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Abstract: The energy transported by the electric current that circulates a thermoelectric element (TE)
varies with position due to the Joule and Thomson effects. The Thomson effect may enhance or
compensate the Joule effect. A method for measuring the Thomson coefficient of a TE is presented.
This method is based on the total compensation of the Joule and Thomson effects. The electric
current then flows without delivering power to the TE or absorbing power from it. For a TE, the
global Thomson/Joule compensation ratio ΦT/J is defined as the ratio of the power absorbed by
the current due to the Thomson effect and the power delivered by the current to the TE due to
the Joule effect. It can be expressed as ΦT/J = I0/I, where I is the electric current and I0 is the
zero-power current, a quantity that is proportional to the average Thomson coefficient. When I = I0,
the Thomson effect exactly compensates the Joule effect and the net power delivered by the current
to the TE is zero. Since the power delivered by the current is related to the temperature distribution,
temperature measurements for currents around I0 can be used as the basis for a measurement
technique of the Thomson coefficient. With varying current, the difference between the temperature
at the center of the TE and the mean temperature between its extremes reverses its sign at the
zero-power current, I = I0. This observation suggests the possibility of measuring the Thomson
coefficient, but a quantitative analysis is needed. With calculations using the constant transport
coefficients model for Bi2(Te0.94Se0.06)3 and (Bi0.25Sb0.75)2Te3, it is theoretically shown that a null
temperature detector with a sensitivity of the order of 1 mK allows for the accurate determination of
the Thomson coefficient.

Keywords: thermoelectricity; Thomson coefficient; Thomson effect; Seebeck effect; energy balance

1. Introduction

Thermoelectric generation and refrigeration have a long history of scientific and
technological development, mainly due to the requirement for long-life electrical power
sources [1]. Thermoelectric generators (TEGs) generate electric power from the electric
current driven by a temperature difference. Thermoelectric coolers (TECs) drive a heat flow
against a temperature difference by consuming electric power. Thermoelectric modules
(TEMs) are relevant to developing sustainable processes and mitigating climate change.
All aspects of thermoelectrics have experienced an unprecedented upsurge of activity [2,3],
partly due to the increasing miniaturization of electronic circuits and sensors. For instance,
small TEGs have drawn much attention as stand-alone, energy-harvesting power sources
for wearable electronics [4,5].

The Thomson effect is the rate of energy supply to the conductor by the electric current
due to the presence of a temperature gradient [6]. Although early studies considered it
to be not of primary importance or even negligible [1], the Thomson effect needs to be
accurately described in the energy balance in order to optimize the efficiency of both TEGs
and TECs [7–12]. Since the energy transported by the electric current varies with position
along the conductor, the Thomson effect can be described as electric power delivered by the
current to the conductor. The rationale that the Thomson effect is electrical power lies in the
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distinction of energy observables. The energy rate is determined by the observable heat rate
.

Q and the electrical power P supplied by the current,
.

U =
.

Q + P [6]. The observable heat
rate only includes the divergence of the Fourier flux density. The power that the electric
current delivers to a conductor has two components: Joule and Thomson. Joule power is
always positive, while Thomson power has no definite sign.

Lan et al. ranked the Thomson effect as the second most important factor influenc-
ing the efficiency of TEGs [13]. Luo et al. developed a model, including the Thomson
effect, to study the parameters characterizing the behavior of TEGs and TECs [14]. Zhang
et al. showed that the Thomson effect affects heat production, heat transfer, and energy
conversion in TEGs. The output power and efficiency are increased by 15.6% and 8.9%,
respectively, due to the Thomson effect [15]. Chengjian et al. studied the influence of the
Thomson effect in annular TEGs [16]. Chen et al. studied the influence of the Thomson
effect in the combined TEG–thermoelectric heat pump [17]. Bakan et al., after stating that
electrical charges in a conductor carry different types of electrical power—basic, kinetic,
and chemical—studied the conditions that the electrical pulses must meet to suppress the
Thomson heat [18]. Qiu et al. analyzed the influence of the Thomson effect on TECs by
evaluating the heat rates, instead of the (more common) heat fluxes arriving at the ends
of each thermoelectric element (TE) [19]. Ponnusamy et al. analyzed how the Thomson
heat influences the bending of the temperature distribution in the TEs of a TEG [20]. Ruiz-
Ortega et al. studied an electric pulse in a double-stage TEC. They considered that the
significant drop in temperature on the cold side depends strongly on the Thomson effect.
The maximum COP increases by 75% when the Thomson effect is considered [21]. Wielgosz
et al. developed two numeric models on the thermoelectric behavior of unicouples in
TEGs. In the heat balance, apart from the Joule and Thomson heats, they added two new
terms, the Peltier and Bridgman heats [22]. Gong et al. highlighted the influence of the
Thomson effect on the cooling capacity of TECs [23]. Sun et al. explored the role of the
Thomson effect on micro-thermoelectric coolers. When considering the Thomson effect,
the minimum cooling temperature can be reduced by 4.1 K [24]. Chen et al. included the
Thomson effect when analyzing the efficiency of the photovoltaic cell–TEG coupling [25].
Cui et al. included the Thomson effect in the study of the delamination and thermoelectric
performance of p-n junctions [26]. Shi et al. studied the influence of the Thomson effect in a
two-dimensional thermoelectric plate. They deduced that the normalized thermoelectric
conversion efficiency would increase by 10% when the Thomson effect was considered [27].
Lafaurie et al. described a non-linear Thomson effect produced in a TE by a transient
current [28]. Chiva et al. studied the temperature distribution that the Thomson effect
generates in a TE [29].

