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In this article, the first explicit, theory-based comparison of 2-choice and go/no-go variants of 3
experimental tasks is presented. Prior research has questioned whether the underlying core-information
processing is different for the 2 variants of a task or whether they differ mostly in response demands. The
authors examined 4 different diffusion models for the go/no-go variant of each task along with a standard
diffusion model for the 2-choice variant (R. Ratcliff, 1978). The 2-choice and the go/no-go models were
fit to data from 4 lexical decision experiments, 1 numerosity discrimination experiment, and 1 recog-
nition memory experiment, each with 2-choice and go/no-go variants. The models that assumed an
implicit decision criterion for no-go responses produced better fits than models that did not. The best
model was one in which only response criteria and the nondecisional components of processing changed
between the 2 variants, supporting the view that the core information on which decisions are based is not
different between them.
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The primary task that has been used to assess performance in
paradigms that measure response time (RT) is a two-choice pro-
cedure. In a typical experiment, a stimulus is presented and one of
two choices is made, usually by pressing one of two response keys.
A less common alternative is the go/no-go procedure, in which
subjects are required to respond to one of the choices but must
withhold a response to the other alternative (see Donders, 1868/
1969). In comparing these tasks, it is puzzling that mean RTs are
sometimes shorter and accuracy is higher for the go responses in
the go/no-go task than for the corresponding responses in the
two-choice task.

This difference in results has raised a question as to which
procedure provides a better window into the processes of interest
(e.g., lexical access, memory, perceptual discrimination). Two
explanations have been proposed. First, different procedures might
induce subjects to adopt different biases in the decision process in
addition to there being differences in nondecisional processes. In
this view, the processes induced by the go/no-go procedure versus
the two-choice procedure differ only in ancillary components,

without affecting the central components of the process of interest
(e.g., Gordon, 1983; Hino & Lupker, 1998). Second, different
procedures might change the core processes involved in the task
(e.g., Gibbs & Van Orden, 1998; Grice & Reed, 1992; Perea, Rosa,
& Gómez, 2002). To date, neither suggestion has been based on
analysis that incorporates quantitative modeling. Although the
equivalence of these procedures has received little attention, the
issue has arisen recently in evaluating lexical processing, particu-
larly in the lexical decision task.

The aim of the research presented here is to determine why
results from experiments using the two-choice procedure differ
from those using the go/no-go procedure. Our examination of the
relationship between the two procedures is focused on the lexical
decision task, on a numerosity discrimination task (Espinoza-
Varas & Watson, 1994; Ratcliff, Van Zandt, & McKoon, 1999),
and on recognition memory (Ratcliff, 1978; Ratcliff, Thapar, &
McKoon, 2004), but the results and approach should apply to any
domain that uses these two procedures. Much of the recent work
on comparing the go/no-go and the two-choice procedures has
focused on the lexical decision task. We present our initial discus-
sion using this task and then later show that our findings generalize
to numerosity discrimination and recognition memory.

The approach used here is to apply a quantitative model, the
diffusion model (Ratcliff, 1978), to the two procedures, making
different assumptions about how components of processing differ
from one procedure to the other. The diffusion model is a model of
the processes involved in relatively fast two-choice decisions
involving a single-stage decision process (as opposed to the
multiple-stage decision processes that might be involved in, for
example, reasoning tasks). Similar models have also been applied
to simple reaction time (Smith, 1995) and decision making (Buse-
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meyer & Townsend, 1993; Roe, Busemeyer, & Townsend, 2001).
Recently, the diffusion model has successfully accounted for data
from word recognition (lexical decision) experiments (Ratcliff,
Gomez, & McKoon, 2004; Ratcliff, Thapar, Gomez, & McKoon,
2004). To date, the diffusion model has been used exclusively in
the context of experiments that use the two-choice procedure.

The two-choice procedure and the go/no-go procedure use RT
and accuracy as dependent variables. The two-choice task is the
most widely used of all RT-based procedures within the field of
cognitive psychology (e.g., Rubinstein, Garfield, & Millikan,
1970). Although the go/no-go procedure is not used as widely as
the two-choice procedure, it has a long history too (Donders,
1868/1969; see Luce, 1986, for a review), and its use is increasing
in several areas, for example, in bilingualism (Dijkstra, Timmer-
mans, & Schriefers, 2000), neuropsychology (Goldberg et al.,
2001), visual-word recognition (Hino & Lupker, 2000), masked
priming (Mathey, Robert, & Zagar, 2004), speech production
(Schiller, 2002), semantic categorization (Siakaluk, Buchanan, &
Westbury, 2003), clinical visual-field testing (Lutz et al., 2001),
object recognition (Tarr, Williams, Hayward, & Gauthier, 1998),
and recognition memory (Boldini, Russo, & Avons, 2004). In
addition, the go/no-go procedure has a long tradition in animal
behavior research that includes some contemporary research on
decoupling neural activity resulting from the stimulus from neural
activity resulting from the decision to make a response (Basso &
Wurtz, 1998; Sommer & Wurtz, 2001). In spite of the use of this
procedure in many areas of research and in many theoretical
debates, it has not been explicitly modeled; in this article we
present a model of the go/no-go task and examine how it differs
from the two-choice task.

Go/No-Go Versus Two-Choice Experiments: A Brief
Review

The cause of the differing results with the two procedures was
first discussed by Donders (1868/1969). Donders argued that the
two-choice procedure merely included an additional process of
response selection in addition to the decision of interest (e.g., the
word vs. nonword decision in the lexical decision task). According
to this view, RT for the two-choice procedure minus RT for the
go/no-go procedure should yield an estimate of the duration of the
response selection process.

Donders’s subtractive method has been controversial since its
inception. For example, Wundt (1880) pointed out that the go/
no-go procedure may also require response selection because the
subject must choose whether to respond or not (see also Cattell,
1886). Currently, very few researchers would agree with
Donders’s subtractive logic, and current explanations for the dif-
ference between procedures involve more sophisticated mecha-
nisms (see Ulrich, Mattes, & Miller, 1999, for a review of
Donders’s assumption of pure insertion).

The go/no-go procedure was first applied to the lexical decision
task by Gordon and Caramazza (1982; Gordon, 1983). Gordon and
Caramazza claimed that the go/no-go procedure resulted in better
performance and data that were less noisy than data from the
two-choice procedure. For the lexical decision task, they acknowl-
edged that the core processes responsible for a “word” response
could differ across the two lexical decision procedures but stated
that this was “unlikely on a priori grounds” (Gordon, 1983, p. 35).

Instead, they argued that the use of the go/no-go procedure would
make the mechanics of “response selection” simpler than the
two-choice procedure and, hence, that it would “minimize re-
sponse confusions and errors and reduce the variance of correct
responses” (Gordon & Caramazza, 1982, p. 148). Gordon and
Caramazza suggested that the two-choice task “may demand two
decisions from the subject” (Gordon & Caramazza, 1982, p. 148;
cf. Pachella, 1974): the lexical decision itself (word or nonword)
and a response execution decision.

Chiarello, Nuding, and Pollock (1988) and Measso and Zaidel
(1990) compared the go/no-go and the two-choice lexical decision
tasks by examining not only the mean RTs but also signal detec-
tion measures (i.e., d�, a criterion-free estimate of discriminability,
and log �, a decision bias index). They found substantially shorter
RTs for words in the go/no-go task, whereas the values of d� and
� were similar in the two procedures. Measso and Zaidel (1990)
also included a go/no-go procedure for “nonword” responses, in
which subjects had to press a key only when the presented stimulus
was a nonword; in this case, Measso and Zaidel failed to find any
reliable RT differences between the go/no-go and the two-choice
procedures.

Hino and Lupker (1998, 2000) found that the word-frequency
effect (i.e., shorter RTs for high-frequency words than for low-
frequency words) was larger in the go/no-go task than in the
yes–no task, and they proposed that in the two-choice procedure,
there is pressure to make a rapid response to all stimuli (words and
nonwords). Accordingly, when an unfamiliar low-frequency word
is encountered, subjects may make a “nonword” response, and
these trials end up counting as errors but not contributing to the
mean correct latency for low-frequency words. In contrast, non-
words do not require a response in the go/no-go procedure. Thus,
when an unfamiliar word is encountered, a “nonword” response
cannot be made, and lexical processing continues. In this case, the
subject may make a slow response (assuming that the word is in
the individual’s vocabulary), which explains the higher error rates
in the two-choice procedure. However, Hino and Lupker did not
provide any additional statistical analyses (e.g., RT distribution
analyses) in support of their explanation.

Gibbs and Van Orden (1998) investigated phonological (homo-
phone) effects in the two-choice and the go/no-go procedures.
They argued that stimulus effects are distorted by the laboratory
tasks used by researchers. Whereas the overall pattern of phono-
logical effects was the same for the go/no-go and the two-choice
procedure, error rates to words were much lower in the go/no-go
procedure than in the two-choice procedure. Gibbs and Van Orden
claimed that the go/no-go task “provides more time for word
dynamics to run toward coherent states” (Gibbs & Van Orden,
1998) relative to the two-choice procedure, in which subjects are
more likely to misclassify the word stimulus as a nonword. Along
similar lines, some authors have made statements such as “the
paradigms appear to be qualitatively distinct in terms of the cog-
nitive demands and processes involved” (Jones, Cho, Nystrom,
Cohen, & Braver, 2002, p. 301).

