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Abstract

We obtain upper bounds for the first Dirichlet eigenvalue of a tube around a
complex submanifold P of CPn(λ) which depends only on the radius of the tube,
the degrees of the polynomials defining P and the first eigenvalue of the tube around
some model centers. The bounds are sharp on these models. Moreover, when the
models used are CP q(λ) or Qn−1(λ) these bounds also provide gap phenomena and
comparison results.

1 Introduction

This paper deals with classical Dirichlet eigenvalue problem

∆f = µf on M and f = 0 on ∂M (1)

on a connected compact Riemannian manifold M with boundary ∂M . An active area of
research in this problem is to determine “interesting” upper or lower bounds for the first
eigenvalue µ1(M) in equation (1). Here “interesting” means sharp or related with some
special properties of the space M . As examples of the work in this direction there are the
results by S. Y. Cheng ([3]), R. Reilly ([17]), M.Gage ([6]), A. Kasue ([11]), J. M. Lee([13]),
F. Giménez, A. Lluch, V. Palmer and the second author ([7, 14, 15, 16]), G. P. Bessa and
J. F. Montenegro ([2]). In these papers, M is a tube around some compact submanifold
of some Riemannian manifold or a manifold with boundary with special bounds on the
curvatures of M and ∂M . The bounds obtained for µ1(M) are usually the values of this
first eigenvalue for some special model tube and, often, the equality characterizes this
model tube.

Very close to the problem of obtaining bounds for µ1(M) is that of getting estimates
for the volume of M . The deep relation between these problems is well known and some
of the papers quoted above show or explore it. As for the volume, A. Gray (see [8, 9, 10])
has shown that the volume of a tube around a complex submanifold of CPn(λ) can be
expressed in terms of the degrees of the polynomials defining the center of the tube. It is
natural, then, to look for some relation between the first Dirichlet eigenvalue of the tube
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and the degrees of the polynomials defining its center. Another hope for getting such kind
of relation are the recent results by Colbois, Dryden and El Soufi ([4]) where they obtain
bounds of the first eigenvalue for the closed problem on algebraic submanifolds in the
euclidean space in terms of the degrees of the polynomials defining them. The problem
was addressed in [5], where A. Lluch and the authors obtained a bound of the first Dirichlet
eigenvalue of a tube around a complex curve in the complex projective space in terms of
the degrees of the polynomial defining the complex curve. Our aim in this paper is to
complete the work started in [5] by studying tubes around complex submanifolds of any
dimension as well as giving bounds of a different flavor, namely by comparing with the
eigenvalues of tubes around all the possible homogeneous complex submanifolds for which
the eigenfunctions corresponding to µ1(M) are radial.

We now state our results with more precision. Let CPn(λ) be the complex projec-
tive space of holomorphic sectional curvature 4λ, and let ℘ : Cn+1 −→ CPn(λ) be the
canonical projection. Chow’s Theorem states that every complete complex submanifold
P q of CPn(λ) (of complex dimension q) is the image by ℘ of the set of zeros of n − q
homogeneous polynomials of degrees aq+1, ..., an. As a consequence P is compact, be-
cause the set Z of zeros of homogeneous polynomials is a closed subset of Cn+1 consisting
of lines, then its intersection with the unit sphere S2n+1 is compact and the projection
P = ℘(Z∩S2n+1) = ℘(Z) in CPn(λ) is compact. For such a submanifold, we shall denote
by Pρ the tube of radius ρ > 0 around P and by ∂P q

ρ its boundary. We shall always
consider ρ lower than the cut distance cut(P ) from P q. In [5] it is studied the Dirichlet
eigenvalue problem (1) for M = P 1

ρ , where P is a complex curve of CPn(λ) and an upper
bound of µ1(Pρ) is obtained of the form

µ1(P
1
ρ ) ≤ µ1(CP 1(λ)ρ)−M1(ρ, n, a2, . . . , aq), (2)

where CP 1(λ) is embedded as a totally geodesic complex submanifold of CPn(λ),
M1(ρ, n, 1, . . . , 1) = 0 and M1(ρ, n, a2, . . . , aq) > 0 for (a2, . . . , an) ̸= (1, . . . , 1). Moreover,
the equality is attained if and only if P 1 = CP 1(λ) (that is, (a2, . . . , aq) = (1, . . . , 1)).

