UNIVERSITAT DE VALÈNCIA FACULTAT DE FILOSOFIA I CC.EE.

DEPARTAMENT DE LÒGICA I FILOSOFIA DE LA CIÈNCIA

MÁSTER EN

PENSAMIENTO FILOSÓFICO CONTEMPORÁNEO

CURSO 2009-2010

GUÍA DOCENTE

Asignatura

FILOSOFÍA Y MATEMÁTICAS

I.- DATOS INICIALES DE IDENTIFICACIÓN

Nombre de la asignatura:	Filosofía y matemáticas	
Carácter:	Optativa	
Titulación:	Master en Pensamiento filosófico	
	contemporáneo	
Ciclo:	Master	
Departamento:	Lógica y Filosofía de la Ciencia	
Profesores responsables:	Rafael Beneyto Torres	

II.- INTRODUCCIÓN A LA ASIGNATURA

Se pretende estudiar algunos de los problemas filosóficos que plantean las matemáticas. Se analizaran los programas fundamentistas y no fundamentistas, la lógica del descubrimiento matemático, el progreso y el cambio en matemática. Reflexionaremos sobre el contexto sociocultural de las matemáticas, sobre la relación entre las matemáticas y las ciencias.

III.- VOLUMEN DE TRABAJO

ACTIVIDAD	Horas/curso
ASISTENCIA A CLASES TEÓRICAS	14
ASISTENCIA A CLASES PRÁCTICAS	8
PREPARACIÓN DE TRABAJOS	30
ESTUDIO PREPARACIÓN CLASES	15
PREPARACIÓN PROBLEMAS	0
ESTUDIO PREPARACIÓN DE EXÁMENES	12
REALIZACIÓN DE EXÁMENES	4
ASISTENCIA A TUTORÍAS	12
ASISTENCIA A SEMINARIOS Y ACTIVIDADES	30
TOTAL VOLUMEN DE TRABAJO	125

IV.- OBJETIVOS GENERALES

- Dar a conocer las relaciones actuales entre la Filosofía y la Matemática dentro de la evolución habida desde el siglo XIX.
- Reflexionar sobre algunos tópicos y problemas más destacados como son la naturaleza y el de existencia de los objetos matemáticos.
- Motivar la preocupación por el infinito, la verdad, la demostrabildad y la computabilidad.

V.- CONTENIDOS

- El infinito
 - o Infinito potencial y actual
 - o Paradojas
 - Los infinitos en Teoría de Conjuntos
 - o El axioma de elección y el principio de buena ordenación
- La naturaleza de las matemáticas
 - o Fundamentos de las matemáticas
 - o Logicismo
 - o Cantorismo
 - o Formalismo
 - o Intuicionismo
 - o Estructuralismo
- Las entidades matemáticas: Los objetos y funciones matemáticas.
- Los hechos matemáticos
 - o Verdad
 - Demostrabilidad
 - Computabilidad
- Nuevas tendancias en la Filosofía de las Matemáticas

VI.- DESTREZAS A ADQUIRIR

- 1) Conocimiento en profundidad del estado de la cuestión en las relaciones de la Filosofía y la Matemática.
- 2) Identificación y formulación precisa de los problemas filosóficos y de su tratamiento en el ámbito de la Matemática.
- 3) Desarrollo de la capacidad de análisis y discusión de textos de Filosofía de la Matemática.

VII.- HABILIDADES SOCIALES

- Desarrollo de la capacidad de reflexión crítica y discusión pública sobre problemas del ámbito de la materia.
- Desarrollo de las destrezas de exposición y defensa oral de una disertación y de las habilidades de participación en debates y trabajo en equipo.
- Identificación y búsqueda de fuentes de información para el desarrollo de trabajos de investigación en el ámbito de la filosofía de la matemática.

VIII.- TEMARIO Y PLANIFICACIÓN TEMPORAL

Tema	Título y contenido	Semanas
1	El Infinito potencial y actual Paradojas	10-02-10
2	Los infinitos en Teoría de Conjuntos El Axioma de Elección y el principio de buena ordenación	24-02-10
3	Fundamentos de las Matemáticas Logicismo Cantorismo	10-03-10
4	Formalismo Intuicionismo	31-03-10
5	Estructuralismo	21-04-10
6	Las entidades matemáticas: objetos y funciones matemáticas	28-04-10
7	Los hechos matemáticos. Verdad, Demostrabilidad y computabilidad	5-05-10
8	Nuevas tendencias en la Filosofía de las Matemáticas	19-05-10

(El calendario puede ser modificado por acuerdos en la clase y por necesidades de organización de los seminarios del Master.)

IX.- BIBLIOGRAFÍA DE REFERENCIA

- J. Alcolea: Logicismo, formalismo, intuicionismo, Valencia: Nau Llibres, 1985.
- P. Benacerraf and H. Putnam (eds.): *Philosophy of mathematics*, Cambridge University Press, 1983.
- W. B. Ewald: From Kant to Hilbert. A source book in the foundations of mathematics, 2 vols., Clarendon Press, 1996.
- J. Ferreiros: Labyrinth of thought. A history of set theory and its role in modern mathematics, Birkhäuser Verlag, 2007
- M. Friend: Introducing philosophy of mathematics, Acumen, 2007.
- K. Gödel: Obras completas, Alianza Editorial, 1981.

Grattan-Guinness: *Del cálculo a la teoría de conjuntos, 1630-1910*, Alianza Universidad, 1984.

- R. Hersh: 18 Unconventional essays on the nature of mathematics, Springer, 2006
- S. Körner: Introducción a la filosofía de la matemática, Siglo XXI Editores, 1977.
- de Lorenzo, J.: Introducción al estilo matemático, Madrid: Tecnos, 1969
- de Lorenzo, J.: *Poincaré, matemático visionario, politécnico escéptico*, Madrid: Nivola, 2009
- S. Shapiro: *The Oxford handbook of philosophy of mathematics and logic*, Oxford University Press, 2005
- J. van Heijenoort: From Frege to Gödel. A source book in mathematical logic, Harvard University Press, 1967.

X.- METODOLOGÍA

Se expondrán en el inicio del curso los objetivos a conseguir, se indicará la bibliografía más relevante y el sistema de evaluación.

En cada sesión se procederá a una presentación del tema a tratar (por parte del profesor o de algunos estudiantes) y se provocará una discusión entre los matriculados. Se procurará información suficiente para que cada estudiante organice sus ensayos dirigidos a la confección de un posible trabajo de investigación.

Finalmente se hará un balance final sobre el trabajo realizado y el grado de consecución de los objetivos proyectados.

Se procederá a la entrega de los ensayos comprometidos por los estudiantes.

XI.- EVALUACIÓN DEL APRENDIZAJE

Asistencia y participación en las sesiones de curso (20 %)

Trabajos originales sobre temas establecidos de acuerdo con el profesor y relacionados con materias del curso (40 %)

Examen escrito (40 %)