Perea et al. (2002) reexamined the size of the word-frequency
effect in the go/no-go and two-choice procedures. Unlike Hino and
Lupker (1998), Perea et al. found additive effects of word-
frequency and task procedure (i.e., shorter RTs in the go/no-go
task than in the two-choice task). However, a post hoc analysis
showed that words that yielded high error rates also had longer
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RTs in the go/no-go procedure relative to the two-choice proce-
dure, thus providing some support for Hino and Lupker’s claim
(see also Perea, Rosa, & Gómez, 2003, for converging evidence).
Perea et al. (2002) also found that the speed-up in responses to
word targets when preceded by associatively related words relative
to when they were preceded by unrelated words (e.g., table–
CHAIR vs. mouse–CHAIR) was about the same size in the two
tasks.

Perea et al. (2002) offered two possible explanations for their
findings in the framework of a generic evidence accumulator
model (no formal models were implemented). The first one is that
subjects might use a lower criterion for “word” responses in the
go/no-go task. However, moving the “word” criterion toward the
starting point would also increase the probability of a false positive
(i.e., an error to a word stimulus; see Stone & Van Orden, 1993).
Perea et al. (2002) found no significant differences between the
error rates to nonwords in the two procedures. The second expla-
nation suggests that the accumulation of evidence is faster in the
go/no-go procedure. The effect of having a higher rate of evidence
accumulation would be a decrease in the RT and in the error rate
for words relative to the two-choice task, as some of the research
has found. More important, increasing the rate of evidence accu-
mulation for words does not affect the response probabilities for
nonwords (see Stone & Van Orden, 1993, Table 6).

Diffusion Model

In contrast with much of the research described above, we use
a quantitative framework to examine different models, some in
which components of processing vary from one procedure to the
other and others in which processing remains unaltered. The dif-
fusion model (Ratcliff, 1978, 2002; Ratcliff, Gomez, & McKoon,
2004; Ratcliff & Rouder, 1998, 2000) is a model of the processes
involved in making simple two-choice decisions (but it is not a
model of the lexical, perceptual, or memory processes that are the
basis for the decision). The different parameters of the model are
related to different components of processing, and fitting the
model to data allows separation of the rate of evidence entering the
decision from the decision criteria and from nondecisional com-
ponents of processing.

The diffusion model assumes that decisions are characterized by
the noisy accumulation of information over time from a starting
point toward one of two response criteria or boundaries, as in
Figure 1C, where the starting point is labeled z and the boundaries
are labeled a and 0. When one of the boundaries is reached, a
response is initiated. The rate of accumulation of information is
called the drift rate (v), and it is determined by the quality of the
information extracted from the stimulus. For example, in lexical
decision, for a high-frequency word the value of the drift rate
toward the “word” boundary would be large. There is noise (vari-
ability) in the process of accumulating information so that pro-
cesses with the same drift rate do not terminate at the same time
(leading to RT distributions) and do not always terminate at the
same boundary (thus producing errors). This is called within-trial
variability. Figure 1C shows one process, with the drift rate
represented by the arrow and the accumulation of noisy informa-
tion represented by the jagged line.

Components of processing are assumed to be variable across
trials, and the assumption of such variability allows the model to

account for differences in RTs between correct and error responses
(Luce, 1986). Variability in drift rate across trials leads to slow
errors, and variability in starting point leads to fast errors (Ratcliff
& Rouder, 1998; Ratcliff et al., 1999). Drift rate is assumed to be
normally distributed across trials with standard deviation �, and
starting point is assumed to be uniformly distributed with range sz.

Nondecisional components of processing such as encoding and
response execution are not part of the decision process. These are
combined in the diffusion model into one component with mean

Figure 1. Panel A shows a representation of the sequence of events in a
trial of a dual-choice task in which the stimulus is presented until a
response is made. Panel B represents the nondecisional components of the
response time (RT), which have a mean expressed by the Ter parameter and
a range expressed by the st parameter. Panel C illustrates the diffusion
model. The parameters represented in Panel C are a � boundary separa-
tion; z � starting point; sz � variability in starting point across trials; v �
drift rate; � � variability in the drift rate across trials; and variability in
drift rate within a trial. Panels D to G (Imp � implicit boundary) show
representations of the models of the go/no-go task. Panel D illustrates the
single boundary model of the go/no-go task with z, Ter, and the drift rates
as free parameters. Panel E illustrates the decision criteria model of the
go/no-go task; it assumes an implicit negative decision boundary and a, z,
and Ter as free parameters. Panel F illustrates the drift criterion model of
the go/no-go task; it assumes an implicit negative decision boundary and a,
z, Ter, and a constant added to all drift rates as free parameters. Panel G
illustrates the drift rate model of the go/no-go task; it assumes an implicit
negative decision boundary and a, z, Ter, and drift rates as free parameters.
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Ter (see Figure 1B). The nondecisional component of processing is
assumed to have variability across trials, and it is assumed to be
uniformly distributed with range st. The effect of variability in the
nondecisional component of processing depends on the mean
value of drift rate (Ratcliff & Tuerlinckx, 2002). With a large value
of mean drift rate, variability acts to shift the leading edge of the
RT distribution shorter than it would otherwise be (by as much as
10% of st). With smaller values of drift rate, the effect is smaller
(see also Balota & Spieler, 1999; Ratcliff, Gomez, & McKoon,
2004). The standard deviation in the distribution of the nondeci-
sional component of processing is typically less than one quarter of
the standard deviation in the decision process; therefore, the com-
bination of the two (convolution) will have little effect on distri-
bution shape and on the standard deviation in the distribution
predicted from the decision process (Ratcliff & Tuerlinckx, 2002,
Figure 11). For example, if st � 100 ms (SD � 28.9 ms) and the
standard deviation in the decision process is 100 ms, the combi-
nation (square root of the sum of squares) is 104 ms. With
variability in the nondecisional component of processing, Ratcliff
and Tuerlinckx (2002) showed that the diffusion model could fit
data with considerable variability in .1 quantile RTs across exper-
imental conditions.

In sum, the parameters of the diffusion model correspond to the
components of the decision process as follows: z is the starting
point of the accumulation of evidence, a is the upper boundary, the
lower boundary is set to 0, � is the standard deviation in mean drift
rate across trials, sz is the range of the starting point across trials,
and st is the range of nondecisional components of processing
across trials. For each different stimulus condition in an experi-
ment, it is assumed that the rate of accumulation of evidence is
different and so each has a different value of drift, v. Within-trial
variability in drift rate (s) is a scaling parameter for the diffusion
process (i.e., if it were doubled, other parameters could be multi-
plied or divided by 2 to produce exactly the same fits of the model
to data).

Diffusion Models of the Go/No-Go Task

In the experiments presented below, subjects participated in
both go/no-go and two-choice lexical decision tasks. In modeling,
we jointly fit the two-choice diffusion model and a go/no-go model
to the data from both tasks. We developed four go/no-go diffusion
models that represent hypotheses about differences in processes
between two-choice and go/no-go lexical decision. These models
differ in which components of processing are the same in the
two-choice task and the go/no-go task and which ones differ. In
one model, we assume that there is only one decision boundary
whereas in the other three models we assume an implicit negative
decision boundary that is used to make the decision to withhold the
response (see Ratcliff, 1988, 2006, for a similar notion of implicit
boundaries applied to the response signal paradigm). Within the
three models with implicit boundary, we go from assumptions of
minimal differences between go/no-go and two-choice procedures
to assumptions of more complicated differences between the two.

We assume that there are response-execution and strategic com-
ponents that do change from one procedure to the other (as is
commonly agreed; see Gordon, 1983; Pachella, 1974; Perea et al.,
2002; Peressotti & Grainger, 1995). Within the diffusion model,
this corresponds to changes in Ter (which includes the duration of

the response execution stage) and changes in the a and z param-
eters (representing the decision criteria). These parameters were
free to vary between the tasks in all of the models presented here
except for the single boundary model, which does not include the
a parameter. The go/no-go variants shown in Table 1.

Single Boundary Model

This model is designed to be a diffusion model implementation
of accumulator models proposed for the go/no-go task (see, e.g.,
Grainger & Jacobs, 1996; Smith, 2000; Sperling & Dosher, 1986)
in which the one decision boundary is associated with the go
response (see Figure 1D). The drift rates are free parameters that
were allowed to differ between the two procedures because the
model with fixed drift rates across procedures failed badly, even at
a qualitative level. When we describe the drift rate model, we
explain the implications of allowing drift rates to vary across
procedures.

