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Abstract. In this paper, we consider the scalar curvature of Yam-
abe solitons. In particular we show that, with natural conditions and
non positive Ricci curvature, any complete Yamabe soliton has constant
scalar curvature, namely, it is a Yamabe metric. We also show that a
complete non-compact Yamabe soliton with the quadratic decay at in-
finity of its Ricci curvature has non-negative scalar curvature. A new
proof of Kazdan-Warner condition is also presented.
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1. Introduction

In this work, we study the special solutions, the so called the Yamabe
solitons, to the Yamabe flow, which was introduced by R.Hamilton at the
same time as Ricci flow. We note that the Yamabe flow has some similar
properties as Ricci flow [7][11] [10][6][4]. Since the Yamabe solitons come
naturally from the blow-up procedure along the Yamabe flow [1][4][3][7], we
are lead to study the Yamabe solitons on complete non-compact Riemannian
manifolds. We shall study some properties of the scalar curvature of the
Yamabe solitons on complete non-compact Riemannian manifolds. Recall
that a Riemannian manifold (M, g) is called a Yamabe soliton if there are a
smooth vector filed X and constant ρ such that

(1) (R− ρ)g =
1

2
LXg on M,

where R is the scalar curvature and LXg is the Lie derivative of the metric g.
When X = ∇f for some smooth function f , we call it the gradient Yamabe
soliton. The function f above will be called the potential function and it is
determined up to a constant. In this case the equation (1) becomes

(2) (R− ρ)g = ∇2f on M.

When the constant ρ ≥ 0, we call the Yamabe solitons the non-expanding
Yamabe solitons.
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In this paper we shall prove the following results on the sign of the scalar
curvature R of a Yamabe soliton depending on some asymptotic behaviour
of it.

Theorem 1. Let (M, g) be a complete and non-compact gradient Yamabe
soliton with ρ ≥ 0. Assume that limx→∞R(x) ≥ 0. Then the scalar curva-
ture R of (M, g) is non-negative. Furthermore, if (M, g) is not scalar flat,
then R > 0 on M .

We shall use the argument from [9] to get another result about non-
expanding Yamabe solitons.

Theorem 2. Let (M, g) be a complete and non-compact gradient Yamabe
soliton with ρ ≥ 0. Assume that there is some point x0 such that for some
large uniform constant R0 > 1,∫

γ
[R− 2(n− 1)Ric(γ′, γ′)] ≤ ρ d(x),

for any minimizing geodesic curve γ connecting x0 to x with d(x, x0) ≥ R0.
Then R ≥ 0.

The proof of this theorem will be given in section 4.
We can show that in some cases the Yamabe solitons are Yamabe metrics,

which are Riemannian metrics with constant scalar curvature.

Theorem 3. Let (M, g) be a complete and non-compact gradient Yamabe
soliton such that |R − ρ| ∈ L1(M),

∫
M Ric(∇f,∇f) ≤ 0, and the potential

function f has at most quadratic growth on M ; that is,

|f(x)| ≤ Cd(x, x0)
2, |∇f | ≤ C(1 + d(x, x0)

2),

near infinity, where C is some uniform constant and d(x, x0) is the distance
function from the point x to a fixed point x0. Then R = ρ on (M, g).

We shall also study Liouville type theorem of harmonic functions with
finite Dirichlet integral. We show the following result.

Theorem 4. Let (M, g) be a complete and non-compact Riemmnian mani-
fold with non-negative Ricci curvature. Assume that u is a harmonic func-
tion with finite weighted Dirichlet integral, i.e., for some ball B(x0),∫

M−B(x0)
d(x, x0)

−2|∇u|2 <∞.

Then ∇2u = 0 on M .

Then, we shall use the idea of the proof of the above result to study the
Yamabe solitons and we shall obtain

Theorem 5. Assume that the Yamabe soliton (M, g,X) has non-positive
Ricci curvature. Suppose that

(3)

∫
M−B(x0)

d(x, x0)
−2|X|2 <∞.
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Then ∇X = 0 and R = ρ.

Let us remark that Theorem 5 applies to Yamabe solitons in general,
which do not need to be gradient nor non-expanding. When applied to non-
expanding solitons, Theorem 5 states that the only non-expanding solitons
with non-positive Ricci curvature and satisfying condition (3) are the Ricci-
flat and steady ones.