In all these references [7–29], the Thomson energy was described as heat generated
by the current, but it can be better described as electrical power that the current supplies
to the material [6]. In a TE, the current develops two types of power: Joule power and
Thomson power [6]. The Joule power is always a positive quantity, while the Thomson
power does not have a definite sign [1,6]. In the present work, the possible compensation
of the positive Joule power with negative values of the Thomson power are analyzed. Once
the Thomson/Joule compensation has been defined, three types of compensation will be
analyzed: enhancement, undercompensation, and overcompensation. Overcompensation
means that, due to the Thomson effect, the current absorbs energy from the conductor at
a higher rate than that of delivery due to the Joule effect. This occurs for currents in the
range 0 < I/I0 < 1, where I0 is the zero-power current. For many materials, this range is
narrow and of moderate practical interest. However, this range widens when the Thomson
coefficient increases because I0 is proportional to it. For recent materials exhibiting a giant
Thomson effect, this range is of utmost interest [7,30]. When the T/J compensation is exact,
the current flows without absorbing or delivering energy to the conductor.

The traditional methods for the measurement of the Thomson coefficient in metallic
samples are based on establishing the temperature gradient in the sample and detecting
temperature changes [31]. To make it accurate at high temperatures, the method was devel-
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oped by Roberts when establishing his absolute scale of thermoelectricity [32]. More recent
methods, especially those suitable for thin films, compare the change in the temperature at
the central point of the sample under the flow of DC and AC electric currents [33]. One
of the main aims of this work is to show that the exact T/J compensation can serve as the
basis for a measurement technique of the Thomson coefficient.

Another aim is to analyze the influence of the Thomson effect on the parameters that
characterize the behavior of a TEM. The cooling capacity

.
Qs→c of a TEC and the efficiency

η of a TEG depend on the Thomson/Joule compensation in the semiconductor legs [34].
The Thomson coefficients do not appear explicitly in the expressions of Pout and Pin [35].
In a thermoelectric circuit, the compensation of the Joule power is not developed by the
Thomson power but by the Seebeck power. This Seebeck power is the sum of the Thomson
powers of the TEs of the circuit plus the Peltier powers of the junctions between the TEs.

2. Theory
2.1. Energy Balance in the Observable Formulation

In the observable formulation, the non-equilibrium states are locally characterized
by the temperature gradient ∇T and the electric current density i [6,36–40]. The transport
processes of electrical charge and energy cannot be separated [41]. The Seebeck coefficient
S of the conductor is defined via the transport equation for the charge

ρi =
1
e
∇µ − S∇T, (1)

where ρ is its electrical resistivity, µ is the electrochemical potential of the electrons, and e
(>0) is the elementary charge. The energy flux density is

ju = −κ∇T +
(

Π − µ

e

)
i (2)

where κ is the thermal conductivity and Π is the Peltier coefficient. The first term in
Equation (2) is the heat flux density as described by Fourier’s law

jq = −κ∇T (3)

i.e., the diffusive contribution due to ∇T. The second term in Equation (2) is the contribution
due to i, and we denote it as the work flux density

−jw =
(

Π − µ

e

)
i (4)

using the sign convention ju = jq − jw [1]. The rate of increase in the internal energy of
a finite region V of the conductor due to the flux through the surface ∂V enclosing it is
−
v

∂V ju·dA = −
t

V ∇·jud3r, where dA is a surface element vector pointing outside V and
we have used the divergence theorem. For an infinitesimal volume element δV, its rate
of increase in the internal energy can be written as δ

.
U = −∇·juδV. It is the sum of two

contributions due to ∇T and i, δ
.

U = δ
.

Q + δP, where δ
.

Q = −∇·jqδV is the heating power
(positive when energy flows to δV due to ∇T from its surroundings) and δP = ∇·jwδV
is the power delivered to δV by the electric current. Under steady-state conditions, the
internal energy of δV does not change with time and δ

.
Q + δP = 0. For instance, when the

Joule effect dominates, the energy delivered by the current to δV is positive, and the same
quantity of heat flows by conduction to its surroundings, δP = −δ

.
Q > 0.