Decision Criteria Model

The simplest of the implicit negative boundary models is one in
which it is assumed that only response execution (Ter) and the
strategic components (a and z) of the lexical decision task change
across procedures. Core processes, represented by drift rates, re-
main constant (see Figure 1E). Ter is allowed to differ between the
two tasks for this and the next two models because of the different
response requirements (one vs. two responses).

Drift Criterion Model

The drift criterion model allows the Ter, a, and z parameters to
differ across task as in the decision criteria model, but in addition,
it assumes that there is a bias in the accumulation of information
toward the decision criteria in the go/no-go task relative to the
two-choice task. This is implemented in the model by adding (or
subtracting) a constant to all of the drift rates from the two-choice
task (cf. Ratcliff, 1985, Figure 2; Ratcliff et al., 1999, Figure 32;
Ratcliff, 2002; Ratcliff & Smith, 2004; Ratcliff, Thapar, & Mc-
Koon, 2003). Note that this is not a change in discriminability,
because it is the difference (which is constant in this case) between
the drift rates between positive and negative items rather than the
absolute value that determines discriminability1 (see Figure 1F);
this is exactly analogous to moving the criterion in signal detection
theory.

Drift Rate Model

The drift rate model has free parameters Ter, a, z, and drift rates,
and it assumes that the underlying cognitive processes (e.g., lexical
processing in the lexical decision task) vary from the two-choice
task to the go/no-go task. This is based on proposals by Perea et al.
(2002), who argued that lexical processes are more efficient in the
go/no-go task compared with the two-choice task. In the diffusion
model, the assumption of better extraction of information due to
more efficient lexical processing in the go/no-go task is imple-

1 The difference between two drift rates divided by the between-trial
variability, �, is a measurement analogue to d� (Ratcliff, 1978).
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mented by allowing the magnitudes of the drift rate parameters to
be larger in the go/no-go task relative to the two-choice task (see
Figure 1G).

Overview of the Experiments

The six experiments presented in this article were designed to
provide direct comparisons between the two-choice and the go/
no-go tasks. For each subject, half of the experimental blocks were
go/no-go trials, and the other half were two-choice trials. The first
four experiments manipulated the most commonly examined fac-
tor in visual-word recognition, word frequency; Experiment 5
manipulated numerosity in a discrimination task; and Experiment
6 manipulated word frequency and repetition in a recognition
memory task.

Experiment 1

Method

Subjects. Twenty Northwestern University undergraduates
participated in this experiment for credit in an introductory psy-
chology class. All subjects for Experiments 1 to 4 came from the
same pool.

Materials. A set of 400 words of four or five letters were
selected from the Kučera and Francis (1967) list. There were 200
low-frequency words (1 to 6 occurrences per million) and 200
medium-frequency words (8 to 20 occurrences per million). The
number of orthographic neighbors (Coltheart’s N; see Coltheart,
Davelaar, Jonasson, & Besner, 1977) and number of letters were
matched in each frequency group. (To obtain enough error RTs for
adequate modeling, we used medium- rather than high-frequency
words; see Ratcliff, Gomez, & McKoon, 2004.) Three Northwest-
ern undergraduate students screened all words to eliminate proper
names and words that they did not know. Four hundred nonwords
were created by randomly replacing one letter of four- or five-
letter words of similar frequencies that were not used in the
experiment (any legitimate words created from this substitution
were eliminated). Words and nonwords were matched on the
number of orthographic neighbors.

Design. Task (go/no-go, two-choice) and word frequency
(low, medium) were varied within subjects. Each subject was
given a total of 800 experimental trials: 400 word trials and 400
nonword trials. Half of the trials used the go/no-go procedure, and
the other half used the two-choice procedure. Word and nonword

stimuli were counterbalanced across subjects so that if a particular
letter string was presented in one of the two-choice blocks to one
subject, it would be presented in one of the go/no-go blocks to the
next subject. The order of the task was also counterbalanced: Half
of the subjects performed the go/no-go task first, and the other half
performed the two-choice task first.

Procedure. Stimuli (strings of letters) were presented in low-
ercase on a PC screen, with responses collected from the keyboard.
Stimulus presentation and response recording were controlled by a
real-time computer system. Subjects were instructed to decide
whether each string of letters was or was not an English word.
They were told that there would be two conditions: the one-finger
(go/no-go task) and two-finger (two-choice task) conditions. Sub-
jects were instructed that in the one-finger condition, they should
press the /? key with the index finger of their right hand if the
string of letters on the screen was a word, and to “just wait for the
next letter string” if the string of letters was not a word. Subjects
were told that in the two-finger condition, they should press the /?
key for “word” responses and the Z key for “nonword” responses.
In the two tasks, the stimulus item remained on the screen until a
response was made or until 1,600 ms had elapsed. Subjects were
instructed to make their responses as quickly as possible, while
trying not to make too many errors. There was a 500-ms intertrial
interval. RTs were measured from the onset of the letter string until
the subject’s response. Each subject received a different random
order of stimuli.

The first two blocks of 32 trials were for practice. Half of the
subjects practiced the go/no-go task in the first block and the
two-choice task in the second block, whereas the other half prac-
ticed in the reverse order. The first five experimental blocks were
of the same task as the second practice block; then there was a task
switch and a new practice block was run, followed by the last five
experimental blocks.

Results

In this and subsequent experiments, lexical decision latencies
less than 250 ms or greater than 1,500 ms were excluded from the
analysis (less than 1% of all responses). Mean lexical decision
latencies and response probabilities were calculated across indi-
viduals and were submitted to separate analyses of variance
(ANOVAs), each of which had two within-subject factors (word
frequency and procedure) and a between-subjects factor (task
order). The mean lexical decision latencies and response probabil-

Table 1
Parameter Invariance and Free Parameters for the Models of the Go/No-Go Lexical Decision Task Relative to the Diffusion Model
Fits to the Two-Choice Lexical Decision Task

Model

Parameter
No. free

parametersa Ter � sz Drift rates st z

1 Removed Free Fixed Fixed Free (3 FP) Fixed Free 5
2 Free Free Fixed Fixed Fixed Fixed Free 3
3 Free Free Fixed Fixed Constant added (1 FP) Fixed Free 4
4 Free Free Fixed Fixed Free (3 FP) Fixed Free 6

Note. Model 1 refers to the single boundary model, Model 2 refers to the decision criteria model, Model 3 refers to the drift criterion model, and Model
4 refers to the drift rate model. FP � free parameters.
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ities are presented in Table 2. Unless otherwise noted, all signif-
icant effects had p values less than the .05 level.

The procedure (go/no-go vs. two-choice) did not yield signifi-
cant differences in the mean RT for correct responses to words,
F(1, 18) � 1.89, p � .18, �p

2� .095. The mean RT was 33 ms
shorter in the go/no-go task than in the two-choice task for
medium-frequency words, but this difference was much smaller
for low-frequency words (6 ms), yielding a significant Task �
Word Frequency interaction, F(1, 18) � 5.00, �p

2 � .217. This
interaction also reflected a larger word-frequency effect in the
go/no-go task than in the two-choice task (76 vs. 49 ms, respec-
tively). Overall accuracy for words was higher in the go/no-go task
than in the two-choice task (.90 vs. .87), F(1, 18) � 13.10, �p

2 �
.421, and accuracy was higher for medium-frequency words than
for low-frequency words (.95 vs. .81), F(1, 18) � 136.57, �p

2 �
.421.

The accuracy data show similar patterns to the mean RT data.
Overall accuracy for words was higher in the go/no-go task than in
the two-choice task (.90 vs. .87), F(1, 18) � 13.10, �p

2 � .421, and
accuracy was higher for medium-frequency words than for low-
frequency words (.95 vs. .81), F(1, 18) � 136.57, �p

2 � .884.
To examine RT distributions, we used the RTs from each

subject for each condition (medium-frequency words, low-
frequency words, and nonwords crossed with correct and error
responses) to estimate five quantile RTs: the .1, .3, .5, .7, and .9
quantiles. These quantiles were averaged across subjects (e.g.,

Ratcliff, 1979; Vincent, 1912) to form group RT distributions. The
.1 quantile of the RT distribution represents the starting point or
leading edge of the distribution. The distance between points
represents the spread of the distribution. The leading edge of the
group RT distributions (.1 quantile) was about 35 ms shorter in the
go/no-go task than in the two-choice task, F(1, 18) � 5.91, �p

2 �
.247, and this effect did not interact with word frequency, F(1,
18) � 1.60, p � .222, �p

2 � .08. The lack of main effect of task on
the mean RTs occurred because the onset and the spread of the RT
distributions were different for the two tasks: The go/no-go task

Table 2
Summary of Results for Experiments 1 to 4

Stimulus type

Error RT Correct RT
Probability of “word”

responses Correct RT at .1 quantile

Choice Go/no-go Choice Go/no-go Choice Go/no-go Choice Go/no-go

Experiment 1

Medium frequency 755 (28) 655 (16) 622 (13) .946 (.010) .966 (.004) 519 (10) 482 (7)
Low frequency 764 (45) 704 (18) 698 (13) .819 (.019) .852 (.014) 537 (11) 506 (9)
Nonwords 768 (31) 740 (22) 702 (25) .089 (.011) .076 (.009) 574 (15)