This bound shows how µ1(Pr) is related to the degrees of the polynomials defining P .
Moreover it is also a comparison theorem with µ1(CP 1(λ)r) and shows a gap phenomenon
for µ1(P

1
ρ ) between the case P 1 = CP 1(λ) (which corresponds to a2 = · · · = an = 1) and

the other complex submanifolds P , and states that the gap is measured by the degrees
as (a similar gap phenomenon occurs in the study of the closed eigenvalue problem for
complex submanifolds by J. P. Bourguignon, P. Li and S. T. Yau ([1])).

In this paper we address the problem of getting bounds of the same nature that (2) for
higher dimensions of P q (q ≥ 1) and comparing with tubes around some model complex
submanifolds. These models, denoted by P, are the complex submanifolds of CPn(λ)
having constant normal curvatures (constant means here that they do not depend on the
point nor the direction). They were classified by Kimura ([12]) and are listed at the end
of section 2. As in [5], we use the deep ideas in the work of A. Gray ([8], [9], [10]) to get
theorems. But here we use them more from the root, which gives simpler computations
and also more general results. Of course, another ingredient is the work of Kimura ([12]).
We shall prove:
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Theorem 1.1 For 1 ≤ q ≤ n − 1, q = dimC P = dimCP, the first eigenvalue µ1(P
q
ρ ) of

the Dirichlet eigenvalue problem (1) satisfies the inequality

µ1(P
q
ρ ) ≤ µ1(Pρ) +MP(ρ, n, q, aq+1, ..., an), (3)

where MP(ρ, n, q, aq+1, ..., an) is a well defined constant which depends only on P, ρ, n, q,
aq+1, ..., an. Moreover:

1. MCP q(λ) ≤ 0 and the equality holds if and only if P = CP q(λ), which is equivalent to∑n
i=q+1 ai = n− q. As a consequence, (3) gives a gap between µ1(CPn(λ)ρ) and the

corresponding eigenvalues of tubes with the same radius around complex submanifolds
defined by polynomials of higher degree.

2. When q = n − 1 and P = Qn−1(λ) (the complex hyperquadric), there is a ρ0,
0 < ρ0 ≤ cut(P ), depending on the degree an of the polynomial defining P , such
that, for every ρ < ρ0, MQn−1(λ) ≤ 0 if P ̸= CPn(λ) (which is equivalent to an > 1)
and, in this case, equality holds if and only if the polynomial defining P has degree
2. As a consequence, for every ρ < ρ0:

(a) Qn−1(λ) gives the biggest first eigenvalue of problem (1) among all the tubes
around a complex hypersurface defined by a homogeneous polynomial of degree
2, and

(b) For all the complex hypersurfaces defined by polynomials of degree ≥ 3, there is
a gap between µ1(Q

n−1(λ)ρ) and µ1(Pρ).

Remark 1.2 We think that ρ0 = cut(P ), but we have not enough precise bounds for ρ0 to
assure it. For the other models P different from CPn(λ) and Qn−1(λ) we have no control
on the term MP. This is what makes us unable to obtain any kind of comparison theorem
from (3) for these other models.

If P is not any of the models we have considered, the µ1-eigenfunction is not radial,
and our method cannot give an upper bound of µ1(Pρ)− µ1(Pρ) depending only on P, n,
q, ρ and the degrees of the polynomials defining P .

Acknowledgments: The second author has been partially supported by DGI (Spain)
and FEDER Project MTM2010-15444 and the Generalitat Valenciana Project GVProm-
eteo 2009/099.