2. Proofs of theorems 1, 4, and 5

We now start to prove Theorem 1.
Proof of Theorem 1. We denote by Ric = (Rij) the Ricci tensor in the

local coordinates (xj).
First we shall obtain a formula for the Laplacian of the scalar curvature

of a gradient Yamabe soliton. Taking the k-derivative in (2) we have

∇kfij = ∇kRgij .
Using the Ricci formula (cf [2]) we get that

∇ifjk +Rjiklfl = ∇kRgij .
By contraction for j, k,

∇i∆f +Rilfl = ∇iR.
Then we have

nRi +Rilfl = Ri.

This gives us that
−Rilfl = (n− 1)Rl,

or, written in another way,

(4) −Ric(∇f, ·) = (n− 1)∇R.
Taking one more derivative we have

(n− 1)∆R = −Ril,ifl −Rilfil.
Recall the contracted Bianchi identity

Ril,i =
1

2
Rl.

Then we have

(n− 1)∆R = −1

2
(∇R,∇f)−R(R− ρ).

Hence, we have

(5) (n− 1)∆R+
1

2
g(∇f,∇R) +R2 − ρR = 0.

Using the maximum principle we can conclude the result of Theorem 1.
In fact, assume that infM R(x) < 0. Since limx→∞R(x) ≥ 0, we know that
there is some point z ∈M such that R(z) = infM R(x) < 0. Then we have

∆R(z) ≥ 0, ∇R(z) = 0.
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By this we have at z that

(n− 1)∆R+
1

2
g(∇f,∇R) ≥ 0

and by (5),

R(z)2 − ρR(z) ≤ 0.

This is absurd since R(z)2 − ρR(z) > 0 for ρ ≥ 0. The strong maximum
principle implies that either R(x) > 0 or R(x) = 0 on M . �

The proof of Theorem 4 will be carried out via the use of the Bochner
formula and the trick of integration by parts.

Proof of Theorem 4. Recall the Bochner formula (cf [2])

(6)
1

2
∆|∇u|2 = |∇2u|2 + g(∇u,∇∆u) +Ric(∇u,∇u).

Then using the harmonicity of u, we have

|∇2u|2 +Ric(∇u,∇u) =
1

2
∆|∇u|2.

Choose a cut-off function φ = φr on the ball B2r(x0), where r > 0 (and we
let Br = Br(x0) for simplicity) such that

φr = 1, in Br; |∇φr|2 ≤
C

r2
,

and

∆φr ≤
C

r2
.

These imply that

∆φ2r ≤
C

r2
→ 0

as r →∞. Then we have∫
[|∇2u|2 +Ric(∇u,∇u)]φ2r =

∫
1

2
∆|∇u|2φ2r .

Using integration by parts and our assumption, we have∫
1

2
∆|∇u|2φ2r =

∫
1

2
|∇u|2∆φ2r ,

which is, by our assumption,

≤
∫
B2r−Br

C

2r2
|∇u|2 → 0,

as r →∞. Hence we have∫
M

[|∇2u|2 +Ric(∇u,∇u)] = 0,

which implies that ∇2u = 0 and Ric(∇u,∇u) = 0 on M . �
We now use the idea above to study the Yamabe solitons and give the
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Proof of Theorem 5. By taking the trace, from the defining equation of
Yamabe soliton, we have that a Yamabe soliton satisfies

(7) divX = n(R− ρ), on M.

Recall the following Bochner formula (cf [12])

div(LXg)(X) =
1

2
∆|X|2 − |∇X|2 +Ric(X,X) +∇Xdiv(X).

Then we have

(8) |∇X|2 =
1

2
∆|X|2 +Ric(X,X) + (n− 2)∇XR.

Fixing a cut-off function φ as above, we then have that∫
Xj∇jRφ2 = −

∫
divX(R− ρ)φ2 + 2φ∇Xφ(R− ρ).

Hence, ∫
∇XRφ2 = −n

∫
(R− ρ)2φ2 − 2

∫
φ∇Xφ(R− ρ).

Integrating (8) we have∫
|∇X|2φ2 =

1

2

∫
(∆φ2)|X|2 +

∫
Ric(X,X)φ2 + (n− 2)

∫
∇XRφ2.

We then obtain∫
|∇X|2φ2 + n(n− 2)

∫
(R− ρ)2φ2 =

1

2

∫
(∆φ2)|X|2

+

∫
Ric(X,X)φ2 − 2(n− 2)

∫
φ∇Xφ(R− ρ).