Experiment 2 (word go/no-go task)

Medium frequency 689 (37) 667 (12) 644 (9) .879 (.016) .930 (.013) 547 (12) 527 (7)
Low frequency 731 (31) 702 (14) 688 (10) .719 (.022) .816 (.022) 547 (13) 540 (7)
Nonwords 691 (19) 587 (16) 735 (20) .142 (.010) .161 (.031) 588 (13)

Experiment 3 (nonword go/no-go task)
Medium frequency 817 (41) 831 (32) 712 (15) .921 (.008) .897 (.015) 575 (10)
Low frequency 814 (26) 837 (31) 751 (15) .808 (.020) .738 (.028) 583 (12)
Nonwords 825 (25) 800 (18) 817 (22) .169 (.025) .107 (.024) 541 (13) 536 (15)

Experiment 4 (accuracy instructions)

Medium frequency 856 (43) 657 (16) 609 (13) .899 (.013) .941 (.011) 511 (11) 475 (8)
Low frequency 785 (28) 712 (18) 666 (14) .716 (.022) .791 (.018) 531 (12) 494 (9)
Nonwords 712 (23) 671 (21) 736 (20) .098 (.011) .107 (.011) 538 (13)

Experiment 4 (speed instructions)

Medium frequency 634 (33) 565 (14) 557 (11) .869 (.014) .945 (.008) 444 (11) 438 (8)
Low frequency 625 (22) 598 (16) 608 (13) .666 (.017) .813 (.016) 458 (14) 450 (9)
Nonwords 587 (25) 597 (20) 633 (15) .186 (.018) .169 (.015) 475 (11)

Note. Values are means, with standard errors in parentheses. Response times (RTs) are in milliseconds.

Figure 2 (opposite). The three panels show the empirical .1, .3, .5, .7, and
.9 quantiles for the response time (RT) distributions in Experiment 1.
The � signs are quantile RTs plotted against accuracy values calculated for
the two-choice data with the accuracy range plotted on the x-axis (�.02 to
�.02). The � signs are the quantile RTs for go/no-go data. The different
panels represent the fits of the different models: the decision criteria model
(A); the drift criterion model (B); and the drift rate model (C). The gray
blobs show variability from Monte Carlo simulations based on the model.
NWe � error responses to nonwords; NWc � correct responses to non-
words; LFc � correct responses to low-frequency words; LFe � error
responses to low-frequency words; MFc � correct responses to medium-
frequency words; MFe � error responses to medium-frequency words;
NWg � go responses to nonwords; LFg � go responses to low-frequency
words; MFg � go responses to medium-frequency words.
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produced more spread out RT distributions and shorter onsets.
Figure 2 shows the results for Experiment 1. The three panels show
the empirical RT distributions in Experiment 1 (the data points
presented in the three panels are the same, and the model fits vary
from panel to panel). The � signs are quantile RTs plotted against
accuracy values calculated for the two-choice data, and the � signs
are the quantile RTs for go/no-go data. Within each panel, there is
a column of points for each combination of response (correct in
two-choice, error in two-choice, and go in go/no-go) and type of
item (two levels of word frequency and nonwords). The positions
of the signs on the y-axis represent the RT at the five quantiles with
the response probability as the label on the x-axis. The different
panels represent the fits of the different models: Top panel, the
decision criteria model; middle panel, the drift criterion model; and
bottom panel, the drift rate model. (The gray blobs show variabil-
ity from Monte Carlo simulations based on the models and are
discussed later.)

The order in which the tasks were performed had an effect on
the mean RT for the two-choice task. For those subjects who
performed the go/no-go task first followed by the two-choice task,
the mean RT for the two-choice task was 654 ms, whereas for
those who performed the task in the reverse order, the mean RT
was 706 ms. In contrast, the mean RT in the go/no-go task was
very similar (662 and 658 ms) for the two task orders. This is
reflected in the interaction between task and task order, which
approached significance, F(1, 18) � 3.83, p � .06, �p

2 � .176.
In sum, the go/no-go task produced shorter mean RTs for

medium-frequency words, but not for low-frequency words, than
the two-choice task (see Hino & Lupker, 1998; Perea et al., 2003,
for a similar result). Also, the go/no-go task produced RT distri-
butions with larger spread for correct responses (in particular for
low-frequency words) and shorter onsets than the two-choice task
(see Figure 2). The RT distributions for error responses have larger
spreads (and have longer mean RTs) than the RT distributions for
correct responses in both tasks and for all of the stimulus types.

Modeling and Discussion

To fit the diffusion model to the data, we minimized a likelihood
chi-square statistic (G2) (Ratcliff & Smith, 2004; Ratcliff &
Tuerlinckx, 2002) by adjusting the parameter values using a gen-
eral SIMPLEX minimization routine. The data that were entered
into the minimization routine for each of the six experimental
conditions (three levels of lexicality and two of task) were the
accuracy values and the five quantile RTs averaged across subjects
for correct and error responses. Fitting averaged data is an appro-
priate procedure for fitting the diffusion model. In previous re-
search (Ratcliff, Thapar, et al., 2004; Ratcliff, Thapar, & McKoon,
2001; Ratcliff et al., 2003; Thapar, Ratcliff, & McKoon, 2003), fits
to averaged data provided similar parameter values to parameter
values obtained by averaging across fits to individual subjects. The
quantile RTs were fed into the diffusion model, and for the RTs at
the five quantiles, the model generated the predicted cumulative
probability of a response by that point in time. Subtracting the
cumulative probabilities for each successive quantile from the next
higher quantile yields the proportion of responses between each
quantile. These are the expected values for the chi-square compu-
tation, which are compared with the observed proportions of
responses between the empirical quantiles. The observed propor-

tions of responses for the quantiles are the product of the response
probabilities and the proportions of the distribution between suc-
cessive quantiles (i.e., the proportions between the 0, .1, .3, .5, .7,
.9, and 1.0 quantiles are .1, .2, .2, .2, .2, and .1). The observed and
expected proportions were multiplied by the number of observa-
tions to produce expected frequencies. The G2 statistic has the
advantage of being closely related to the Bayesian information
criterion (BIC), and minimizing one minimizes the other. The
model with the lowest BIC can be considered the model that
jointly maximizes descriptive accuracy (goodness of fit) and par-
simony (small number of free parameters). The statistics are de-
fined as follows:

BIC � � 2�	Njpiln
�i� � Mln
N�

G2 � 2	Njpiln
 pi/�i�,

where pi and �i are the proportion of observations in the ith bin for
the empirical data and the prediction of the model, respectively,
and Mln(N) is the penalizing term related to the number of free
parameters (M; which is relevant because all of the models under
consideration here have different numbers of free parameters) and
the sample size (N; the number of observations).

The three panels of Figure 2 show the data from Experiment 1.
Each panel shows the fits of a different model (the single boundary
model was not included). The blobs represent the result of a Monte
Carlo simulation using the model with the best fitting parameters.
The offset of each of the points that make the blob from the data
points along the x-axis represents the miss of the model’s predic-
tions in accuracy, whereas the offset from the data points on the
y-axis represents the miss of the model in latency at the different
quantiles. The size of the blob represents an estimate of the
standard error according to the model (see Table 3 for the standard
error for each quantile according to the data). Hence, an overlap
between the blobs from the Monte Carlo simulation and the data
points (� and � symbols) indicates an adequate fit.

Single boundary model. This model allowed the Ter, drift rate,
and z parameters to vary freely from the two-choice to the go/
no-go task but kept the variability parameters (�, sz, and st)
constant. This model has the highest BIC value for this experiment
(3,392; see Table 4). It could not adequately fit the data: The
model predicts higher response probabilities for nonwords than
those observed and a larger spread in the distributions for all
stimulus types than the ones observed (the results are not presented
in Figure 2 because the predicted .9 quantiles are off the scale used
to present the data). It is not possible to find a combination of
parameters that modifies this model’s predictions to match the
qualitative pattern of results: If the starting point position (z) or the
mean drift rate values are altered to reduce the response probabil-
ity, the spread of the RT distribution for that response increases.