The Seebeck, Peltier, and Thomson effects are interrelated [40,41]. Under steady-state
conditions, using Equations (1) and (2) and the conservation of charge ∇·i = 0, the energy
balance equation ∇·ju = 0 can be presented as

0 = ∇·(κ∇T) + ρi2 − τi·∇T, (5)
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where τ = dΠ/dT − S is the Thomson coefficient. The power δP = ∇·jwδV that enters
an infinitesimal volume element δV due to i is the sum contribution of the Joule effect
δPJ = ρi2δV > 0 and the Thomson effect δPT = −τi·∇TδV, as the divergence of the work
flux density is

∇·jw = ρi2 − τi·∇T. (6)

The nature of the Joule and Thomson contributions as powers delivered by the current is
further discussed in Appendix A. The sign of the Thomson power δPT reverses with the
direction of the current density. When the Thomson power is positive, it enhances the
Joule effect. A negative Thomson power δPT < 0 means that the electric current absorbs
power from the TE, thus compensating the Joule effect. In most cases, this compensation
is only partial, so that the net effect is a power delivery to δV due to i, δP > 0. However,
in some cases the negative Thomson power can overcompensate the positive Joule power
and δP < 0. The exact compensation between the Thomson and Joule effects that can occur
under some experimental conditions enables the measurement of the Thomson coefficient.

2.2. Thomson/Joule Power Compensation in a Thermoelectric Element

Consider a bar-shaped, thermoelectric element (TE) of cross-section A and length L
with thermally insulated lateral surfaces. The position coordinate x increases from the
cold boundary, with temperature Tc = T(x = 0), to the hot one, Th = T(x = L), so that
dT/dx > 0 for all or most of the bar. The electric current I = iA is positive when it flows in
the positive x direction. The one-dimensional form of the steady-state, local energy balance
equation, Equation (5), is

0 =
d

dx

(
κ

dT
dx

)
+ ρ

(
I
A

)2
− τ

I
A

dT
dx

. (7)

The heat flow that enters a volume δV = Aδx of the bar from their neighboring volume
elements due to their temperature difference is δ

.
Q = δVd(κdT/dx)/dx. The power that

enters δV due to the electric current I is the sum of the Joule and Thomson contributions,
δPJ = δVρ

(
I/A)2 and δPT = −δVτ(I/A)dT/dx, respectively.

In terms of the local Thomson/Joule (T/J) compensation ratio

ΦT/J(x) = −δPT

δPJ
=

τA
ρI

dT
dx

, (8)

Equation (7) can be presented as

d
dx

(
κ

dT
dx

)
= ρ

(
I
A

)2[
ΦT/J(x)− 1

]
. (9)

Equation (9) shows that the T/J compensation is related to the curvature of T(x). The
ratio ΦT/J(x) depends on dT/dx, I/A and the transport coefficients τ and ρ. Compen-
sation requires ΦT/J > 0 and, hence, δPT < 0. Thus, compensation requires τ > 0 when
I(dT/dx) > 0. Overcompensation ΦT/J(x) > 1 implies d(κdT/dx)/dx > 0. Undercom-
pensation ΦT/J(x) < 1 and enhancement ΦT/J(x) < 0 imply d(κdT/dx)/dx < 0.

In a TE of length L, the Joule and Thomson powers are PJ(I) = I2R and PT(I) =

−Iτ∆T, where R = (1/A)
∫ L

0 ρdx is the electrical resistance, τ = (1/∆T)
∫ Th

Tc
τdT is the

average Thomson coefficient, and ∆T = Th − Tc > 0. The power delivered by the current is

P(I) = I2R − Iτ∆T = (1 − I0/I)I2R, (10)

where I0 = τ∆T/R is the zero-power current, P(I0) = 0. Exact Thomson/Joule compensa-
tion occurs when I = I0, because the power that enters the TE due to the Joule effect is then
equal to the power that leaves the TE due to the Thomson effect, PJ(I0)= −PT(I0). Since
∆T > 0 and R > 0, I0 has the same sign as the average Thomson coefficient τ.
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measurement of the thermal conductance K is required and difficult. This problem can be
circumvented by eliminating K through the evaluation of

δT(I)− δT(−I)
δT(I) + δT(−I)

≈ PT(I)
PJ(I)

= −ΦT/J = −τ I∆T
I2R

. (14)

Experimentally, a combination of DC currents and AC currents can serve this purpose [33].
Two currents, I1 and −I2, that differ in magnitude and direction can produce the same

δT at x = L/2 [32]. From Equation (13), the condition δT(I1) = δT(−I2) is equivalent to
PJ(I1)+ PT(I1) = PJ(I2)− PT(I2), which can easily be transformed to I0 = τ∆T/R = I1 − I2
by using Equation (10). The expression τ = (I1 − I2)R/∆T constitutes the basis of Roberts’
method to measure the Thomson coefficient [31,32]. The exact T/J compensation ΦT/J = 1
at the zero-power current I0 implies P(I0) = 0 and δT(I0) = 0 and it can also be used as
another method to measure the Thomson coefficient, as discussed below.

