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Abstract

Acquired aphasics and dyslexics with even very profound word reading impairments have been shown to perform relatively well

on the lexical decision task (e.g., Buchanan, Hildebrandt, & MacKinnon, 1999), but direct contrasts with unimpaired participant�s
data is often complicated by extremely long reaction times for patient data. The dissociation between lexical decision and word

naming performance shown by these patients is of theoretical importance, and here we present an analysis of processing underlying

the lexical decision task. We are able to determine what aspects of performance are affected by acquired aphasics in the lexical

decision task. We fit lexical decision data from aphasic patients and from normal readers with a sequential sampling model (the

diffusion model; Ratcliff, 1978; Ratcliff, Van Zandt, & McKoon, 1999) that simultaneously considers reaction time and accuracy.

This model provides a powerful means of assessing processes involved in impaired and unimpaired lexical decision. Our results

suggest that lexical decision may tap impairments at both a linguistic and a nonlinguistic level. These impairments combine to make

patients produce the exaggerated lexical decision reaction times typical of neurolinguistic patients: we demonstrate that patients

have compromised decision and nondecision processes but that the quality of the information upon which they base their decisions

is not much different from that of unimpaired participants.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Mean correct response time (RT) and accuracy are
two ubiquitous dependent variables in many two-choice

tasks (e.g., lexical decision, semantic categorization,

recognition memory, among many others). In the typical

experiment with a normal population, error rates are

often low and usually ignored and the RT data is taken

as primary. However, this (previously standard) way of

analyzing the data ignores valuable information such as

error RTs, the shape of the RT distribution for correct
and error responses, and accuracy (see Ratcliff & Mur-

dock, 1976). Moreover, an effect of variables on speed

and accuracy, or sometimes the presence of an effect in

the error rates but not in the mean correct RTs, can

complicate the interpretation of the results.

When we deal with data from special populations

(e.g., patients with brain damage), we face additional
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problems. Even though acquired aphasics and dyslexics

with even very profound word reading impairments

have been shown to perform relatively well on tasks
such as lexical decision task (i.e., word/nonword dis-

crimination task; see Buchanan, Hildebrandt, &

MacKinnon, 1999), both the variability in the RTs and

the error rates tend to be substantially larger than with

normal populations (e.g., see Moreno, Buchanan, &

Van Orden, 2002). Under these circumstances, it has

been argued that analyses based on the mean RT per

condition may produce unstable estimates (Moreno
et al., 2002). For instance, Moreno et al. failed to find a

significant word-frequency effect in the RT analyses (i.e.,

faster responding for higher than for lower frequency

words) in three out of nine impaired readers. Indeed, as

Moreno et al. (2002) noted, variability in RTs often

differs across conditions, which implies that trimming

procedures may spuriously affect one condition more

than others (e.g., a 2000ms cutoff may affect low-fre-
quency words more than high-frequency words; see also

Ratcliff, 1993). For that reason, it has been suggested
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that a measure of sensitivity such as d 0 (i.e., the differ-
ence in the z transformed hit rate minus the z trans-

formed false alarm rate) should be the measure of choice

as opposed to mean RT when studying data from special

populations (e.g., Moreno et al., 2002). In the context of

the lexical decision task, d 0 can be computed as the z

score of the proportion of correct responses to word

trials (i.e., hit rate) minus the z score of the proportion

of words responses to nonword trials (i.e., false alarms).
The problem is that using d 0 alone means that RT data is

ignored, and even though it is variable, it can convey

valuable information. As noted above, researchers usu-

ally ignore the error RTs and the shape of the RT dis-

tributions in the data from normal populations. In the

case of special populations, the exclusive use of d 0 would
imply that all RT data would be ignored.