Decision criteria model. This model assumes that drift rates
are identical across tasks so that the quality of the information
extracted from the stimulus is the same in two-choice and go/no-go
tasks. The a, z, and Ter parameters are free to vary between the
two-choice and the go/no-go task data, whereas the drift rates and
the variability parameters (�, sz, and st) are fixed. This model has
the smallest BIC value for this experiment (3,333). The fits of the
decision criteria model are within .05 for all response probabilities
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Table 3
Two Standard Errors for the Quantiles of the Response Time Distributions in the Go/No-Go Lexical Decision Task

Stimuli

Quantiles for “word” responses Quantiles for “nonword” responses

.1 .3 .5 .7 .9 .1 .3 .5 .7 .9

Experiment 1 (two-choice)

Medium-frequency words 8 7 10 14 26 27 57 78 96 128
Low-frequency words 9 12 16 24 56 57 32 49 76 153
Nonwords 21 22 22 43 113 7 6 9 13 29

Experiment 1 (word go/no-go)

Medium-frequency words 8 8 9 13 23
Low-frequency words 9 11 14 21 45
Nonwords 11 11 14 20 39

Experiment 2 (two-choice)

Medium-frequency words 8 8 9 15 28 67 77 106 151 182
Low-frequency words 10 11 14 27 28 36 50 63 140 196
Nonwords 17 21 29 44 55 7 7 9 16 32

Experiment 2 (word go/no-go)

Medium-frequency words 7 7 8 13 27
Low-frequency words 8 8 11 22 45
Nonwords 12 13 18 27 61

Experiment 3 (two-choice)

Medium-frequency words 7 7 8 11 32 27 37 45 60 34
Low-frequency words 11 10 13 17 31 18 20 27 95 33
Nonwords 11 12 12 18 30 7 7 9 16 32

Experiment 3 (nonword go/no-go)

Medium-frequency words 21 23 31 40 88
Low-frequency words 34 43 59 89 178
Nonwords 8 8 9 13 28

Experiment 4 (two-choice accuracy)

Medium-frequency words 24 29 34 43 56 38 44 51 69 124
Low-frequency words 22 24 27 35 52 61 82 100 128 141
Nonwords 31 38 46 56 87 27 28 33 43 96

Experiment 4 (go/no-go)

Medium-frequency words 18 20 25 36 53
Low-frequency words 16 17 21 28 57
Nonwords 37 38 55 71 148

Experiment 4 (two-choice speed)

Medium-frequency words 27 25 29 33 43 31 33 37 47 104
Low-frequency words 21 23 25 28 42 45 48 54 93 130
Nonwords 35 39 49 57 84 21 21 25 32 70

Experiment 4 (speed)

Medium-frequency words 28 38 67 85 94
Low-frequency words 16 16 20 24 39
Nonwords 32 36 48 67 151

Note. Values are in milliseconds.
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(within two standard errors)2 and within two standard errors of
most of the RT data, including the RT at the .1 quantile (see Figure
2, top panel). The condition with the largest misses is error
responses to low-frequency words, for which the model predicts a
larger spread than the one found in the empirical data (this is the
case also for the other models). The fits of this model are accom-
plished with a shorter Ter in the go/no-go task (by 54 ms) and a
larger distance between the starting point and the positive decision
boundary (.004). The behavior of these parameters can be inter-
preted as support for the notion of a less complex response exe-
cution stage in the go/no-go task and slightly more conservative
decision criteria in the go/no-go task compared with the two-
choice task.

Drift criterion model. This model assumes an implicit nega-
tive decision boundary and a change in the drift criterion across
tasks. This means that drift rates are allowed to change as long as
the differences among the drift rates are constant (i.e., the discrim-
inability between words and nonwords is the same; cf. signal
detection theory). In addition to the drift criterion, which is a
constant added to all drift rates, the Ter, a, and z parameters are also

free to vary between the two-choice task and the go/no-go task.
The BIC value for this model is 3,339, which indicates that the
extra free parameter did not significantly improve the fit to the data
relative to the decision criteria model. The fits of the drift criterion
model are very similar to those of the decision criteria model (see
Figure 2, middle panel, for the fits of this model): The response
probabilities are adequately fitted for all conditions, and the la-
tency at the different quantiles, for the most part, fitted within two
standard errors of the data. Most of the parameters of this model
behave in expected ways. The Ter parameter was shorter for the
go/no-go task (by 73 ms), and the drift rates across tasks “tilt,” or
bias, toward the word boundary (drift criterion � .052). The

2 Estimating the variability (SE) for the quantiles and the response
probabilities can be done in different ways (e.g., bootstrapping, generating
data from the model, or calculating the SE directly from the data; see
Ratcliff, Gomez, & McKoon, 2004). Here we used the quantiles for each
subject as the random variable, and then we calculated the SE across
subjects.

Table 4
Parameters of the Models and BIC Values for the Lexical Decision Task Experiments

Model
No.

parameters

Parameter

G2 Mln(N) BICa Ter � st DriftN DriftL DriftM po sz a–z a(G) a(G)–z(G) Ter(G) dc dl dm

Experiment 1

1 Bound 15 .152 .483 .180 .067 �.352 .091 .305 .003 .000 .058 .063 .439 �.453 .160 .998 3,297 95.954 3,392
Des. C. 13 .125 .490 .088 .004 �.240 .147 .279 .002 .156 .053 .125 .057 .436 3,250 83.160 3,333
Drift C. 14 .124 .491 .077 .014 �.243 .137 .269 .029 .147 .051 .122 .068 .418 .052 3,250 89.557 3,339
Drift R. 16 .124 .486 .073 .004 �.229 .123 .238 .001 .146 .052 .122 .066 .423 �.213 .182 .329 3,246 102.351 3,348

Experiment 2

Des. C. 13 .097 .452 .097 .033 �.245 .114 .259 .000 .164 .042 .101 .040 .411 3,128 83.2 3,211
Drift C. 14 .097 .452 .077 .037 �.247 .100 .243 .000 .159 .041 .099 .047 .398 .054 3,127 89.6 3,216
Drift R. 16 .098 .451 .091 .040 �.240 .093 .243 .000 .159 .042 .098 .046 .405 �.220 .157 .319 3,125 102.4 3,228

Experiment 3

Des. C. 13 .103 .467 .058 .016 �.215 .096 .207 .021 .165 .064 .114 .060 .474 3,341 83.2 3,425
Drift C. 14 .110 .473 .120 .046 �.241 .132 .258 .002 .171 .068 .122 .055 .497 .019 3,341 89.6 3,430
Drift R. 16 .109 .477 .121 .045 �.255 .136 .265 .008 .178 .068 .121 .054 .500 �.214 .149 .276 3,340 102.4 3,443

Experiment 4

Des. C. 17 .135 .449 .124 .030 �.265 .096 .262 .001 .171 .058 .114 .049 .435 6,884 120.5 7,004
Speed .086 .035 .105 .036

Drift C. 18 .135 .448 .122 .030 �.256 .104 .266 .001 .171 .060 .114 .050 .432 �.001 6,884 127.6 7,011
Speed .087 .037 .104 .036

Drift R. 20 .131 .449 .106 .036 �.244 .070 .226 .016 .167 .056 .109 .059 .424 �.234 .164 .346 6,873 141.8 7,015
Speed .085 .035 .096 .042

Note. BIC � Bayesian information criterion. Parameters are as follows: a � boundary separation; Ter � nondecision components of the response time
(RT); � � variability in drift rate across trials; st � range of the nondecision components of the RT; DriftN � drift rate for nonwords; DriftL � drift rate
for low-frequency words; DriftM � drift rate for medium-frequency words; pO � probability of outliers; sz � variability in starting point across trials; a–z �
distance between starting point z and the positive boundary; a(G) � a parameter in the go/no-go task; a–z(G) � distance between the starting point z and
the positive decision boundary in the go/no-go task; Ter(G) � Ter parameter for the go/no-go task; dc � constant added to all drift rates from two-choice
to go/no-go in the drift criterion model, and for the drift rate model, dc represents the drift rate for nonwords; dl and dm � drift rates for low-and
medium-frequency words for go/no-go in the drift rate model. Models of the go/no-go task are as follows: 1 Bound � single boundary model (no negative
boundary for go/no-go; Ter, drift rates, and z free between tasks); Des. C. � negative decision criteria model (a and Ter free between tasks with implicit
negative decision boundary); Drift C. � drift criterion model (Ter, a, z, and drift criterion free between tasks with implicit negative decision boundary);
Drift R. � drift rate model (Ter, a, z, and drift rates free between tasks with implicit negative decision boundary).
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decision criteria parameters, a and z, modulate the bias toward the
“word” decisions; the distance from the starting point to the word
boundary (a–z) increased across task (.017), but the distance
between the two boundaries decreased slightly (–.002). The be-
havior of the free parameters in the model can be interpreted the
same way as in the decision criteria model: There was a shorter
response execution stage and a more conservative decision crite-
rion for the go/no-go task relative to the two-choice task. In
addition, the drift criterion increased, biasing all of the drift rates
to be slightly more positive.

Drift rate model. This model assumes an implicit negative
decision boundary and changes in the drift rates between tasks (the
previous model is a special case of this model). The assumptions
are consistent with changes in the core components of the lexical
decision process. As in the other models, the Ter, a, and z param-
eters are also free to vary between the two-choice task and the
go/no-go task. The BIC value for this model is 3,348, the highest
among the models that assumes an implicit negative decision
boundary. This reflects the fact that the free drift rates did not
significantly improve the fits relative to the cost of the extra
parameters. This can be seen in Figure 2C, where it is difficult to
visually differentiate the fits of this model from those of the
decision criteria model (Panel A) and the drift rate criterion model
(Panel B). The a, z, and Ter parameters change by very similar
amounts as in the drift criterion model discussed above (see a(G),
z(G), and Ter(G) columns in Table 4). The differences in the drift
rates from the two-choice task to the go/no-go task are more
positive overall, but the changes in drift rate are greater for
medium-frequency words than for low-frequency words.