The curvature d2T/dx2 ≈ −P/KL2 of the temperature distribution is determined by
the power P = (1 − I0/I)I2R delivered by the current. It vanishes in the absence of current
and at the zero-power current I = I0, when exact compensation between the Thomson
and Joule effects occurs. In these two cases, the temperature distribution is linear and the
temperature at the center x = L/2 of the TE is Tm = (Tc + Th)/2. When I/I0 > 0 increases
from 0, the difference T(L/2)− Tm ≈ P/8K = (I 2R/8K

)
(1 − I0/I) first takes negative

values (due to overcompensation), becomes zero at I = I0 (compensation), and is positive
for I/I0 > 1 (undercompensation or enhancement).

From Equation (12), the relation between the local and global T/J compensation
ratios is

1 − ΦT/J(x)
1 − ΦT/J(I)

=
τ I/K

eτ I/K − 1
eτ Ix/KL ≈ 1 +

τ I
K

(
x
L
− 1

2

)
, (15)

where |τ I| ≪ K has been used in the approximation. Thus, at the center x = L/2 of the TE,
the local T/J compensation ratio is approximately equal to the global T/J compensation ra-
tio. At any position x, Equation (15) implies that 1−ΦT/J(x) and 1−ΦT/J(I) have the same

sign because (τ I / K)/
(

eτ I/K − 1
)
> 0. From Equations (9) and (15), the temperature dis-

tribution is the same for zero current and for the zero-power current, because ΦT/J(I0) = 1
implies ΦT/J(x) = 1 (in the constant transport coefficients model). If the Thomson effect
globally overcompensates the Joule effect, ΦT/J(I) > 1 when 0 < I/I0 < 1, then over-
compensation occurs locally at every position. Similarly, if the Thomson effect globally
undercompensates or enhances the Joule effect, ΦT/J(I) < 1, then undercompensation

(0 < Φ T/J(x) < 1
)

or enhancement (Φ T/J(x) < 0
)

occurs at every position.

2.4. Energy Balances and Thomson/Joule Compensation in TEGs and TECs

Consider the basic unit of a thermoelectric module (TEM), i.e., the n-type and p-type
legs and the connectors at different cold and hot temperatures (Figure 2). In the absence
of external power sources, when the circuit is closed, the electric current flows in the
direction that tends to reduce the difference Th − Tc, thus driving the system towards
thermal equilibrium. The scalar product of Equation (4) with the current density i leads
to (1/e)Idµ = (ρ/A)I2dx + ISdT, where the current I is positive when it flows in the
direction of increasing temperature and negative otherwise. Its integration around the
closed circuit shows that the driving force for the electric current is

∫ Th
Tc

(
Sp − Sn

)
dT > 0.

The electrochemical potential of the electrons is a continuous function of position, and
therefore

∮
Idµ = 0. Hence, the Joule power PJ =

(
I2/A

)∮
ρdx > 0 must be provided

by the Seebeck power, PS =
∮

ISdT < 0. We can refer to the energy balance PJ = −PS
as a Seebeck/Joule compensation for the closed circuit (Appendix B). That is, the power
delivered to the conductors by the current due to the Joule effect is the same as the power
−PS > 0 absorbed by the current from the conductors due to the Seebeck effect.
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Under steady-state conditions, the energy rate is zero,
.

QTEM + PTEM = 0 (Figure 2b), and

Pin = PTEM =
.

Qh→s −
.

Qs→c > 0. (19)

The cooling capacity of the TEC is
.

Qs→c > 0, i.e., the rate of energy extraction from the cold
thermal reservoir (s).

The cooling capacity
.

Qs→c of a TEC and the efficiency η of a TEG depend on the T/J
compensation in the semiconductor legs [34]. The heat rate in the cold and hot connectors
and the powers delivered to them by the electric current are

.
Qc = A

[(
κp

dTp

dx

)
x=0

+

(
κn

dTn

dx

)
x=0

]
+

.
Qs→c (20)

Pc = I2Rc −
(
Πpc − Πnc

)
I (21)

.
Qh =

.
Qs→h − A

[(
κp

dTp

dx

)
x=L

+

(
κn

dTn

dx

)
x=L

]
(22)

Ph = I2Rh −
(

Πph − Πnh

)
I, (23)

where Ri (i = c, h) is the electrical resistance of the cold or hot connector, and Πij is
the Peltier coefficient of leg i (i = p, n) at temperature j (j = h, c). Under steady-state
conditions,

.
Qi + Pi = 0, Equations (19)–(23) show that

.
Qs→c =

(
Πpc − Πnc

)
I − I2Rc − A

[(
κp

dTp

dx

)
x=0

+

(
κn

dTn

dx

)
x=0

]
(24)

.
Qs→h =

(
Πph − Πnh

)
I − I2Rh + A

[(
κp

dTp

dx

)
x=L

+

(
κn

dTn

dx

)
x=L

]
(25)

are affected by the Thomson effect, because the T/J compensation is related to the curvature
of the temperature distribution in the legs.