2 Preliminaries on complex submanifolds and the tubes around
them

Given a complex submanifold P of CPn(λ) of real dimension 2q, we shall denote by r
the distance to P in CPn(λ). Let us denote by NP the normal bundle of P , by Aξ the
Weingarten map of P in the direction of ξ ∈ NP , |ξ| = 1. Besides, we consider the
functions sλ and cλ defined by

sλ(t) =
sin(

√
λt)√
λ

, cλ(t) = cos(
√
λt), taλ(t) =

sλ(t)

cλ(t)
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which satisfy the computation rules s′λ = cλ and c2λ + λs2λ = 1.
Since P is a complex submanifold, given ξ ∈ NP , |ξ| = 1, the Weingarten map Aξ,

has eigenvalues k1(ξ),−k1(ξ), ..., kq(ξ),−kq(ξ). The trace of the Weingarten map S(t) of
∂Pt is (cf. [10], page 125, formula (7.25)):

trS = 2sλ(ρ)cλ(ρ) hP (ρ)− (2n− 2q − 1)
cλ(ρ)

sλ(ρ)
+ λ

sλ(ρ)

cλ(ρ)
, (4)

where hP (ρ) =

q∑
i=1

(λ+ k2i )

c2λ(ρ)− k2i s
2
λ(ρ)

(5)

On the other hand, if f : R −→ R is a C∞ function, one has (cf. [15] for instance):

∆(f ◦ r) = −f ′′ ◦ r + trS f ′ ◦ r (6)

From now on we shall omit “◦ r” when it can be understood from the context.

The volume element ω of a tube Pρ in Fermi coordinates around P can be written (cf.
[10], page 125 formula (7.26)) as

ω = θ(p, ξ, r) dξ dp dr, with θ(p, ξ, r) = s2n−2q−1
λ cλ v(p, ξ, r), (7)

where v(p, ξ, r) =

q∏
j=1

(c2λ − s2λ kj(ξ)
2) = c2qλ

q∏
j=1

(1− ta2λ kj(ξ)
2),

where dp and dξ denote the volume elements of P and S2n−2q−1, respectively. We remark
that, for p and ξ fixed, the first positive value of r where v(p, ξ, r) (and hence θ(p, ξ, r))
vanishes is lower than cut(P ).

Expanding the product in the above formula, one obtains

q∏
i=1

(1− ta2λ ki(ξ)
2) =

q∑
c=0

Ψ2c(ξ, . . . , ξ) ta
2c
λ , where (8)

Ψ2c(ξ, . . . , ξ) = (−1)c
q∑

i1, . . . , ic = 1
i1 < · · · < ic

k2i1(ξ) . . . k
2
ic(ξ), (9)

and satisfies (cf. [10], pages 65 and 125):∫
S2n−2q−1

Ψ2c(ξ, . . . , ξ) dξ =:I2c(Ψ2c) = a(c) C2c((RP −RCPn(λ))c), (10)

with

a(c) =
2πn−q

c! (2c)! 2c (n− q + c− 1)!
(11)
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and C2c((RP − RCPn(λ))c) is a contraction of the curvature operator (RP − RCPn(λ))c

which is related to the Chern form γc = γc(R
P − RCPn(λ)) of the curvature operator

(RP −RCPn(λ)) by

b(c) :=

∫
P

C2c((RP −RCPn(λ))c) dp =
i! (2c)! (2π)c

(q − c)!

∫
P

γc ∧ F q−c dp. (12)

One can look at [10] page 56 for a precise definition of C2c, and page 88 for the definition
of γc. On the other hand, γc is related with the degrees aj of the polynomials defining P
(cf. [10] page 141) by

[γ] =
[
γ(RP −RCPn(λ))

]
=


1

n∏
j=q+1

(
1 +

(aj − 1)λ

π
F

)
 , (13)

where [·] denotes the cohomology class of the corresponding differential form and the γc
are defined from γ by

γ = 1 + γ1 + · · ·+ γq + . . . .

It follows that

1 =
(
1 + γ1 + · · ·+ γq + . . .