In sum, the assumption of an implicit decision boundary pro-
vides a better account of the data than the single decision boundary
model. Changes in the nondecisional components of the RT (Ter

parameter) from their values for the two-choice task combined
with changes in the decision criteria (the a parameter) were able to
successfully fit the data from the go/no-go task.

Experiments 2 and 3

In Experiment 1, the items remained on the screen until the
subject responded or 1.6 s had elapsed. Hence, it was possible that
after a process hit the implicit negative boundary, a second com-
parison process could have been performed on some trials using
the stimulus on the screen to encourage the second comparison,
thus contaminating the data. To reduce the chance that subjects
would engage in this rechecking process, we set stimulus exposure
duration to 100 ms in Experiments 2 and 3. Note also that previous
research with short and masked presentation times has provided
evidence for stationary drift rate processes (drift rate is constant
and is assumed to be produced from a short-term memory repre-
sentation of the stimulus), so the diffusion model with constant
drift rate would be the preferred way of modeling processing in
this task (Ratcliff, 2002; Ratcliff & Rouder, 2000; Ratcliff &
Smith, 2004; Smith, Ratcliff, & Wolfgang, 2004; Thapar et al.,
2003).

In Experiment 1, the correct response probabilities to words
were significantly higher in the go/no-go task than in the two-
choice task. This significant improvement in accuracy was not
observed for nonwords. This indicates that the advantage in per-
formance in the go/no-go task might be related to decision pro-

cesses rather than to lexical access processes. To further explore
this, we had subjects respond to words in the go/no-go task in
Experiment 2 (as in Experiment 1) and respond to nonwords in
Experiment 3.

Method

Subjects. Two new groups of 21 Northwestern University
undergraduates took part in this experiment.

Materials and procedure. The materials were the same as in
Experiment 1. The procedure was also the same, with the follow-
ing exceptions. At the beginning of each trial, the sequence “� �”
was presented for 100 ms on the center of the screen. Then, the
target stimulus was presented (always in lowercase) for 200 ms,
after which the screen was cleared. The following trial started
either 500 ms after a response was made or 500 ms after the 1,600
ms allowed for responding. Subjects were instructed to respond as
quickly and as accurately as they could. As in Experiment 1, half
of the subjects performed the go/no-go task first, and the other half
performed the two-choice task first. Practice trials were presented
in the same way as in Experiment 1.

In Experiment 2, subjects in the go/no-go task were instructed to
respond (by pressing the /? key) when the string of letters on the
screen was an English word and to refrain from responding when
the stimulus was not an English word. In Experiment 3, subjects in
the go/no-go task were instructed to respond (by pressing the Z
key) when the string of letters was not an English word (i.e., a
nonword) and to refrain from responding when the letter string was
an English word.

Results

One of the subjects from Experiment 2 was removed from this
analysis because he or she failed to follow the instructions. Mean
lexical decision latencies for correct responses and response prob-
abilities were calculated across individuals, as in Experiment 1,
and are presented in Table 2. The data from the experiments
(Experiment 2: word go/no-go task; Experiment 3: nonword go/
no-go task) were submitted to separate ANOVAs, each of which
had two within-subject factors (task and word frequency) and a
between-subjects factor (task order).

For correct word responses in Experiment 2 (word go/no-go
task), subjects were marginally faster in go/no-go blocks than in
two-choice blocks, for the mean RT (18 ms), F(1, 19) � 3.21, p �
.09, �p

2 � .162, and nonsignificantly faster for the RT at the .1
quantile (13 ms), F(1, 19) � 1.58, p � .22, �2

p � .083. For
Experiment 3 (nonword go/no-go task), there was no significant
effect of task for either mean RT or RT at the .1 quantile (Fs � 1).
In Experiment 2, the effect of word frequency was significant for
the mean RT, F(1, 19) � 101.77, �2

p � .843, and for the .1
quantile, F(1, 19) � 7.83, �2

p � .292, but the interaction between
frequency and task was not significant for RT, F(1, 19) � 2.25,
p � .15, �2

p � .106, and approached significance for the .1
quantile, F(1, 19) � 3.60, p � .07, �2

p � .159.
For both experiments, subjects made more errors to low-

frequency than to medium-frequency words: word go/no-go (Ex-
periment 2), F(1, 19) � 77.11, �2

p � .802; nonword go/no-go
(Experiment 3): F(1, 20) � 79.73, �2

p � .799. But the most
important finding was that the effect of task was different in
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Experiment 2 than in Experiment 3. In Experiment 2, in which the
word go/no-go task was performed, accuracy for words was higher
in the go/no-go blocks than in the two-choice blocks, F(1, 19) �
13.10, �2

p � .408; Task � Frequency interaction, F(1, 19) � 5.46,
�2

p � .223; whereas in Experiment 3, in which the nonword
go/no-go task was performed, accuracy for words was higher in the
two-choice task than in the go/no-go task: It changed from .92 in
the two-choice task to .90 in the go/no-go task for medium-
frequency words and from .81 in the two-choice task to .75 in the
go/no-go task for low-frequency words: task, F(1, 20) � 13.40,
�2

p � .401; Task � Frequency interaction, F(1, 20) � 4.46, �2
p �

.182. The order in which the tasks were performed had no effect on
the response probabilities or the latency data (all Fs � 0.1).

In sum, the results of Experiment 2 (word go/no-go task) es-
sentially mimicked those of Experiment 1 (i.e., somewhat faster
responding and higher accuracy in the go/no-go task than in the
two-choice task). The data in Experiment 3 (nonword go/no-go
task) showed an increase in the response probabilities to the overt
response (nonword response) in the go/no-go task relative to the
two-choice task, but there was no effect of task on the latency data.

Modeling and Discussion

We used the same modeling procedure as for Experiment 1. The
parameter values and the fits are presented in Table 4 and in Figure
3 for Experiment 2 and in Figure 4 for Experiment 3. The figures
have the same format as in Experiment 1.

For the go/no-go task in both experiments, the single boundary
model produced poor fits both for response probabilities to words
and for the shape of the RT distributions (the fits were so poor that
they are not presented in Figure 3). For this reason, we do not
consider this model further and we discuss only the models with an
implicit negative decision boundary.

Decision criteria model. In this model, a, z, and Ter parameters
are free to vary between the two-choice and the go/no-go tasks, but
the drift rates are the same. This model provides good fits to the
quantiles of the RT distribution and the response probabilities for
the two experiments; further, it has the smallest BIC value for the
two experiments (3,211 for Experiment 2 and 3,425 for Experi-
ment 3). As in Experiment 1, the model predicts a larger spread
than the observed one for the error RT distributions for low-
frequency words. For the data from Experiment 2, the model
accomplishes the good fits with approximately the same values of
the z and a parameters across tasks and a shorter value of Ter (by
41 ms). In Experiment 3 (in which responses were made to
nonwords), boundary separation increased by .011 from the two-
choice to the go/no-go task, and the starting point decreased by
.004. In addition, Ter increased by a nonsignificant 7 ms, which is
different from the decrease obtained in Experiments 1 and 2. The

behavior of these parameters does not provide strong support for
the notion of a less complex response execution stage in the
go/no-go task and may indicate a bias toward “word” responses. It
also indicates a more conservative decision criterion in the go/
no-go task for the no-go responses.

Drift criterion model. In this model we assume that the drift
criterion changes across tasks, and so differences among the drift
rates between words and nonwords are held constant. The drift
criterion, Ter, a, and z parameters are free to vary between the
two-choice task and the go/no-go task. The BIC values for this
model are 3,216 for Experiment 2 and 3,430 for Experiment 3.
This indicates that the extra free parameter did not significantly
improve the fit relative to the decision criteria model. It is also
important to note that in Experiment 2 the drift criterion is positive,
whereas in Experiment 3 it is negative; in the two experiments, the
drift rates are biased toward the overt response in the go/no-go task
relative to the two-choice task. The nondecisional component (Ter)
is shorter for the go/no-go task by 54 ms in Experiment 2 but
longer by 26 ms in Experiment 3 relative to the Ter for the
two-choice task. This suggests a bias in the output process toward
a “word” response.

Drift rate model. This model assumes an implicit negative
decision boundary and changes in the drift rates across task. Also,
the Ter, a, and z parameters are free to vary between the two-choice
task and the go/no-go task. The BIC values for this model are
3,228 for Experiment 2 and 3,443 for Experiment 3, which are
higher than in the other two models. As in the previous experi-
ment, the free drift rates did not improve the fits according to the
BIC value. The a, z, and Ter parameters change by similar amounts
as in the drift criterion model discussed above.