Using the Young and Cauchy-Schwartz inequalities we can get that∫
|∇X|2φ2 + (n− 1)(n− 2)

∫
(R− ρ)2φ2

≤ 1

2

∫
(∆φ2)|X|2 +

∫
Ric(X,X)φ2 + C(n)

∫
|X|2|∇φ|2

for some uniform constant C(n). Then we have proved Theorem 5. �

3. proofs of theorem 3 and related results

The proof of Theorem 3 follows from the following proposition (see also
[5]).

Proposition 6. Let (M, g) be a Yamabe solition with smooth boundary.
Then we have

n(n− 1)

∫
M

(R− ρ)2 −
∫
M
Ric(∇f,∇f) = (n− 1)

∫
∂M

(R− ρ)∇νf,

where ν is the outward unit normal to the boundary ∂M .
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Proof. We use the argument from [8] (see also [5]). Note that∫
M
|∆f |2 =

∫
∆ffjj .

Integrating by parts we get that∫
∆ffjj =

∫
∂M

∆f∇νf −
∫
∇∆f · ∇f.

Then using the Bochner formula (6) we have∫
∆ffjj =

∫
∂M

n(R− ρ)∇νf +

∫
M

(
|∇2f |2 +Ric(∇f,∇f)− 1

2
∆|∇f |2

)
.

Notice that∫
M

∆|∇f |2 =

∫
∂M
∇ν |∇f |2 =

∫
∂M

2〈∇ν∇f,∇f〉

= 2

∫
∂M
∇2f〈ν,∇f〉 = 2

∫
∂M

(R− ρ)〈ν,∇f〉.

Then we have∫
M
|∆f |2 =

∫
M

(
|∇2f |2 +Ric(∇f,∇f)

)
+ (n− 1)

∫
∂M

(R− ρ)∇νf.

And, using (2) in the above formula, we obtain

(n2 − n)

∫
M

(R− ρ)2 −
∫
M
Ric(∇f,∇f) = (n− 1)

∫
∂M

(R− ρ)∇νf.

�

We now prove Theorem 3.

Proof. By Proposition 6, we know that for the dimension constant Cn > 0,

Cn

∫
Br

|R−ρ|2−
∫
M
Ric(∇f,∇f) = (n−1)

∫
∂Br

(R−ρ)∇νf ≤ Cr
∫
∂Br

|R−ρ|.

We now choose r = rj →∞ such that

r

∫
∂Br

|R− ρ| → 0.

This is obtained by using the fact that
∫
M |R−ρ| <∞ and Fubini’s theorem.

Then, when
∫
M Ric(∇f,∇f) ≤ 0, we have∫

M
|R− ρ|2 = 0,

which implies that R = ρ on M . �

We take this chance to give another proof of Kazdan-Warner condition
below.
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Proposition 7. Assume that X is a conformal vector field on the compact
Riemannian manifold (M, g), i.e., there exists a smooth function a(x) on M
such that

LXg = a(x)g.

Then we have∫
M
∇XRdvg = − 2n

n− 2

∫
∂M

(Ric− R

n
g)(ν,X)dσg,

where ν is the outer unit normal to the boundary ∂M .

Proof. Set

Ṙic = Ric− R

n
g.

Then by the contracted Bianchi identity we get

δṘic = −n− 2

2n
dR.

We now compute ∫
M
∇XRdvg = − 2n

n− 2

∫
M
δṘic(X)dvg.

Integrating by parts we get that∫
M
δṘic(X)dvg = −

∫
M

(Ṙic,∇X)dvg +

∫
∂M

Ṙic(ν,X)dσg.

We then have∫
M
δṘic(X)dvg =

∫
∂M

Ṙic(ν,X)dσg −
1

2

∫
M

(Ṙic, LXg)dvg.

Recall that
1

2
LXg =

1

2
a(x)g.

Since (Ṙic, g) = 0, we obtain that∫
M
δṘic(X)dvg =

∫
∂M

Ṙic(ν,X)dσg.

This completes the proof of Proposition 7. �

4. Proof of Theorem 2

The proof of Theorem 2 will follow the argument of pseudo-locality the-
orem due to Perelman [9]. The idea of proof of Theorem 2 is similar to
Perelman’s Li-Yau Harnack differential inequality. To make it, we recall
some well-known facts.

Define d(x) = d(x, x0). Let γ(s) (γ : [0, (.x)] → M) be a shortest geo-
desic curve from x0 to x. Without loss of generality, we may assume that
the distance function d(x) is smooth at x. Choose an orthonormal basis
(e1, e2, ..., en) at x0 with e1 = γ′(0). Extend the basis into a parallel ba-
sis (e1(γ(s)), e2(γ(s)), ..., en(γ(s))) along the curve γ(s). Let Xj(s) be the
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Jacobian vector field along γ(s) with Xj(0) = 0 and Xj(d(x)) = ej(d(x)).
Then we have

∆d(x) =
∑
j

∫ d(x)

0
(|X ′j(s)|2 −R(γ′, Xj , γ

′, Xj))ds.