A complementary strategy for examining data in
two-choice tasks is to use a model that simultaneously

accounts for speed and accuracy data. A sequential-

sampling model such as the diffusion model (Ratcliff,

1978) provides such an account. A large body of data

has shown that the diffusion model provides an ade-

quate account for two-choice RT tasks in terms of both

correct and error RTs and their relative speeds, the

shape of the RT distributions for both correct and error
responses, and response probabilities values (e.g.,

Ratcliff, 1978, 1988; Ratcliff, G�omez, & McKoon, 2004;

Ratcliff & Rouder, 1998; Ratcliff, Thapar, & McKoon,

2001; Ratcliff, Thapar, & McKoon, 2003; Ratcliff, Van

Zandt, & McKoon, 1999). Furthermore, the diffusion

model allows RT data to be examined in terms of the

components of processing required by a cognitive task.

This allows comparisons between data from the young
adult population and other populations, such as older

adults (see Ratcliff et al., 2001, 2003; Thapar, Ratcliff, &

McKoon, 2003). This comparison has provided valuable

interpretations of the effects of aging on the cognitive

components. In general, older adults show more con-

servative decision criteria and a slower nondecision

component than the younger adults, whereas the dif-

ferences in the rate of accumulation evidence are, in
many cases, small or null (Ratcliff et al., 2001, 2003).

We believe that it is important to examine whether a

comprehensive quantitative model such as the diffusion

model can account for data from subjects of special

populations such as impaired readers. If it can, the dif-

fusionmodel may provide insights about the components

of processing that differ between impaired and unim-

paired participants (i.e., in terms of the rate of accumu-
lation of evidence, drift rate, the amount of evidence

required for a decision, decision criteria, or components

of processing other than the decision process). To that

end, here we present fits of the diffusion model to data

from the lexical decision task with impaired and normal

readers. But before we examine the fits of the model, it is

necessary to briefly describe the diffusion model.
The diffusion model is a model for a single-stage de-
cision process (i.e., mean RTs should be not much

longer than 1 or 1.5 s) that assumes that decisions are

made by a noisy process that accumulates noisy infor-

mation over time from a starting point toward one of

two response criteria or boundaries (‘‘word’’ and

‘‘nonword’’ boundaries in the lexical decision task; see

Fig. 1), where the starting point is labelled z and the

boundaries are labelled a and 0. When one of the
boundaries is reached, a response is initiated. Speed–

accuracy tradeoffs occur when the boundaries change

their distance from the starting point. Boundaries far

from the starting point produce slow and accurate re-

sponses, while boundaries close to the starting point

produce fast and inaccurate responses. The rate of ac-

cumulation of information is called the drift rate (v), and
it is determined by the quality of the information ex-
tracted from the stimulus. For example, if a familiar

word (e.g., TABLE) were displayed in a lexical decision

task, information quality would be good and the mean

value of the drift rate toward the a boundary would be

large (see Ratcliff et al., 2004). Another important pa-

rameter in the model corresponds to the components of

processing that are not included in the decision process

(Ter, i.e., processes such as stimulus encoding, lexical
processing prior to evidence being output to the decision

process, and response execution). The diffusion model

assumes that there is variability in the above described

parameters. A detailed description of the variability

parameters in the model would be beyond the scope of

the present study (see Ratcliff et al., 1999; Ratcliff &

Tuerlinckx, 2002). But what should be noted is that

within each trial, there is noise (i.e., variability) in the
process of accumulating information so that processes

with the same mean drift rate do not always terminate at

the same time (producing RT distributions) and do not

always terminate at the same boundary (producing er-

rors). Fig. 1 shows a diffusion process with the mean

drift rate represented by the arrow and the accumulation

of noisy information represented by the jagged line.

Within-trial variability in drift rate, s, is a scaling pa-
rameter for the diffusion process (i.e., if it were doubled,

other parameters could be multiplied or divided by two

to produce exactly the same fits of the model to data). In

addition, between-trial variability, g, is assumed so that

stimuli of the same nominal category (e.g., high-fre-

quency words) may have different drift rates in different

trials: this is analogous to variability in signal and noise

strength in signal detection theory. Finally, the model
also assumes variability in starting point, sz (e.g., a high

degree of variability in starting point leads to fast errors;

see Ratcliff & Rouder, 1998), and in the nondecision

component, st (see Ratcliff et al., 2004; Ratcliff &

Tuerlinckx, 2002).