The output power Pout of a TEG and the input power Pin of a TEC involve the integral∫ Th
Tc

(
Sp − Sn

)
dT, Equations (16) and (18). In agreement with previous results [35], the

Thomson coefficients practically do not affect the powers Pout and Pin.

3. Results
3.1. Thomson Effect in a TEC Using the Constant Transport Coefficients Model

The constant transport coefficients model is used to analyze the T/J compensation
in a TEC. We consider legs of length L = 10 mm and section area A = 0.50 × 0.50 mm2,
with temperatures Tc = 290 K and Th = 310 K at their boundaries. The n-type leg is
Bi2(Te0.94Se0.06)3, with κn = 1.643 W m−1K−1, ρn = 8.239 µΩ m, and τn = −37.60 µV K−1

as typical values in this temperature range. The p-type leg is (Bi0.25Sb0.75)2Te3, with
κp = 1.472 W m−1K−1, ρp = 8.826 µΩ m, and τp = 102.6 µV K−1 [42–44]. The correspond-
ing electrical resistances and thermal conductances are Rn = 0.330 Ω, Rp = 0.353 Ω,
Kn = 41.1 µW K−1, and Kp = 36.8 µW K−1. The material performance of these prod-
ucts can vary significantly depending on the strategy that has been developed in their
production [45].

A relatively small electric current Ip = −In = 80 mA delivers to the conductor the pow-
ers Pn = (2.11 − 0.06) mW = 2.05 mW and Pp = (2.26 − 0.16) mW = 2.10 mW (Figure 3d).
The Fourier fluxes at the boundaries determine the heating rates
.

Qn = −(1.83 + 0.22) mW = −2.05 mW and
.

Qp = −(1.75 + 0.35) mW = −2.10 mW.
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Global balances of the Joule power, the Thomson power and the Fourier fluxes 𝐽୯ = −𝜅𝐴(d𝑇 d𝑥⁄ ) 
in the legs. (e) In the absence of Thomson effect, the Fourier fluxes are increased because so are the 
temperature gradients at the cold and hot boundaries. 
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Figure 3. (a) Temperature distribution T(x) for a current of 80 mA in a TEC, Equation (12). (b) Local
T/J compensation ratio ΦT/J(x), Equation (8). Undercompensation occurs between the cold boundary
and the positions (marked with points) of maximum temperature. Enhancement occurs between
those positions and the hot boundary. (c) The Thomson effect affects the temperature distribution.
In the ordinate axis, the difference between the temperature with and without Thomson effect is
represented. With Thomson effect, the temperature T(x) is lower than without Thomson effect. (d)
Global balances of the Joule power, the Thomson power and the Fourier fluxes Jq = −κA(dT/dx)
in the legs. (e) In the absence of Thomson effect, the Fourier fluxes are increased because so are the
temperature gradients at the cold and hot boundaries.

Since the zero-power currents are I0,n = τn∆T/Rn = −2.28 mA and I0,p = τp∆T/Rp =
5.81 mA, global T/J undercompensation occurs (see Figure 1), as indicated by ratios
ΦT/J,n = I0,n/In = 0.0285 and ΦT/J,p = I0,p/Ip = 0.0726. On a local basis, the T/J compen-
sation is proportional to the temperature gradient, ΦT/J(x) = (τA/ρI)dT/dx, Equation
(8). In both legs, undercompensation

(
0 < ΦT/J(x) < 1

)
occurs between the cold boundary

and the position of maximum temperature, and enhancement
(
ΦT/J(x) < 0

)
between that

position and the hot boundary (Figure 3b).
The Thomson effect affects the cooling capacity

.
Qs→c of a TEC through the tempera-

ture gradient at the cold junction (see Equation (24)). From Equations (10) and (12), this
gradient is

dT
dx

∣∣∣∣
x=0

≈ ∆T
L

+
I2R
2KL

− τ I
2K

∆T
L

. (26)

Since τn In > 0 and τp Ip > 0 in a TEC, the Thomson effect reduces the gradient dT/dx|x=0
(compare Figure 3d,e). Using the above values of the transport coefficients, dT/dx|x=0
can be evaluated in the n-type leg as 4.57 K/mm for τn = 0 and 4.49 K/mm for τn =
−37.60 µV K−1, and in the p-type leg as 5.07 K/mm for τp = 0 and 4.87 K/mm for
τp = 102.6 µV K−1. From Equation (24) and the temperature distributions in Figure 3a,c, it

is concluded that
.