) n∏
j=q+1

(
1 + (aj − 1)

λ

π
F

)
,

and, for c = 1, . . . , q ,

γc = (−1)cβc

(
λ

π
F

)c

where βc =

n∑
j1, . . . , jc = q + 1
j1 ≤ · · · ≤ jc

(aj1 − 1) . . . (ajc − 1) (14)

By substitution of (14) in (12) one obtains

b(c) = (−1)c
c! (2c)! (2π)c λc βc

(q − c)! πc

∫
P
F ∧

q
⌣. . . ∧ F dp = (−1)c

c! (2c)! 2c q!

(q − c)!
λc βc vol(P ).

(15)

In [12], Kimura classified all the complex submanifolds of CPn(λ) whose principal cur-
vatures are constant in the sense that they depend neither on the point of the submanifold
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nor on the normal vector. They are:

• Totally geodesic CP q(λ). It has ki = 0 (16)

• The complex hyperquadric Qn−1(λ), where ki(ξ) =
√
λ for i = 1, ..., n− 1. (17)

• CP 1(λ)× CPm−1(λ) ⊂ CP 2m−1(λ) for m ≥ 3 (then n = 2m− 1 ≥ 5 (18)

and q = m), where k1 = k2 =
√
λ, k3 = ... = km = 0

• SU(5)/S(U(3)× U(2)) ⊂ CP 9(λ) (then n = 9, q = 6), (19)

where k1 = k2 = k3 = k4 =
√
λ, k5 = k6 = 0.

• SO(10)/U(5) ⊂ CP 15(λ) (then n = 15, q = 10), (20)

where k1 = ... = k6 =
√
λ, k7 = ... = k10 = 0

3 Proof of Theorem 1.1

We shall denote by SP the Weingarten map of a tubular hypersurface centered at a model
comparison P and by fP an eigenfunction corresponding to µ1(Pρ). According to (6), fP
is the solution of the equation

−f ′′
P + trSP f ′

P = µ1(Pρ)fP, fP(ρ) = 0. f ′
P(0) = 0. (21)

This function satisfies the inequalities (cf. [14] or [15] for instance)

fP > 0 on [0, ρ[ and f ′
P < 0 on ]0, ρ]. (22)

By applying Raileigh’s theorem using fP ◦ r as a test function, we have

µ1(Pρ) ≤

∫
Pρ

fP(∆fP)∫
Pρ

f2
P

. (23)

Let us compute the right hand side of the above inequality. From (4), (6) and (21), we get

∆(fP ◦ r) = −f ′′
P ◦ r + trSP f ′

P ◦ r + (trS − trSP) f
′
P ◦ r

= µ1(Pρ)fP + 2sλ ◦ r cλ ◦ r (hP − hP) f
′
P. (24)

From (23), (24), (16) and (17) one gets

µ1(Pρ) ≤ µ1(Pρ) +

∫
Pρ

fP 2 sλ cλ (hP − hP) f
′
P ω∫

Pρ

f2
P ω

= µ1(Pρ) +

∫ ρ

0

∫
P

∫
S2n−2q−1

2fPf
′
P s2n−2q

λ c2λ (hP − hP) v(p, ξ, r) dξ dp dr∫ ρ

0

∫
P

∫
S2n−2q−1

f2
P θ(p, ξ, r) dξ dp dr

, (25)
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where we have used the expression (7) of the volume element ω of P q
ρ in Fermi coordinates.

Let us work with the integrand of the numerator in (25). Using (7), (8) and (9) we get

hP v(p, ξ, r) =

(
q∑

i=1

ki(ξ)
2 + λ

c2λ − ki(ξ)2s2λ

)
q∏

j=1

(c2λ − kj(ξ)
2s2λ)

=

q∑
i=1

(ki(ξ)
2 + λ) c2q−2

λ

q∏
j = 1
j ̸= i

(1− kj(ξ)
2ta2λ) (26)

hP v(p, ξ, r) = hP

q∏
j=1

(c2λ − kj(ξ)
2s2λ) = hP c2qλ

q∑
c=0

(−1)c ta2cλ

q∑
i1, . . . , ic = 1
i1 < · · · < ic

k2i1 . . . k
2
ic

(27)