To examine the fits of the model to empirical data

from impaired readers, we used data from the lexical



Fig. 1. An illustration of the diffusion model (top panel; the jagged line illustrates a sample path with drift rate equal to the arrow) and associated

parameter values for fits of the diffusion model (bottom panel).
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decision experiment of Moreno et al. (2002). Nine right-
handed subjects with brain damage in the left hemi-

sphere performed a lexical decision experiment, with 74

high-frequency words, 74 low-frequency words, and 148

nonwords. The patients were selected for inclusion in the

Moreno et al. study on the basis of having language

disorders that showed up as atypical error rates on a

word reading task that consisted of 300 common

monosyllabic words. The range of impairment varied
greatly with some patients making less than 10% errors

on the reading task to others making nearly 90% errors.

Eight out of the nine patients had brain damage that

was caused by a vascular incident; whereas the ninth

patient (JO) had brain damage as a consequence of

treatment for a tumour.

The goal of the present study is not just to examine

the fits of the diffusion model to the data from patients
with brain damage, but also to examine whether there

are any systematic differences in the components of

processing in the diffusion model for normal and im-
paired readers (e.g., in terms of the speed of the accu-
mulation process and/or in terms of the decision

boundaries). Consequently, for comparison purposes,

we also examined the fits of the diffusion model to em-

pirical data from normal readers. To that end, we used

the lexical decision data from the parallel experiment

with 39 college students as controls. The materials and

instructions were the same for the patients and the

normal subjects (i.e., patients and controls were asked to
respond as quickly as possible the ‘‘word’’ or ‘‘non-

word’’ keys while remaining accurate). Each subject

received the items (words or nonwords) in a random

sequence.
2. Fits from the diffusion model

To examine correct and error RT distributions, we

used the RTs of each participant to estimate five quan-

tile RTs: the .1, .3, .5, .7, and .9 quantiles. However, in
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order to obtain five quantiles RTs, each condition must
contain at least five responses. Given the low error rate

for high-frequency words, we did not have enough re-

sponses to obtain the quantiles for error responses for a

number of subjects. For that reason, we opted to con-

duct two potentially converging procedures. The first

procedure was to create a small number of ‘‘super-sub-

jects’’ by combining the data from subjects that behaved

similarly (see below) so that there were at least five data
points per correct and error condition. We then per-

formed fits of the model to these super-subjects. The

second approach was to use the individual subjects.

Because the number of error RTs in some cases was

below five (especially for the high-frequency words), we

made the assumption that the error RTs for those con-

ditions behaved similarly to the error RTs to the con-

ditions in which we had enough error responses.
Specifically, the quantiles for the error RTs computed as

a linear combination of the corresponding quantiles for

the error RTs to low-frequency (LF) words and the

correct RTs to high-frequency (HF) words. We then

compared the parameter values obtained for the two

methods and found that the average parameter values

from the super-subject analysis were close to the median

parameter values for the single subject analysis, which
means that the two methods produced very similar re-

sults.

For the set of patients, we created three ‘‘super-sub-

jects’’ by grouping the data from participants in a de-

creasing order of performance. Super-subject A was

composed of participants with good performance for

both high- and low-frequency words (super-subject A:

BC, BV, and LA; probability correct: .99, .93, and .91
for HF-words, LF-words, and nonwords; and correct

mean RTs: 1052, 1221, and 1413ms for high-frequency

words, low-frequency words, and nonwords). Super-

subject B was composed of participants with somewhat

poorer performance with unfamiliar words (super-sub-

ject B: JM, JO, MH, and WM; probability correct: .97,

.78, and .93 for HF-words, LF-words, and nonwords;

mean correct RTs: 1208, 1459, and 1450ms for high-
frequency words, low-frequency words, and nonwords).

