non-cooperative units with threshold potentials too close to Vo
th.

A Python program that implements this algorithm is

provided as electronic supplementary material.
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