But a direct computation gives

q∑
i=1

ki(ξ)
2

q∏
j = 1
j ̸= i

(1− kj(ξ)
2ta2λ) =

q∑
c=1

(−1)c−1 c ta2c−2
λ

q∑
i1, . . . , ic = 1
i1 < · · · < ic

k2i1 . . . k
2
ic (28)

and

q∑
i=1

λ

q∏
j = 1
j ̸= i

(1− kj(ξ)
2ta2λ) = λ

q∑
c=1

(−1)c−1 (q − c+ 1) ta2c−2
λ

q∑
i2, . . . , ic = 1
i2 < · · · < ic

k2i2 . . . k
2
ic

(29)

From (26), (28), (29), (9), (10) and (12) it follows∫
P

∫
S2n−2q−1

hP v(p, ξ, r)

= c2q−2
λ

(
−

q∑
i=1

i ta2i−2
λ a(i) b(i) + λ

q∑
i=1

(q − i+ 1) ta2i−2
λ a(i− 1) b(i− 1)

)
(30)

and ∫
P

∫
S2n−2q−1

hP v(p, ξ, r) = hP c2qλ

q∑
i=0

ta2iλ a(i) b(i) (31)

Now, after the substitution of (30) and (31) in the numerator of (25), having into
account that 2fPf

′
P = (f2

P)
′, we compute for that numerator:
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∫ ρ

0

∫
P

∫
S2n−2q−1

2fPf
′
P s2n−2q

λ c2λ (hP − hP) v(p, ξ, r) dξ dp dr

=

∫ ρ

0
(f2

P)
′s2n−2q
λ c2qλ

(
−

q∑
i=1

i ta2i−2
λ a(i) b(i) + λ

q∑
i=1

(q − i+ 1) ta2i−2
λ a(i− 1) b(i− 1)

−hP c2λ

q∑
i=0

ta2iλ a(i) b(i)

)
dr

=

∫ ρ

0
(f2

P)
′ s2n−2q

λ c2qλ

q∑
i=0

(
−i ta2i−2

λ + λ (q − i) ta2iλ − hP c2λta
2i
λ

)
a(i) b(i) dr =: N

(32)

But in all our comparison models P the possible values for ki are ±
√
λ or 0. Let z be

the number of normal curvatures with value
√
λ. With this conventon, it follows from (5)

that the expression for hP c2λ is

hP c2λ = z λ
1

c4λ
+ qλ (33)

We continue with the above computation (32)

N =

∫ ρ

0
(f2

P)
′s2n−2q
λ c2qλ

q∑
i=0

(
−i ta2i−2

λ c−2
λ + λ q ta2iλ −

(
z λ

1

c4λ
+ qλ

)
ta2iλ

)
a(i) b(i) dr

=

q∑
i=0

∫ ρ

0
(f2

P)
′
(
−i − zλ

s2λ
c4λ

)
s
2(n−q+i−1)
λ c

2(q−i)
λ a(i) b(i) dr

=

q∑
i=0

∫ ρ

0
(f2

P)
′
(
−i c2λ + (−z+ i)λs2λ

c4λ

)
s
2(n−q+i−1)
λ c

2(q−i)
λ a(i) b(i) dr

=

∫ ρ

0
(f2

P)
′ 1

c4λ
s
2(n−q−1)
λ c2qλ

q∑
i=0

(
−i c2λ + (i− z)λs2λ

)
ta2iλ a(i) b(i) dr (34)

On the other hand, for the denominator of (25), from (7), the remark after (7), (8),
(10) and (12) it follows:

0 <

∫ ρ

0

∫
P

∫
S2n−2q−1

f2
Pθ(p, ξ, r) dξ dpdr =

∫ ρ

0
f2
P s2n−2q−1

λ c2q+1
λ

q∑
i=0

ta2iλ a(i) b(i) dr

=

q∑
i=0

a(i) b(i)