Finally, super-subject C was composed of the two par-

ticipants with dramatically high response times–over

2700ms for high-frequency words—(super-subject C:

MD and RB; probability correct: .87, .69, and .82 for

HF-words, LF-words, and nonwords; and mean correct

RTs: 2914, 3247, and 3512ms for high-frequency words,

low-frequency words, and nonwords). By using an
analogous criterion, we also created three super-subjects

out of 39 normal readers (super-subjects D, E, and F).

Specifically, for super-subject D, the probability correct

was .98, .90, and .94 for HF-words, LF-words, and

nonwords; mean correct RTs: 644, 716, and 805ms for

high-frequency words, low-frequency words, and non-

words. For super-subject E, the probability correct was
.95, .81, and .92 for HF-words, LF-words, and non-
words; mean correct RTs: 665, 772, and 894ms for high-

frequency words. For super-subject F, the probability

correct was .97, .88, and .94 for HF-words, LF-words,

and nonwords; mean correct RTs: 842, 985, and 1088ms

for HF-words, LF-words, and nonwords.

To fit the diffusion model to the super-subjects data,

we formed a v2 statistic (see Ratcliff & Tuerlinckx, 2002)

and this value was minimized by adjusting the parame-
ter values using a general SIMPLEX minimization

routine (Nelder & Mead, 1965). The data that were

entered into the minimization routine for each experi-

mental condition were the five quantile RTs for each

super-subject for both correct and error responses and

the associated accuracy values. The quantile RTs were

fed into the diffusion model and, for each quantile, the

cumulative probability of a response by that point in
time was generated from the model. Subtracting the

cumulative probabilities for each successive quantile

from the next higher quantile yields the proportion of

responses between each quantile. For the v2 computa-

tion, these are the expected values, which are to be

compared to the observed proportions of responses be-

tween the empirical quantiles. The expected values were

multiplied by the number of observations to produce
expected frequencies. The observed proportions of re-

sponses for the quantiles are the proportions of the

distribution between successive quantiles (i.e., the pro-

portions between the 0, .1, .3, .5, .7, .9, and 1.0 quantiles

are .1, .2, .2, .2, .2, and .1) multiplied by the probability

correct for correct response distributions or the proba-

bility of error for error response distributions (multi-

plied by a number proportional to the number of
observations in the condition). Summing over (Ob-

served)Expected)2/Expected for correct and error re-

sponses for each type of word and nonword gives a

single v2 value to be minimized:

v2 ¼
X

ðO� EÞ2=E:

Fig. 2 shows the results for the experiment. Panels A–

C show the data and fits of the diffusion model for the

impaired readers, and Panels D–E shows the data and

fits from the normal readers. On the y axis is plotted the

5 quantile RTs (white circles) in a vertical row for each

condition (HF words, LF words, and nonwords) for

correct and error responses. The black circles represent
the fits of the models. The response probabilities per

each condition appear at the top of the corresponding

quantiles and the values between brackets represent the

predicted responses probabilities. The starting point (or

leading edge) of the RT distributions is represented by

the .1 quantile (i.e., the circles at the bottom of each

column) and the skew is represented by the spread of the

higher quantiles. The fits to the response probabilities
are excellent, for both the impaired and the unimpaired



Fig. 2. Data and model fits for the experiments. The top panels (Panels A–C and Panels D–F) show data from the impaired and the control readers,

respectively. The bottom panel shows data from a patient (JO) in a second experiment. The columns represent the responses for the different stimulus

types. The white circles in the figure represent the quantiles of the empirical RT distributions (i.e., the first circle from bottom to top represents the .1

quantile, the second circle the .3 quantile, and so on). The black circles represent the fits of the diffusion model. The observed response probabilities

per stimulus type appear at the top of the corresponding quantiles (the values between brackets represent the predicted responses probabilities).
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participants (see Fig. 2). As usual, the RT distributions
were positively skewed (i.e., there is a larger separation

between the higher quantiles than between the lower

quantiles), which is the usual finding in RT studies. This

feature is easily captured by the geometry of the diffu-

sion model (Ratcliff, 1978; Ratcliff et al., 2004). The fits

to the RT distribution (i.e., the difference between the

white and black circles) are very good, despite the fact

that the latencies for the impaired readers are quite high.
It is worth noting that correct RTs appear to be fit much

better than errors (see Fig. 2); but the quality of the fits

is similar because error RTs are more variable (see

Ratcliff & Tuerlinckx, 2002).