Qs→c increases by 1.2% due to the Thomson effect.

3.2. The Effect of the Thomson Coefficient on the Thomson/Joule Compensation

The T/J compensation increases when the Thomson coefficient τ of the material is
increased [7]. However, the dependence of the local T/J compensation ΦT/J(x) on τ is not
trivial because ΦT/J(x) is proportional to the product of the τ and the temperature gradient,
Equation (8), and any change in τ also modifies this gradient. For instance, Figure 3c shows
that the temperature gradient at the cold junction decreases in both semiconductor legs
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due to the Thomson effect. In order to analyze the dependence of the local T/J compen-
sation ΦT/J(x) on τ , we show the results obtained for semiconductors Bi2(Te0.94Se0.06)3
and (Bi0.25Sb0.75)2Te3 with hypothetical values of the Thomson coefficient: −1.0, 0.0, 1.0
and 2.0 mV K−1 [23,29]. The current is I = 80 mA and the boundary temperatures are
Tc = 290 K and Th = 310 K. Figure 4 presents the results for the p-type leg in a TEC using
the constant transport coefficients model. Very similar values are obtained for n-type leg.
For these values of the Thomson coefficient, the global T/J compensation ratios ΦT/J(I)
are, respectively, −0.708, 0, 0.708 and 1.416, corresponding to enhancement, absence of
compensation, undercompensation and overcompensation. Figure 4b shows that, for
τ = −1.0 mV K−1, the local T/J compensation ratio ΦT/J(x) is negative (corresponding
to enhancement) for x/L < 0.65 and positive but less than one (undercompensation) for
x/L > 0.65. For the other values of τ, the local T/J compensation ratio ΦT/J(x) corresponds
to the global T/J ratio ΦT/J(I).
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It is noteworthy that doubling the Thomson coefficient from 1.0 to 2.0 mV K−1 does
not double the local T/J compensation ratio because the Thomson coefficient also modifies
the temperature gradient. At the cold junction x = 0, the temperature gradient decreases
when doubling the Thomson coefficient from 1.0 to 2.0 mV K−1 and ΦT/J(0) only increases

by 10%. The dependence of the cooling capacity
.

Qs→c on the Thomson coefficient becomes
evident when examining different temperature distributions (Figure 4a). The Fourier term
in Equation (24), κp A

(
dTp/dx

)
x=0, reduces in value as the Thomson coefficient increases.

Intercalation of heat dissipative elements in the leg gives similar results [46].

3.3. The Thomson/Joule Compensation Enables the Measurement of the Thomson Coefficient

In a TE, the global T/J compensation varies with the current I (Figure 1). When I = I0
and ΦT/J = 1, the Thomson power exactly compensates the Joule power and the current cir-
culates without absorbing or delivering energy to the conductor. Since the power delivered
by the current is related to the temperature distribution, temperature measurements for
currents around I0 = τ∆T/R can be used as the basis for a measurement technique of the
Thomson coefficient. Equation (13) implies that the function P(I) represented in Figure 1 is
the same as the function δT(I) = T(L/2)− Tm except for the factor 8K. Thus, experimen-
tal measurements of δT(I), around δT ≈ 0, can be fitted to the second order polynomial
aI2 − bI, where a and b are fitting parameters. The zero-power current, which corresponds
to a sign reversal of δT = T(L/2)− Tm, can be evaluated from the fitting parameters a and
b as I0 = b/a. The Thomson coefficient can then be evaluated as τ = I0R/(Th − Tc).
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Alternatively, I0 can be evaluated from the sign reversal of δT with varying I. In
order to determine the accuracy needed in the measurement of this temperature dif-
ference, we can consider the TEs described in Section 3.1, with τn = −37.60 µV K−1,
τp = 102.6 µV K−1 and zero-power currents I0,n = −2.28 mA and I0,p = 5.81 mA. The
functions δT(I) = T(L/2)− Tm for both legs have minima of −1.3 mK for the n-type and
−10.1 mK for the p-type (Figure 5). Thus, we conclude that a null temperature detector
with a sensitivity of 1 mK or lower allows for the accurate determination of I0, and hence
of the Thomson coefficient τ, from the sign reversal in T(L/2)− Tm with varying I.
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Figure 5. The difference δT(I) = T(L/2)− Tm between the temperature at the center x = L/2 of a
leg and the mean temperature Tm = (Th + Tc)/2 has a parabolic dependence with the current I. The
functions represented correspond to the n-type and p-type legs of the TEC described in Section 3.1.
The zero-power currents I0,n and I0,p can be experimentally determined from the condition δT ≈ 0,
so that the average Thomson coefficient of each leg can thus be measured.