∫ ρ

0
f2
Ps

2n−2q+2i−1
λ c2q−2i+1

λ dr (35)

Now we shall use the notation

µP = f2
P s2n−2q−1

λ c2q+1
λ and νP = (f2

P)
′ s

2n−2q−1
λ c2qλ

c4λ
. (36)
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Substitution of (34) and (35) in (25) gives

µ1(Pρ) ≤ µ1(Pρ) (37)

+

∫ ρ

0

q∑
i=0

(
−i c2λ + (i− z)λs2λ

)
ta2iλ a(i) b(i)νP dr

q∑
i=0

∫ ρ

0
s2iλ c

−2i
λ a(i) b(i) µP dr

,

From the formulae (11) and (15) for a(i) and b(i) it follows that

a(i) b(i)

a(0) b(0)
=

(−1)i (n− q − 1)! q! λi βi
(q − i)! (n− q + i− 1)!

= (−1)i

(
n−1
q−i

)(
n−1
q

)λi βi. (38)

Then (
n−1
q

)
a(0)b(0)

q∑
i=0

(
−i c2λ + (i− z)λs2λ

)
ta2iλ a(i) b(i)

=

q∑
i=0

(
−i c2λ + (i− z)λs2λ

)
ta2iλ (−1)i

(
n− 1

q − i

)
λi βi

= − λ z s2λ

(
n− 1

q

)
−
(
−s2λ + (1− z)λs2λta

2
λ

)
λ

(
n− 1

q − 1

)
β1

+
(
−2s2λta

2
λ + (2− z)λs2λta

4
λ

)
λ2

(
n− 1

q − 2

)
β2

−
(
−3s2λta

4
λ + (3− z)λs2λta

6
λ

)
λ3

(
n− 1

q − 3

)
β3

. . . . . . . . .

+ (−1)q
(
−qs2λta

2q−2
λ + (q − z)λs2λta

2q
λ

)
λq βq

=

q−1∑
i=0

(−1)iλi+1s2λta
2i
λ

(
(i− z)

(
n− 1

q − i

)
βi + (i+ 1)

(
n− 1

q − i− 1

)
βi+1

)
+ (−1)q(q − z)λs2λta

2q
λ λq βq (39)

Multiplying numerator and denominator of (37) by

(
n−1
q

)
a(0) b(0)

, having into account (11)

and (15), we obtain
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µ1(Pρ) ≤ µ1(Pρ)

+

q−1∑
i=0

(−1)iλi+1

(
(i− z)

(
n− 1

q − i

)
βi + (i+ 1)

(
n− 1

q − i− 1

)
βi+1

)
Bi(ρ) + (−1)q(q − z)λs2λta

2q
λ λq βqBq(ρ)

q∑
i=0

(−1)i
(
n− 1

q − i

)
λiβiCi(ρ)

(40)

where Bi(ρ) =

∫ ρ

0
s2λta

2i
λ νP dr and Ci(ρ) =

∫ ρ

0
s2iλ c

−2i
λ µP dr.

When P = CP q(λ), z = 0, and in order to study the sign of MCP q(λ) we consider its
expression given by the second summand in (25). In this case, from the definition (5) of

hP , one has hP − hCP q(λ) =
∑q

i=1

k2i
c2λ(c

2
λ − k2i s

2
λ)

≥ 0 for r < cut(P ). Since also θ ≥ 0

for r < cut(P ) and f ′
P < 0 on ]0, ρ], one has that MCP q(λ) ≤ 0. On the other hand, the

equality in (3) implies the equality in (23), which implies that fCP q(λ) is an eigenfunction
with eigenvalue µ1(CP q(λ)). From this and (24), it follows that hP − hCP q(λ) = 0, and,
from the above expression this can happen only if ki = 0, that is, if P = CP q(λ).