The parameter values from the diffusion model for

the six super-subjects (three from the patients and three

from the normal subjects) are given in Fig. 1. Results

show some differences as well as some similarities be-
tween impaired and unimpaired participants. Impaired

participants clearly set more conservative decision cri-

teria than unimpaired (i.e., they set the response

boundaries farther apart, which correspond to higher

values of the a parameter). In other words, impaired

participants seem to require more information to reach a

decision than unimpaired participants. Likewise, the

nondecision component (i.e., encoding processes, lexical
access processes, and response execution processes) is

also substantially higher (100ms or more) for the im-

paired than for the unimpaired participants. In contrast,

when we examine the rate of accumulation of informa-
Fig. 3. Box plot with the distributions, across patients and controls, of the bo

drift rates for high-frequency words, low-frequency words, nonwords (in abso

stimulus types. The ‘‘X’’ signs represent the average value of the above indi
tion (drift rate parameters), the differences between im-
paired participants (at least for those in groups A and B)

and unimpaired participants are rather small. This

means that the quality of information entering the de-

cision process in the lexical decision task is not much

different for the groups (except in the case of super-

subject C). The present analyses also confirm that

high-frequency words produce larger drift rates than

low-frequency words in the lexical decision task: in other
words high-frequency words are more word-like in a

‘‘wordness’’ dimension than the low-frequency words

(see Ratcliff et al., 2004); this frequency effect clearly

holds for both impaired and unimpaired participants,

including super-subject C. Bear in mind that we use the

term ‘‘wordness’’ as a theoretically neutral term that

serves as a meeting point between the diffusion decision

model that works back from the data to estimate the
quality of evidence driving the decision process and

models of lexical processing and structure that would

provide an output that would map into ‘‘wordness.’’

As stated above, we also performed fits of the diffu-

sion model to the empirical data on a subject-by-subject

basis rather than by using super-subjects. The general

procedure was analogous to that used with the super-

subjects. In Fig. 3, we present the box plots for the most
relevant variables for our purposes [boundary separa-

tion, nondecision processes, the drift rates for high-fre-

quency words, low-frequency words, nonwords, and the

combined (average) drift rate of the three stimulus types]
undary separation parameter (a), the nondecision component (Ter), the
lute value), and the combined (average) drift rate value across the three

cated parameters from the diffusion model for the super-subjects.
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on the patients and the normal subjects. The behaviour
of the parameter values derived from fits to individual

subjects were very close to those from the analyses based

on super-subjects: the means of the parameters obtained

by using super-subjects lie within the bulk of the dis-

tributions for the individual subjects and are close to the

median parameter values (see Fig. 3; the ‘‘X’’ signs in

Fig. 3 represent the average value of the parameters

from the diffusion model for the super-subjects and the
middle line in the box represents the median parameter

values from individual subjects).