Fix some r0 > 0 such that |Ric| ≤ (n− 1)K on Br0(x0). Define

Yj(s) = aj(s)ej(s)

for j ≥ 2, where aj(s) is s
r0

on [0, r0] and aj(s) = 1 on [r0, d(x)].
Using the minimizing property of the Jacobi field we have∑

j

∫ d(x)

0
(|X ′j(s)|2 −R(γ′, Xj , γ

′, Xj))ds

≤
∑
j

∫ d(x)

0
(|Y ′j (s)|2 −R(γ′, Yj , γ

′, Yj))ds.

By direct computation (as in[9]) we have∑
j

∫ d(x)

0
(|Y ′j (s)|2 −R(γ′, Yj , γ

′, Yj))ds

= −
∫ d(x)

0
Ric(γ′, γ′) +

∫ r0

0
(
n− 1

r20
+ (1− s2

r20
)Ric(γ′, γ′))ds

and the latter is less than

−
∫
γ
Ric(γ′, γ′) + (n− 1)

(
2

3
Kr0 +

1

r0

)
.

It is easy to see that

g(∇f,∇d) = ∇γ′f(x) ≤
∫
γ
∇2f(γ′, γ′) + |∇f(x0)|.

Using

∇2f(γ′, γ′) = R− ρ,
we then have

g(∇f,∇d) ≤ −ρd(x) +

∫
γ
R+ |∇f(x0)|.

Hence, we have, for some uniform constant C > 0,
(9)

2(n−1)∆d(x)+g(∇f,∇d) ≤ −ρd(x)+

∫
γ
[−2 (n−1)Ric(γ′, γ′)+R]+C/r20.

We may choose r0 such that the latter is less than 4(n−1)
r20

.

For any fixed A > 2 we shall consider the new function

u(x) = φ(
d(x)

Ar0
)R(x),
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where φ is the cut-off function on the real line R defined after formula (6),

with r = Ar0. We denote by D = φ
′′

φ and h = φ′

φ .

We compute

∆u(x) = R∆φ+ 2g(∇R,∇φ) + φ∆R.

Note that u = 0 outside the ball of radius 2Ar0.
It is clear that if infM u = 0 for every A, then we have R ≥ 0 on M .
If infM u < 0 for some A = A0, then infM u < 0 for every A > A0, and

there is some point x1 ∈ B2Ar0(x0) such that

u(x1) = inf
M
u < 0.

Then we have R(x1) < 0. By this we have

φ′(x1)R(x1) > 0,

which implies x1 /∈ BAr0(x0). Moreover, at the minimum x1,

(10) ∇u = 0, ∆u ≥ 0.

The following differential inequality by now is more or less a standard
computation (see [9]), but we shall give the details for the convenience of
the reader. Using these two properties (10) and the equations (5) and (9)
we can get that

∆u(x1) =

(
D

(Ar0)2
+

h

Ar0
∆d

)
u(x1) +

1

2(n− 1)

h

Ar0
(∇f,∇d)u(x1)

+
1

n− 1
ρ u(x1)− φR2 − 2h2

1

(Ar0)2
u(x1)

≤
(

D

(Ar0)2
− 2h2

(Ar0)2

)
u(x1)−

1

n− 1
φR2

+
h

Ar0
[∆d+

1

2(n− 1)
〈∇f,∇d〉]u(x1)

≤
(

D

(Ar0)2
− 2h2

(Ar0)2

)
u(x1)−

1

(n− 1)φ
u(x1)

2 +
2 h

(Ar0)2
u(x1).

Then

∆u(x1) ≤
|u(x1)|
φ

{
1

A2r20

[
2φ′2

φ
+ 2|φ′|+ |φ′′ |

]
− 1

n− 1
|u(x1)|

}
.

For some uniform constant C > 0, we have

2|φ′| ≤ C, 2φ′2

φ
≤ C, |φ′′ | ≤ C.

Then we can show that

|u(x1)| ≤
(n− 1) C

A2r20
.
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The latter implies that

R(x) ≥ −(n− 1) C

A2r20
on B2Ar0(x0).

Sending A→∞, we get that R ≥ 0 on M .
This completes the proof of Theorem 2.
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