The zero-power current at which δT(I) reverses sign is not affected by the thermal
conductivity of the material. However, for the same range of variation of the current, the
values of δT(I) depend on the thermal conductivity. As described by Equation (13), the
larger the thermal conductivity, the lower the values of δT(I) and the larger the uncertainty
in the measured value of the Thomson coefficient. The 1 mK sensitivity of the temperature
detector corresponds to Bi2(Te0.94Se0.06)3 and (Bi0.25Sb0.75)2Te3. Materials with lower
conductivity are of interest to increase the figure of merit. The determination of I0 and the
Thomson coefficient would be more accurate in low thermal conductivity materials.

Note, finally, that the value of the Thomson coefficient that is determined with this
method is that corresponding to the average of the hot and cold temperatures. The low
currents required for the Thomson/Joule compensation ensure that the accuracy of the
method is not sensitive to the temperature dependence of the material performance. More-
over, the use of a constant transport coefficients model with the values corresponding to
this average temperature is further justified.

4. Discussion and Conclusions

The Thomson effect in thermoelectric modules has been analyzed with special atten-
tion to its possible compensation with the Joule effect. The Thomson/Joule compensation
ratio, the quotient between the negative Thomson power and the Joule power, has been
studied both on global and local bases. The local Thomson/Joule compensation ratio
is related to the curvature of the steady-state temperature distribution in the legs of a
thermoelectric module.

The global Thomson/Joule compensation ratio is I0/I. The compensation is exact
when the electric current I equals the zero-power current I0, i.e., due to the Thomson effect,
the current absorbs the same power that it delivers due to the Joule effect. Since I0 = τ∆T/R
is proportional to the average Thomson coefficient, temperature measurements for currents
around I0 can be used to measure the Thomson coefficient. With varying current, the
difference between the temperature at the center of the TE and the mean temperature
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between its extremes reverses its sign at I = I0. Calculations using the constant transport
coefficients model for Bi2(Te0.94Se0.06)3 and (Bi0.25Sb0.75)2Te3 led to the conclusion that a
null temperature detector with a sensitivity of the order of 1 mK allows for the accurate
determination of the Thomson coefficient. Reasonably, this result may stimulate new
experimental studies.
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Appendix A. On the Concept of “Heat Source”

The transport equations of thermoelectric phenomena relate the flux densities {j T, i}
and the generalized forces {X T, Xe}. The local rate of entropy production [37,47,48] is

πs =
1
T
(jT·XT + i·Xe) =

κ

T2

(
∇T)2 +

1
T

ρi2. (A1)

The choice of XT = −(1/T)∇T as one of the forces is very convenient given the right-
hand side of Equation (A1). Different choices of the “thermal” flux density jT and the
“electrical” generalized force Xe characterize the different possible formalisms used in
thermoelectricity. Given their pivotal role, the observable formulation of thermoelectric
phenomena chooses i and −∇T as the “independent” quantities that characterize the local
non-equilibrium states.

The total energy flux density ju in Equation (2) is the sum of two terms: jq = −κ∇T,
due to thermal conduction, and another term that is the flux density of energy transported
by the current, (Π − µ/e)i. The divergence of (Π − µ/e)i is the power delivered by the
electric current (to the conductor). Similarly, the entropy flux density js is the sum of two
terms: one which is proportional to XT = −(1/T)∇T, and another one which is the flux
density of entropy transported by the current,

js = − κ

T
∇T + Si. (A2)

Under steady-state conditions, the local balance equation for entropy is πs = ∇·js. The
right-hand side of Equation (A1) shows that the irreversible processes that produce entropy
are thermal conduction due to a temperature gradient and conduction of electric current.

The concepts of “heat flux density” and “heat source” are not unique. Extensive
state variables are those that can flow, such as electric charge, entropy, and energy. The
expressions of their flux densities are undisputed. On the contrary, the heat flux density
requires explaining the convention used, because the quantities describing thermodynamic
processes, such as heat and work, do not flow. The convention used in Equation (3) is
that we designate as heat flux density only the contribution to the energy flux density due
to thermal conduction, i.e., jq = −κ∇T. The electric current transports energy. One of
the contributions to the energy transported by the current, Equation (4), is TSi = Πi. A
usual convention in thermoelectricity is referring to Tjs = −κ∇T + TSi as the “heat flux
density”. In this convention, the divergence ∇·(Tjs) is nonzero because of the local “heat
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production”. That is, the “heat sources” are considered to be the contributions to ∇·(Tjs).
From Equations (1) and (5), these “heat sources” are ρi2 and Si·∇T, because

∇·(Tjs) = (1/e)i·∇µ = ρi2 + Si·∇T, (A3)

where we have used τ∇T = T∇S and ∇·i = 0 [37]. Other authors consider as “heat
sources” all the contributions to the negative divergence of the total energy flux density,

−∇·ju = ∇·(κ∇T) + ρi2 − τi·∇T, (A4)

that is, the Fourier, Joule, and Thomson terms, ∇·(κ∇T), ρi2, and −τi·∇T [31]. Although
these different conventions are all valid, the description of the Joule ρi2 and Thomson
−τi·∇T contributions as powers delivered by the electric current seems to be sounder.

