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Abstract

We give an upper bound for the first Dirichlet eigenvalue of a tube around a
complex curve P of CPn(λ) which depends only on the radius of the tube and the
degrees of the polynomials defining P . The bound is sharp on a totally geodesic
CP 1(λ) and gives a gap between the eigenvalue of a tube around CP 1(λ) and around
other complex curves.

1 Introduction

Let CPn(λ) be the complex projective space of holomorphic sectional curvature 4λ. We
shall denote by ℘ : Cn+1 −→ CPn(λ) the canonical projection. The classical Chow’s
Theorems states that every complete complex submanifold P of CPn(λ) is algebraic,
then, if P has complex dimension q it is the image by ℘ of the set of zeroes of n − q
homogeneous polynomials of degrees aq+1, ..., an. For such a submanifold, we shall denote
by Pρ the tube of radius ρ > 0 around P and by ∂Pρ its boundary. We shall always
consider ρ lower than the cut distance from P . In this paper we shall consider the case
q = 1 (complex curves) and we shall prove:

Theorem 1.1 The first eigenvalue µ1(Pρ) of the Dirichlet eigenvalue problem

∆f = µf, f |∂Pρ = 0

satisfies the inequality

µ1(Pρ) ≤ µ1(CP 1(λ)ρ)−
2λ

(
n∑
s=2

as − (n− 1)

)

1− λ

(
1

n− 1

n∑
s=2

as

)
C(ρ)

(1)

where CP 1(λ) is embedded as a complex totally geodesic submanifold of CPn(λ), C(ρ) is

a well defined constant which depends only on ρ and satisfies λ

(
1

n− 1

n∑
s=2

as

)
C(ρ) < 1.

Moreover the equality is attained if and only if P = CP 1(λ).
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The interest of this bound lies on the fact that it relates the first Dirichlet eigenvalue
of Pr with the degrees of the polynomials defining P (which, in turn, are related with the
first Chern class of the normal bundle of P , as it is shown along the proof). Moreover,
Theorem 1.1 shows a gap phenomenon for µ1(Pρ) between the case P = CP 1(λ) (which
corresponds to a2 = ... = an = 1) and the other complex curves P , and states that the gap
is measured by the degrees as. A similar gap (not related with the “as”) also appeared in
the study of the first closed eigenvalue of P did by Bourguignon, Li and Yau in [1].

Our study was motivated by the work of A. Gray in [4] and [5] on the volume of Pρ,
where he showed that it is determined by ρ and and the degrees as. The previous work
of Cheng ([2]), Lee ([8]), Giménez, Palmer and the last two authors of this paper (cf. [3],
[9], [10] and [11]) on µ1(Pρ) has shown that there is a strong relation between volume(Pρ)
and µ1(Pρ), then it was natural to ask for some result relating the degrees as with µ1(Pρ).
In this case it seems too strong to expect that the degrees of the polynomials determine
the first Dirichlet eigenvalue, but what we have seen is that, at least, they allow to obtain
a bound and to measure the gap between the first Dirichlet eigenvalue of a tube around a
totally geodesic complex curve and of tubes around the other complex curves.

Acknowledgments: First and third authors were partially supported by DGI (Spain)
and FEDER Project MTM2007-65852 and by the network MTM2008-01013-E. Third au-
thor was also partially supported by the MTM2010-15444 project and the Generalitat
Valenciana Project Prometeo 2009/099.

2 Preliminaries

Given a complex curve P of CPn(λ), we shall denote by r the distance to P in CPn(λ).
Let us denote by NP the normal bundle of P , by Aξ the Weingarten map of P in the
direction of ξ ∈ NP , |ξ| = 1. Moreover, we shall use the notations sλ and cλ for

sλ(t) =
sin(
√
λt)√
λ

, cλ(t) = cos(
√
λt),

which satisfy the computational rules s′λ = cλ and c2λ + λs2λ = 1.
Since P is a complex submanifold, it is compatible with CPn(λ) (in the sense given

by Gray in [6] page 95). Then, given ξ ∈ NP , |ξ| = 1, there exists a holomorphic
orthonormal frame {e1, Je1, ...., en, Jen} such that e2 = ξ and {e1, Je1} is a basis of TpP
which diagonalizes the Weingarten map Aξ, with eigenvalues k(ξ),−k(ξ).