There is very little overlap in the distributions on

boundary separation for the patients and the control

subjects: impaired readers tend to use more conservative

criteria to make their lexical decision responses

(F ð1; 46Þ ¼ 48:40, p < :001, g2 ¼ :51). In addition, the

nondecision component is substantially larger for the
patients than for the controls (F ð1; 46Þ ¼ 37:17, p < :001,
g2 ¼ :45). Drift rates, as measured by the combined drift

rate, are lower for the patients than for the controls but,

as can be seen in Fig. 3, there is some overlap between the

distributions (F ð1; 46Þ ¼ 6:84, p < :015, g2 ¼ :12) and

the differences in effect size (as measured by g2) between
the impaired and the unimpaired participants is sub-

stantially smaller than with the boundary separation or
the nondecision components. Finally, it is worth noting

that all nine impaired readers showed a substantial word-

frequency effect in the parameter corresponding to

quality of information (i.e., higher drift rates for high-

frequency words than for low-frequency words; BC: .32

vs .19; BV: .46 vs .27; LA .19 vs .11; JM .19 vs .07; JO .20

vs .07; MH .18 vs .04; NM .49 vs .14; MD .16 vs .07; RB

.03 vs .01). (Likewise, all control subjects showed an
advantage in terms of drift rates for high-frequency

words compared with low-frequency words.)

Although the present lexical decision results are

straightforward and show converging evidence with the

two procedures, it may be important to show the fits of

the diffusion model in a situation in which we do not

have to use super-subjects or make any assumptions

regarding the distributions of the error RTs. For that
reason, we present lexical decision data from an addi-

tional experiment with a large number of observations

on one of the above-described patients (JO). The data

reported here are from a larger unpublished study in-

vestigating word naming and lexical decision perfor-

mance with JO, a deep dyslexic patient who is described

elsewhere (Buchanan, McEwen, Westbury, & Libben,

2003). Specifically, JO was presented (over four testing
sessions) with 2396 items: 1200 words and 1196 non-

words (these nonwords were either random consonant

letters, 276, e.g., mcrgk; standard nonwords, 632, e.g.,

coant; or pseudohomophones, 288, e.g., grane; note that

grane is pronounced like the word grain). We had more

than five error RTs in all conditions, despite the fact that

error rates were quite low (e.g., 2% for words or 3% for
random letters). (Note that JO read aloud the same set
of words for which she performed the lexical decision

and she read less than half of the items correctly; Col-

angelo, Buchanan, & Westbury, in press.) Given that

lexical decisions are posited to be driven by a ‘‘word-

ness’’ dimension in the diffusion model (Ratcliff et al.,

2004), the model predicts larger negative drift rates for

the least word-like strings (i.e., random consonants),

intermediate values for the standard nonwords, and
small negative values of drift rate for the most wordlike

strings (i.e., pseudohomophones). (In other words,

random letter strings are predicted to be classified as

‘‘nonwords’’ faster than the standard nonwords, and the

standard nonwords are predicted to be classified as

‘‘nonwords’’ faster than the pseudohomophones.)

The general procedure for fitting the diffusion model

to the empirical data was the same as that used in the
previous analyses. The parameter values from the dif-

fusion model for JO are given in Fig. 1 and the bottom

panel of Fig. 2 shows the results and fits for the exper-

iment. As expected, the drift rates for random conso-

nant strings are lower than the drift rates for the

standard nonwords ()0.27 vs )0.15), and in turn, the

drift rates for the standard nonwords are lower than

the drift rates for the pseudohomophones ()0.15 vs
)0.13). It is worth noting the extremely high value of the

nondecision component (942ms); this is not surprising

given the high latencies even when classifying the

random consonant letters as ‘‘nonwords’’ (i.e., the .1

quantile was over 1 s). The value of the boundary sep-

aration was also rather high (and similar to the values

for the other impaired readers; see Fig. 1). As in the

previous experiment, 5 quantile RTs are plotted on the
y-axis (white circles) in a vertical row for each condi-

tion (words, random letters, standard nonwords, and

pseudohomophones) for correct and error responses.

The black circles represent the fits of the model. The

response probabilities per each condition appear at the

top of the corresponding quantiles and the values

between brackets represent the predicted responses

probabilities. The fits to the response probabilities are
excellent (i.e., the difference between the predicted and

the observed probabilities is always less or equal than

.02) and the fits to the RT distributions are reasonable

good given the fact that the RTs were quite high. (Only

in the RT distributions with a low error rate does the

model miss the shape of the distributions; this is caused

in part by the small number of observed data points.)