When P = Qn−1(λ), one has z = q = n− 1 and there is only one polynomial defining
P , with degree an, then βi = (an − 1)i and the numerator of MQn−1(λ) becomes

n−2∑
i=0

(−1)iλi+1

(
(i− (n− 1))

(
n− 1

n− 1− i

)
(an − 1)i + (i+ 1)

(
n− 1

n− 1− i− 1

)
(an − 1)i+1

)
Bi(ρ)

=

n−2∑
i=0

(−1)iλi+1

(
(i− (n− 1))

(
n− 1

n− 1− i

)
+ (i+ 1)

(
n− 1

n− 1− i− 1

)
(an − 1)

)
(an − 1)iBi(ρ)

(41)

But

(i− (n− 1))

(
n− 1

n− 1− i

)
= −(n− 1− i)

(
n− 1

n− 1− i

)
= −(n− 1) · · · (n− i− 1)

i!
= −(i+ 1)

(
n− 1

n− 1− i− 1

)
, (42)

which, substituted in (41) gives

n−2∑
i=0

(−1)iλi+1 (n− 1) · · · (n− i− 1)

i!
(−1 + an − 1)(an − 1)iBi(ρ)

= (an − 2)
n−2∑
i=0

(−1)iλi+1 (n− 1) · · · (n− i− 1)

i!
(an − 1)iBi(ρ) (43)
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Then MQn−1(λ) vanishes when an = 2. As a consequence, among all the complex
hypersurfaces P defined by a polynomial of degree 2, the complex hyperquadric gives the
maximum value of µ1(P ).

Now, let us study the sign of MQn−1(λ). First, recall that its denominator is positive for
ρ < cut(P ) (as we noticed in (35)). To check the sign of the numerator, the observation
that when 2[(n− 2)/2] + 1 > n− 2, n− 2[(n− 2)/2]− 2 = 0, allows us to write the sum
in (43) in the following way:

n−2∑
i=0

(−1)iλi+1 (n− 1) · · · (n− i− 1)

i!
(an − 1)iBi(ρ)

=

[(n−2)/2]∑
j=0

(−1)2jλ2j+1 (n− 1) · · · (n− 2j − 1)

(2j)!
(an − 1)2j

(
B2j(ρ)− λ

(n− 2j − 2)

(2j + 1)
(an − 1)B2j+1(ρ)

)

=

[(n−2)/2]∑
j=0

λ2j+1 (n− 1) · · · (n− 2j − 1)

(2j)!
(an − 1)2j

∫ ρ

0
s2λta

4j
λ νP

(
1− λ

(n− 2j − 2)

(2j + 1)
(an − 1)ta2λ

)
dr

which is negaitive for ρ ≤ ρ1 := min
0≤j≤[(n−2)/2]

ta−1
λ

(√
2j + 1

λ(n− 2j − 2)

)
, where ta−1

λ means

the inverse function of taλ with image in [0, π/2
√
λ[. Then, taking ρ0 = min{cut(P ), ρ1},

we have that MQn−1(λ) < 0 for an ≥ 3. This gives a gap between µ1(Q
n−1(λ)ρ) and µ1(Pρ)

for all complex hypersurfaces defined by polynomials of degree ≥ 3.

References

[1] J. P. Bourguignon, P. Li and S. T. Yau, Upper bound of the first eigenvalue for algebraic submanifolds,
Com. Math. Helv. 69 (1994), 199-207

[2] G. P. Bessa and J. F. Montenegro, On Cheng’s eigenvalue comparison theorem, Math. Proc. Camb.
Phil. Soc. 144 (2008), 673-682.

[3] S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975),
289-297

[4] B. Colbois, E. B. Dryden and A. El Soufi, Bounding the eigenvalues of the Laplace-Beltrami operator
on compact submanifolds, Bull. London Math. Soc. 42 (2010), 96-108

[5] M. C. Domingo-Juan, A. Lluch and V. Miquel, Upper bounds for the first Dirichlet eigenvalue of a
Tube around an algebraic complex curve of CPn(λ), Israel J. Math. 183 (2011), 189–198.

[6] M. Gage, Upper bounds for the first eigenvalue of the Laplace-Beltrami operator, Indiana Univ. Math.
J. 29 (1980), 897–912.
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