In sum, the pattern of results in Experiments 2 and 3, using a
100-ms presentation time for the stimulus items, resembles that of
Experiment 1: higher response probabilities for the overt responses
in the go/no-go task compared with the two-choice task, and
shorter RTs at the .1 quantile for word stimuli in the go/no-go task.
However, the effect of task on the spread of the RT distributions
for words was attenuated in Experiment 2 relative to Experiment 1.
Also, in Experiments 2 and 3, the a and z parameters were smaller
than in Experiment 1. Nonetheless, the qualitative behaviors of the
parameters of the three models that use an implicit boundary are
consistent across experiments and support the notion of a bias
toward the overt response in the go/no-go task rather than changes
in the lexical or core processes across tasks.

Experiment 4

In Experiments 1 to 3, the models that include an implicit
decision boundary produced substantially better fits than the model
with only one boundary. In Experiment 4, we examined whether

Figure 3 (opposite). The three panels show the empirical .1, .3, .5, .7, and .9 quantiles for the response time (RT) distributions in Experiment 2. The �
signs are quantile RTs plotted against accuracy values calculated for the two-choice data. The � signs are the quantile RTs for go/no-go data. The different
panels represent the fits of the different models: the decision criteria model (A); the drift criterion model (B); and the drift rate model (C). The gray blobs
show variability from Monte Carlo simulations based on the model. NWe � error responses to nonwords; NWc � correct responses to nonwords; LFc �
correct responses to low-frequency words; LFe � error responses to low-frequency words; MFc � correct responses to medium-frequency words; MFe �
error responses to medium-frequency words; NWg � go responses to nonwords; LFg � go responses to low-frequency words; MFg � go responses to
medium-frequency words.
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this implicit boundary in the go/no-go task behaves in a similar
way as the explicit boundaries in the two-choice task. In this
experiment, we instructed subjects to focus on either speed or
accuracy, and we examined whether the speed–accuracy instruc-
tions affected the position of the explicit and implicit boundaries in
the go/no-go task, even in the case of the implicit no-go decision.

Method

Subjects. A new group of 28 Northwestern University under-
graduates took part in this experiment.

Materials and procedure. Sets of 640 words of four or five
letters were selected from the Kučera and Francis (1967) list.
There were 320 low-frequency words (1 to 6 occurrences per
million) and 320 medium-frequency words (8 to 20 occurrences
per million); the number of letters was matched in each frequency
group. Six hundred forty nonwords were created by randomly
replacing the vowels of four- or five-letter words (not used in the
experiment) with other vowels.3 The structure of the trials was the
same as in the previous experiments.

Design. Task (go/no-go, two-choice), instructions (speed, ac-
curacy), and word frequency (low, medium) were varied within
subjects. Over 2 days, each subject was given a total of 1,280
experimental trials: 640 word trials and 640 nonword trials. Half of
the trials used the go/no-go procedure, and the other half used the
two-choice procedure. Word and nonword stimuli were counter-
balanced across subjects so that if a particular letter string was
presented in one of the two-choice blocks to one subject, it would
be presented in one of the go/no-go blocks to the next subject. The
blocks of trials alternated between two-choice and go/no-go tasks
and between speed and accuracy instructions. In the speed blocks,
subjects were told to emphasize speed over accuracy, and in the
accuracy blocks, subjects were told to emphasize accuracy over
speed. In each of the two sessions, there were eight experimental
blocks with 80 trials each.

Results

RTs shorter than 250 ms or longer than 1,500 ms were excluded
from the latency analyses (less than 1% of all responses). Mean
lexical decision latencies and response probabilities were calcu-
lated across individuals and are presented in Table 2.

Medium-frequency words had a shorter mean RT than low-
frequency words (by about 50 ms), F(1, 27) � 287.96, �p

2 � .914;

responses to words had a shorter mean RT in the go/no-go task
than in the two-choice task (by about 40 ms), F(1, 27) � 6.68,
�p

2 � .198; and responses were shorter under speed instructions
than under accuracy instructions (by about 80 ms), F(1, 27) �
45.43, �p

2 � .627. The effect of word frequency was larger under
accuracy instructions (57 ms) than under speed instructions (42
ms): interaction, F(1, 27) � 6.14, �p

2 � .185. The task effect was
a 47-ms-shorter overall RT for the go/no-go task in the accuracy
condition as compared with almost no effect in the speed condi-
tion: Task � Instructions interaction, F(1, 27) � 20.48, �2

p �
.421.

RTs at the .1 quantile were shorter to medium-frequency words
than to low-frequency words by about 15 ms, F(1, 27) � 41.37,
�p

2 � .605. RTs at the .1 quantile to words were shorter in the
go/no-go task than in the two-choice task (these differences ranged
from 12 to 36 ms), F(1, 27) � 10.32, �p

2 � .276, and RTs at the
.1 quantile to words under speed instructions were shorter than
under accuracy instructions by about 40 ms, F(1, 27) � 53.94,
�p

2 � .666. The effect of word frequency was also larger under
accuracy instructions than under speed instructions: interaction,
F(1, 27) � 3.83, p � .061; �p

2 � .124. For the .1 quantile, the
instructions had a much greater effect on the two-choice task than
on the go/no-go task: interaction, F(1, 27) � 10.27, �p

2 � .276.
This interaction reflects the fact that the difference between the
go/no-go task and the two-choice task was quite large under
accuracy instructions (about 500 ms), whereas it was quite small
(less than 5 ms) under speed instructions. The other interactions
did not approach significance.

In the two-choice task, correct RTs to nonwords were substan-
tially shorter under speed instructions than under accuracy instruc-
tions, both in mean RT (about 100 ms), F(1, 27) � 11.79, �p

2 �
.304, and at the .1 quantile (about 60 ms), F(1, 27) � 5.57, �p

2 �
.171.

Medium-frequency words were responded to more accurately
than were low-frequency words by a proportion of about .2, F(1,
27) � 245.05, �p

2 � .900, and accuracy was higher in the go/no-go
task than in the two-choice task, F(1, 27) � 58.61, �p

2 � .685. The
effect of word frequency was greater in the go/no-go task than in
the two-choice task: interaction, F(1, 27) � 24.24, �p

2 � .473, and
the effect of task was greater under speed instructions than under
accuracy instructions: interaction, F(1, 27) � 6.56, �p

2 � .196. The
other interactions did not approach significance.

Relative speed of correct versus incorrect responses. For
words in the two-choice task, we found shorter mean RTs for the
correct (“word”) responses than for the incorrect (“nonword”)
responses (a 90-ms effect), F(1, 27) � 33.31, �p

2 � .552. This
effect was modulated by word frequency and the instructions:
three-way interaction, F(1, 27) � 4.87. This interaction reflected
that the difference between correct and incorrect RTs was substan-
tially larger under accuracy instructions than under speed instruc-
tions (136 ms vs. 48 ms, respectively) and that these effects were
greater for medium-frequency words than for low-frequency
words (134 ms vs. 50 ms, respectively). For the nonwords, we
found shorter latencies for the incorrect (“word”) responses than

3 Note that the items used in this experiment included those used in
Experiments 1 to 3, but some additional items were added, because in this
experiment we had twice as many trials as in the previous experiments.

Figure 4 (opposite). The three panels show the empirical .1, .3, .5, .7, and
.9 quantiles for the response time (RT) distributions in Experiment 3.
The � signs are quantile RTs plotted against accuracy values calculated for
the two-choice data. The � signs are the quantile RTs for go/no-go data.
The different panels represent the fits of the different models: the decision
criteria model (A); the drift criterion model (B); and the drift rate model
(C). The gray blobs show variability from Monte Carlo simulations based
on the model. NWe � error responses to nonwords; NWc � correct
responses to nonwords; LFc � correct responses to low-frequency words;
LFe � error responses to low-frequency words; MFc � correct responses
to medium-frequency words; MFe � error responses to medium-frequency
words; NWg � go responses to nonwords; LFg � go responses to low-
frequency words; MFg � go responses to medium-frequency words.
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for the correct (“nonword”) responses, F(1, 27) � 6.08, �p
2 � .184,

and this difference was similar under speed and accuracy instruc-
tions.

Discussion and Modeling

The speed–accuracy manipulation produced the expected pat-
tern of results in both the two-choice and the go/no-go tasks: Speed
instructions yielded lower accuracy (by about .05) and shorter RTs
(by about 80 ms) than accuracy instructions. We now examine the
fits of the diffusion model for the go/no-go data in the speed and
the accuracy conditions. We expect to see more conservative
decision criteria in the accuracy condition as opposed to the speed
condition. In terms of the parameter values, we expect to observe
smaller values of z and a in the speed condition than in the
accuracy condition. In the modeling for the present experiment, we
allow the position and starting point parameters (a and z) to vary
across task and across instructions.

Figure 5 shows the fits and the data for the two-choice task for
Experiment 4. In this figure, we present only the fits from the
decision criteria model, which was the one with the lowest BIC.
Responses in accuracy condition (top panel) and in speed condi-
tion (bottom panel) are adequately accounted for by the model.