Finally, as predicted, the model captures the differences
in drift rate between the random consonant strings, the

standard nonwords, and the pseudohomophones in

terms of a ‘‘wordness’’ dimension (i.e., highest drift

rates for pseudohomophones and lowest drift rates for

nonword-like consonant strings).

Differences in drift rate for the consonant strings vs

the nonpseudohomophonic nonwords indicate that
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patients are sensitive to the orthographic characteristics
of the nonwords. Such an effect is not surprising, nor is

it of particular theoretical interest. However, the drift

rate differences between pseudohomophones and the

standard nonwords is of theoretical interest given that

numerous early models of deep dyslexia posited a failure

in sublexical processing of phonological information

(see Plaut & Shallice, 1993, for discussion). If this failure

were indeed responsible for the symptoms associated
with deep dyslexia then the above differences between

pseudohomophones and standard nonwords would be

unexpected because these items differ only with respect

to their phonological overlap with real words. The re-

sults from this analysis therefore lend support to the

contention that deep dyslexics are sensitive to nonword

phonology despite their failure to read such items aloud

(e.g., Buchanan et al., 1999).
The present study, therefore, illustrates that the dif-

fusion model can be successfully applied to data from

impaired readers. Despite that the RTs with patients are

quite high (e.g., in some cases over 2700ms, see above),

the model provides reasonably good fits in terms of

accuracy, speed, and the shape of the RT distributions

for correct and error responses. Furthermore, the anal-

ysis of lexical decision data of JO, with more than 2000
trials, also shows good fits at the individual level, despite

the presence of the extremely high decision times. More

important, by using the diffusion model to examine the

data, we have shown that it is both the decision criteria

and the nondecision components (i.e., encoding pro-

cesses, lexical processes that are not part of the decision

process, and response execution) rather than the differ-

ences in the quality of information (drift rate in the
diffusion model) that produces the difference in perfor-

mance between impaired and unimpaired participants.

In other words, besides setting a more conservative

criterion to make their lexical decision responses, the

duration of the nondecision components (which includes

lexical access processes) seem to take longer for the

impaired than for the normal subjects, albeit at the end

they get nearly the same information (i.e., drift rates) for
the word/nonword decision process as the normal

readers. This pattern of results is consistent with the

view that aphasic patients suffer from a failure of inhi-

bition that leads to difficulties with lexical selection as

opposed to damage to the lexical representations

themselves (Buchanan et al., 2003).

Thus, the take-home message is that when analyzing

data from normal and special populations, it is essential
to focus on the data as a whole. This approach has been

employed successfully in a number of experiments

comparing the performance of young and old adults in

different two-choice decision tasks (e.g., Ratcliff et al.,

2001, 2003). Similar to the present study, many of the

changes between the young and the old adult population

are in the boundary separation and in the nondecision
component rather than in the quality of information
that enters the decision process. This observation gives

rise to two separate but intriguing lines of inquiry. First,

it may be worth studying whether the differences be-

tween the impaired and unimpaired readers also appear

when the task does not tap a language component (e.g.,

shape discrimination). It may be that impaired readers

simply use more conservative criteria before they make

their responses independent of whether those responses
tap purportedly damaged processes. From there it might

be possible to use subtractive logic to isolate the differ-

ences in lexical processes alone. A second line of inquiry

that is suggested by the current study is an extension

that directly contrasts impaired participants with elderly

participants to determine whether the caution found in

our patients is similar to that demonstrated by elderly

participants in similar studies. Such a comparison may
provide important insight into the source(s) of cognitive

slowing associated with aging.

In sum, a quantitative analysis in terms of the diffu-

sion model provides valuable additional information

relative to the components of processing beyond the

mean RT, response probabilities, or any measure of

sensitivity (d 0). The application of such a model in

cognitive neuropsychology studies promises to provide
interesting insights into the ways in which brain damage

can impair the componential processes required in a

particular task.
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