As, on the other hand, CPn(λ) is locally symmetric, by Theorem 6.14 in [6] page 96,
we can choose a parallel orthonormal J-frame {E1(t), JE1(t)} along the normal geodesic
γξ(t) = expp tξ which coincides with {e1, Je1} at p and such that diagonalzes the Wein-
garten map Sλ(t) of ∂Pt. In this J-frame the expression of Sλ := Sλ(ρ) is (cf. [6], page
125):
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SλE1(ρ) =
λsλ(ρ) + k(ξ)cλ(ρ)

cλ(ρ)− k(ξ)sλ(ρ)
E1(ρ)

SλJE1(ρ) =
λsλ(ρ)− k(ξ)cλ(ρ)

cλ(ρ) + k(ξ)sλ(ρ)
JE1(ρ)

SλJE2(ρ) = −c4λ(ρ)

s4λ(ρ)
JE2(ρ) (2)

SλEj(ρ) = −cλ(ρ)

sλ(ρ)
Ej(ρ), and (3)

SλJEj(ρ) = −cλ(ρ)

sλ(ρ)
JEj(ρ), j = 3, ..., n.

From these expressions it follows

trSλ =
2sλ(ρ)cλ(ρ)(λ+ k2)

c2λ(ρ)− k2s2λ(ρ)
− (2n− 3)

cλ(ρ)

sλ(ρ)
+ λ

sλ(ρ)

cλ(ρ)
(4)

On the other hand, if f : R −→ R is a C∞ function, one has (cf. [10] for instance):

∆(f ◦ r) = −f ′′ ◦ r + trSλ f
′ ◦ r (5)

From now on we shall omit the writing of “◦ r”, which should be understood by the
context.

Since for CP 1(λ), k = 0, it follows from (4) and (5) that the eigenfunction associated
to µ1(CP 1(λ)ρ) is fλ ◦ r, where fλ is the solution of the equation:

−f ′′ +
(

3λ
sλ
cλ
− (2n− 3)

cλ
sλ

)
f ′ = µf

f(ρ) = 0
f ′(0) = 0

 (6)

for the minimum µ > 0 satisfying (6), which will be µ1(CP 1(λ)ρ). This function satisfies
the inequalities (cf. [9] or [10] for instance)

fλ > 0 on [0, ρ[ and f ′λ < 0 on ]0, ρ]. (7)

3 Proof of Theorem 1.1

We shall divide the proof in three steps. In the first one, we shall obtain an upper
bound of µ1(Pρ) which is some function of the integral along P of the norm of its second
fundmental form. For this estimation we shall apply the Raileigh theorem

µ1(Pρ) = inff∈C∞(Pρ,R)
f |∂Pρ=0

∫
Pρ

(∆f)f∫
Pρ
f2

(8)
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and we’ll use fλ◦r (which many times we shall write as fλ(r) or just fλ) as a test function,
then

µ1(Pρ) ≤

∫
Pρ
fλ(∆fλ)∫
Pρ
f2λ

(9)

Let us compute the right hand side of the above inequality. From (4) and (5), we get

∆(fλ ◦ r) = −f ′′λ ◦ r +

(
2sλ ◦ r cλ ◦ r (λ+ k2)

c2λ ◦ r − k2 s2λ ◦ r
− (2n− 3)

cλ ◦ r
sλ ◦ r

+ λ
sλ ◦ r
cλ ◦ r

)
f ′λ ◦ r

In order to compare with µ1(CP 1(λ))ρ, we add and substract 2λ
sλ
cλ

to the coefficient of

f ′λ and we get

∆fλ =− f ′′λ +

(
2k2

c2λ − k2s2λ
sλ
cλ

+ 3λ
sλ
cλ
− (2n− 3)

cλ
sλ

)
f ′λ (10)

Having into account that fλ satisfies (6) with µ = µ1(CP 1(λ)ρ), we obtain from (10)
that ∫

Pρ

fλ(∆fλ) =

∫
Pρ

µ1(CP 1(λ)ρ)f
2
λ +

∫
Pρ

2
sλ
cλ

k2

c2λ − k2s2λ
fλf

′
λ (11)

Taking under consideration (7) we have the inequality

(f2λ)′ = 2fλf
′
λ ≤ 0 (12)

Then, it follows from (9), (11), (12) and the expression of the volume element of Pρ in
spherical Fermi coordinates (cf. [6], page 125) that