Appendix B. Compensation in a Closed Circuit with No External Power Source

The concept of Thomson/Joule compensation can be applied to each one of the
conductors composing a closed circuit, but not to the whole circuit because of the Peltier
effect at the junctions. Consider a thermally insulated, closed circuit with no external
power source that is only formed by two conductors, a and b, with Seebeck coefficients Sa
and Sb(> Sa), and with junction temperatures Tc and Th(> Tc). By closing the circuit, an
electric current is established in the direction that tends to reduce the difference Th − Tc and
drives the circuit towards thermal equilibrium. This direction corresponds to an increase in
temperature in the conductor a, with a lower Seebeck coefficient. Since there is no external
power source, there must be an internal source, the Seebeck power, which is negative in
the closed circuit, PS = I

∮
SdT < 0; note that PS > 0 when the current delivers power

to the conductors, and PS < 0 when it absorbs power. The scalar product of Equation (1)
with the current density i leads to (ρ/A)I2dx = (1/e)Idµ − ISdT, which can be integrated
around the circuit to conclude that the Joule power PJ =

(
I2/A

)∮
ρdx > 0 is provided by

the Seebeck power PS,
PJ = −PS (closed circuit) (A5)

where we have used that the electrochemical potential µ of the electrons is a continuous
function of position. That is, the Joule power PJ delivered to the conductors by the current
is the same as the power −PS absorbed from the conductors by the current due to the
Seebeck effect. This Seebeck/Joule compensation is logical because the integration of
Equation (1) clearly shows that the driving force for the electric current around the closed
circuit is proportional to

∫ Th
Tc

(Sb − Sa)dT > 0. In the absence of energy exchange with the
surroundings, the difference Th − Tc and the current I both tend to zero.

The energy flux density due to the Peltier effect is Πi. Thus, the power that enters
a region V of a conductor due to this effect is −

v
∂V Πi·dA = −

t
V i·∇Πd3r or, in one-

dimensional form, PΠ = −
∫

IdΠ. The scalar product of the equation −τ∇T = S∇T −∇Π
with the current density i leads to

−IτdT = ISdT − IdΠ (A6)

Integration of Equation (A6) over a conductor

PT = PS + PΠ (conductor) (A7)

where PT = −I
∫

τdT, PS = I
∫

SdT and PΠ = −I
∫

dΠ are the powers delivered by the
current to the conductor due to the Thomson, Seebeck, and Peltier effects, respectively;
negative values of any of these contributions represent absorbed power.

At the junctions between different conductors, the energy flux density ju, Equa-
tion (2), is continuous but its Fourier and Peltier contributions, jq and Πi, show dis-
continuities (that cancel each other). Note that Equation (A6) is not valid at the junctions,
where T is continuous but Π is not. For a closed circuit, −I

∮
dΠ = 0. The power
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delivered by the current to the conductors a and b due to the Peltier effect is PΠa +
PΠb = −I(Πah − Πac)− I(Πbc − Πbh) and can equivalently be written as PΠa + PΠb =
−PΠh−PΠc = −I(Πah − Πbh) − I(Πbc − Πac). The quantity PΠh = I(Πah − Πbh) < 0
can be considered as the power “delivered” to the hot junction due to the Peltier effect,
and its logical negative sign means that the direction of the current is determined by the
tendency to reach thermal equilibrium, reducing Th; similarly, PΠc = I(Πbc − Πac) > 0 to
increase Tc. Note that PΠh and PΠc are the powers most often discussed in relation to the
Peltier effect. Thus, adding the contributions of the two conductors, Equation (A7) can be
transformed to

PS = PT + PΠh+PΠc (closed circuit) (A8)

where PS = I
∮

SdT = PSa + PSb and PT = −I
∮

τdT = PTa + PTb are the Seebeck and
Thomson powers delivered by the current to the conductors. Equation (A8) shows that, for
the closed circuit, the Seebeck power includes the Thomson power and the Peltier powers
“delivered” to the junctions [49]. Moreover, as shown in Equation (A5), the Seebeck power
for the closed circuit is negative, PJ = −PS > 0. These results indicate that the concept of
T/J compensation is useful for a conductor but not so much for a closed circuit.
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