µ1(Pρ) ≤

∫
Pρ
fλ(∆fλ)∫
Pρ
f2λ

≤

∫
Pρ
µ1(CP 1(λ)ρ)f

2
λ∫

Pρ
f2λ

+

∫
Pρ

sλ
cλ

k2

c2λ − k2s2λ
(f2λ)′∫

Pρ
f2λ

= µ1(CP 1(λ)ρ) +

∫ ρ

0

∫
P

∫
S2n−3

(f2λ)′
sλ
cλ

k2

c2λ − k2s2λ
s2n−3λ cλ(c2λ − k2s2λ)dξ dp dr∫ ρ

0

∫
P

∫
S2n−3

f2λ s2n−3λ cλ(c2λ − k2s2λ) dξ dp dr

= µ1(CP 1(λ)ρ) +

∫ ρ

0

∫
P

∫
S2n−3

(f2λ)′s2n−2λ k2 dξ dp dr∫ ρ

0

∫
P

∫
S2n−3

f2λ s2n−3λ cλ(c2λ − k2s2λ) dξ dp dr

, (13)

where dp and dξ denote, respectively, the volume elements of P and of S2n−2q−1.
In the second step, we shall relate |Aξ| with the first Chern number of NP and with

the degrees “as”. For it, first we shall write the first Chern form of the normal connection
D on NP (which satisfies DJ = 0 = D〈, 〉) using the real formalism, like it is done, for

4



instance, in [6] and in [7]. With it, for a local J-orthonormal frame N2, JN2, ..., Nn, JNn

the first Chern form γ1 of NP is given by

2π γ1 =
n∑
s=2

< RD(·, ·)Ns, JNs >,

where RD is the curvature of D
Let us denote by e(Ns) the eigenvector of ANs associated to the eigenvalue k(Ns).

Using the Ricci equations relating the curvature RD with the curvature R of CPn(λ) and
ANs , the above expression for γ1 gives:

2π γ1(X,Y ) =

n∑
s=2

{
< R(X,Y )Ns, JNs > − < [ANs , AJNs ]X,Y >

}
Having into account the expression of R

Rwxyz = λ {〈w, y〉〈x, z〉 − 〈w, z〉〈x, y〉
+〈Jw, y〉〈Jx, z〉 − 〈Jw, z〉〈Jx, y〉+ 2〈Jw, x〉〈Jy, z〉} . (14)

and the properties of the Weingarten map of a complex submanifold

AJξX = JAξX and AξJX = −JAξX, (15)

we obtain

2πγ1(X,Y ) =
n∑
s=2

2 (λF (X,Y )− F (ANsX,ANsY )) , (16)

where F is the Kähler form of P defined by F (X,Y ) = 〈JX, Y 〉.
On the other hand, it is well known that the first Chern class [γP1 ] of a complex curve P

of CPn(λ) given as the intersection of n−1 homogeneous polynomials of degrees a2, ..., anis
given by (cf. page 114 of [6])

[
γP1
]

=

(
n+ 1−

n∑
s=2

as

)[
λ

π
F

]
, (17)

and the first Chern class of CPn(λ) is (cf. page 105 of [6])[
γ
CPn(λ)
1

]
= (n+ 1)

[
λ

π
F

]
(18)

Given the canonical inclusion i : P −→ CPn(λ), we have i∗TCPn(λ) = TP ⊕ NP , then

i∗[γ
CPn(λ)
1 ] = [γP1 ] + [γ1], then, from (17) and (18),

[γ1] =
[
γ
CPn(λ)
1

]
−
[
γP1
]

= (n+ 1)

[
λ

π
F

]
−

(
n+ 1−

n∑
s=2

as

)[
λ

π
F

]
=

n∑
s=2

as

[
λ

π
F

]
(19)
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From (16) and (19) it follows that there is a 1-form θ such that

γ1(X,Y ) =
1

π

n∑
s=2

(λF (X,Y )− F (ANsX,ANsY )) (20)

=
λ

π

n∑
s=2

asF (X,Y ) + dθ(X,Y ) (21)

Now, let us compute γ1. First we do the computation using (20). For it, using an arbitrary
local J-orthonormal frame {e1, Je1} of TP and its dual frame {θ1, θ1∗} we compute first

F (ANs ·, ANs ·)
= F (ANs ·, ANs ·) (e1, Je1) θ

1 ∧ θ1∗

= 〈JANse1, ANsJe1〉 dp = −〈JANse1, JANse1〉 dp = −1

2
|ANs |2 dp (22)

then, from (20) and (22)

γ1 = (n− 1)
λ

π
dp+

1

2π

n∑
s=2

|ANs |2 dp (23)

Now, let us compute using (21),

γ1 =
λ

π

(
n∑
s=2

as

)
dp+ dθ (24)

From (23) and (24), integrating along P , which is compact, and applying Stokes theorem,
we obtain ∫

P

(
(n− 1)λ+

1

2

n∑
s=2

|ANs |2
)
dp = λ

(
n∑
s=2

as

) ∫
P
dp, (25)

from which it follows that

1

2(n− 1)

∫
P

(
n∑
s=2

|ANs |2
)
dp = λ

(
1

n− 1

n∑
s=2

as − 1

)
volume(P ) (26)

In the third step we shall obtain (1) from (13) and (26). First, we consider, at each
p ∈ P , the bilinear map Φ : NpP × NpP −→ R defined by Φ(ξ, η) =< Aξ, Aη >. A well
known lemma of Linear Algebra (cf. [6] page 61) states that∫

S2n−3

Φ(ξ, ξ) dξ =
2πn−1

(2n− 2)Γ(n− 1)

n∑
s=2

(Φ(Ns, Ns) + Φ(JNs, JNs)) ,

then ∫
S2n−3

|Aξ|2 dξ =
2πn−1

(n− 1)Γ(n− 1)

n∑
s=2

|ANs |2 (27)
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Since |Aξ|2 = 2 k(ξ)2, putting together (13), (25) and (27) we obtain

µ1(Pρ) ≤ µ1(CP 1(λ)ρ) +

2 πn−1

(n− 1)Γ(n− 1)

∫ ρ

0
(f2λ)′

1

2
s2n−2λ

∫
P

n∑
s=2

|ANs |2 dp dr

2πn−1

Γ(n− 1)

∫ ρ

0
f2λ s2n−3λ cλ

(
c2λ volume(P )− s2λ

1

2(n− 1)

∫
P

n∑
s=2

|ANs |2 dp

)
dr

= µ1(CP 1(λ)ρ) +

2λ

(
1

n− 1

n∑
s=2

as − 1

)∫ ρ

0
(f2λ)′ s2n−2λ dr

2

∫ ρ

0
s2n−3λ cλ f

2
λ

(
c2λ − s2λλ

(
1

n− 1

n∑
s=2

as − 1

))
dr

(28)

Notice that, since ρ < cut distance from P , we have 1 > c2λ − k2s2λ > 0, then the
denominator in (28) is positive.

Integration by parts gives∫ ρ

0
(f2λ)′ s2n−2λ dr =

(
s2n−2λ f2λ

∣∣ρ
0
−
∫ ρ

0
(2n− 2)s2n−3λ cλ f

2
λdr

)
= −(2n− 2)

∫ ρ

0
s2n−3λ cλ f

2
λ dr (29)

because sλ(0) = 0 and fλ(ρ) = 0. Using that c2λ = 1− λs2λ, by substitution of (29) in (28)
we obtain

µ1(Pρ) ≤ µ1(CP 1(λ)ρ)−
λ

(
1

n− 1

n∑
s=2

as − 1

)
2(n− 1)

∫ ρ

0
s2n−3λ cλ (f2λ) dr

∫ ρ

0
s2n−3λ cλ f

2
λ dr − λ

∫ ρ

0
s2n−3λ cλ f

2
λs2λ

(
1

n− 1

n∑
s=2

as

)
dr

= µ1(CP 1(λ)ρ)−
2 λ

(
n∑
s=2

as − (n− 1)

)

1− λ

(
1

n− 1

n∑
s=2

as

) ∫ ρ

0
s2n−3λ cλ f

2
λs2λdr∫ ρ

0
s2n−3λ cλ f

2
λdr

,

which is inequality (1) with C(ρ) =

∫ ρ

0
s2n−3λ cλ f

2
λs2λdr∫ ρ

0
s2n−3λ cλ f

2
λdr

, and the inequality satisfied from

C(ρ) comes from the positivity of the denominator of (28).
On the other hand, when P = CP 1(λ) we have equality in (1). If P 6= CP 1(λ) the

equality can not be achieved because this will imply that fλ is a solution of (5), which
only is true when k = 0. Then the equality in (1) holds if and only if P is CP 1(λ), which
finishes the proof of the theorem.
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