The parameter values are shown in Table 4, and as expected, the
instruction manipulation produced differences in the values of the
a and z parameters: Under accuracy instructions, a is .135 and z is
.067, whereas for speed instructions a is .086 (.049 difference) and
z is .051 (.016 difference). The magnitude of the effect of the
instructions in the parameter values is smaller than that found by
Wagenmakers, Ratcliff, Gomez, and McKoon (2007); however,
the pattern is the same.

For the go/no-go task, we examined the three different models
examined above (see Table 3 for parameter values and free pa-
rameters). The effect of the emphasis on speed or accuracy in the
models is captured by changes in the distances between the starting
point of the diffusion process and the decision boundaries, with
shorter distances in the speed condition than in the accuracy
condition.

As noted in the Results section, the effect of task on the .1
quantile was negligible under speed instructions, whereas it was
quite large under accuracy instructions. Within the context of these
models, this interaction can be accounted for with changes in the
distance between the boundaries and the starting point. Assuming
a constant drift rate, the .1 quantile for positive responses depends
mostly on two parameters, Ter and z; when these two parameters

Figure 5. The two panels show the empirical .1, .3, .5, and .9 quantiles for the RT distributions in Experiment
4. The � signs are quantile response times (RTs) plotted against accuracy values calculated for the two-choice
data. The � signs are the quantile RTs for go/no-go data. The gray blobs show variability from Monte Carlo
simulations based on the decision criteria model. NWe � error responses to nonwords; NWc � correct responses
to nonwords; LFc � correct responses to low-frequency words; LFe � error responses to low-frequency words;
MFc � correct responses to medium-frequency words; MFe � error responses to medium-frequency words;
NWg � go responses to nonwords; LFg � go responses to low-frequency words; MFg � go responses to
medium-frequency words.
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are free, these effects can cancel each other. For this experiment,
if the effect of task is different for zsp than for zac, and there is a
change in Ter across task, then the interaction between task (two-
choice vs. go/no-go) and instructions (speed vs. accuracy) will be
observed at the .1 quantile.

Decision criteria model. As in the previous experiments, this
model has the lowest BIC value (7,004). The starting point (z), the
distance between boundaries (a), and the nondecisional component
of the RT (Ter) are free to vary from the two-choice task to the
go/no-go task, and the a and z parameters are allowed to vary from
the speed to the accuracy conditions.

The .1 quantile of the RT distributions is again shorter in the
go/no-go task than in the two-choice task. This effect is captured
in this model by a change in the Ter parameter, which is shorter (by
14 ms) in the go/no-go task than in the two-choice task. The
behavior of the a and z parameters indicates that the speed–
accuracy instructions had an effect on the distance between the
starting point and the positive decision boundary (a–z). This is
because the effect of the speed–accuracy instructions is rather
small in the a parameter in the go/no-go task whereas the effect in
the z parameter is as large as in the two-choice task. Thus, the
behavior of the parameters of this model supports the notion of
shorter nondecisional components in the RT for the go/no-go task.

Drift criterion and drift rate models. The other two models
under consideration show the same picture as the decision criteria
model discussed above. In fact, the drift criterion parameter
(BIC � 7,011) for the second model has a value of only .001. The
a, z, and Ter parameters in the drift rate model also follow the same
pattern as in the other two models. Also, as in the previous
experiments, in the drift rate model all of the drift rates are more
positive, especially the drift rate for medium-frequency words. The
BIC value for the drift rate model is again the largest (7,015).

To summarize, in this experiment we explored the behavior of
the implicit decision boundary with a speed–accuracy manipula-
tion. With different sets of free parameters, the distance between
the starting point and the explicit decision boundary does seem to
change as a function of the instructions; also, the instructions seem
to have a smaller effect on the distance between the starting point
and the implicit decision boundary in the go/no-go task.

Experiment 5

This experiment was carried out to determine whether the pat-
tern of results and parameter values found in the lexical decision
experiments described above would be obtained in a nonlexical
task. We chose a numerosity discrimination task like the one used
by Espinoza-Varas and Watson (1994) and Ratcliff et al. (1999).
On each trial of the experiment, an array of asterisks was presented
on a computer screen, and the subjects’ task was to decide whether
the number of asterisks was high or low.

Performance in this type of task is a function of a single
independent variable, the number of asterisks; for example, 30
asterisks within a 10 � 10 array is easier to classify as “low” than,
say, 45 asterisks within the same 10 � 10 array. This task has
advantages for our purposes: It generates many responses per
condition, which yields stable RT distributions; in addition, by
varying the difficulty of the tasks we create multiple drift rate
conditions, which allows us to constrain model fitting.

Method

Subjects. Fourteen DePaul University undergraduates partici-
pated in this experiment for credit in an introductory psychology
class.

Stimuli and procedure. The asterisks were presented in a
10 � 10 grid in the upper left corner of a computer monitor for
100 ms. They appeared as light characters on a dark background
with high contrast. The number of asterisks was selected by
randomly sampling from a uniform distribution with end points
31 and 70. An array of 50 asterisks or fewer was considered
“low,” and an array of 51 or more was considered “high”;
subjects received accuracy feedback accordingly. This is dif-
ferent from the probablistic feedback provided in earlier studies
(Espinoza-Varas & Watson, 1994; Ratcliff et al., 2001; Ratcliff
et al., 1999). In each trial 2,000 ms was allowed for responding.
After the 2,000 ms or once a response was made, there was a
500-ms intertrial interval. The computer monitors were driven
by a real-time stimulus presentation system.

Design. Task (go/no-go, two-choice) and number of asterisks
(from a uniform distribution with end points 31 and 70) were
varied within subjects. Each subject was given a total of 1,080
experimental trials. Half of the trials used the go/no-go procedure,
and the other half used the two-choice procedure. The go/no-go
and two-choice blocks were grouped; half of the subjects were
tested in the go/no-go procedure first, and the other half in the
two-choice procedure first. Subjects were instructed to press the ?/
key for high and, in the two-choice procedure, the Z key for low.
In the go/no-go procedure they were instructed to respond only to
high numbers of asterisks and to not respond and wait for the next
trial for low numbers of asterisks.

Results and Modeling

The data from 3 of the subjects showed that they were pressing
the key that corresponded to the “low” response in some of the
go/no-go trials. The data from these subjects are not used in these
analyses. Also, RTs below 200 ms were eliminated from the data
analysis (about 1.4% of all responses).

To reduce the number of experimental conditions, we collapsed
the data according to the number of asterisks presented into eight
groups with interval size of five (31 to 35, 36 to 40, etc). This
experiment’s task produced consistent effects of number of aster-
isks on latency and proportion of correct responses in both the
go/no-go and the two-choice procedures. As the number of aster-
isks increased, the proportion of “high” responses increased. Sim-
ilarly, as the number of asterisks became more extreme, the mean
RT decreased (see Table 5 and Figure 1 [available in the online
supplement]). The response probabilities and the mean RTs for
“high” responses were submitted to separate ANOVAs with two
within-subject factors: number of asterisks and procedure (go/
no-go and two-choice). For the mean RT, only number of asterisks
yielded significant differences, F(7, 10) � 4.42, �p

2 � .307 (all
other Fs � 1). For response proportion, number of asterisks, F(7,
10) � 354.64, �p

2 � .973; procedure, F(1, 10) � 22.57, �p
2 � .693;

and the interaction, F(7, 10) � 2.79, �p
2 � .287, yielded significant

effects. To accommodate all of the data points from this experi-
ment, the figures for this and the next experiment have a slightly
different format than the ones presented before. Figure 6 shows
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quantile-probability functions for the averaged data in Experiment
5. The quantile-probability functions displayed in this figure better
show the effects of the task on the latency and accuracy data
simultaneously. As in the previous figures, the RTs at the .1, .3, .5,
.7, and .9 quantiles are plotted along the y-axis; however, unlike in
the previous figures, in this one the response proportions for each
are plotted along the x-axis. The panels on the left correspond to
“large” responses; the filled dots represent the data from the
two-choice task, and the open dots represent the data from the
go/no-go procedure. The panels on the right represent “small”
responses in the two-choice procedure. The empirical data are the
same across the three rows, but the fits of the models change across
rows. The solid lines represent the fit of the model to the two-
choice data, and the dashed lines represent the fit of the model to
the go/no-go data. Also, as can be seen in the figure, the RT
distributions for the go/no-go task were more spread out than the
ones for the two-choice task.

The three models with implicit decision boundaries for the go/
no-go task were fit to the latency and response proportion data from
this experiment. The data that were used in the minimization routine
for each of the 16 experimental conditions (eight levels of numerosity
and two levels of task) were the accuracy values and the five quantile
RTs averaged across subjects for both correct and error responses.
Figure 6 shows quantile-probability functions for the data (open dots
represent the go/no-go data and filled dots represent the two-choice
data). The decision criteria model has three free parameters across
procedure: Ter, a, and z. The drift criterion model has four free
parameters across procedure: the same three as the decision criteria
model plus the drift rate criterion. And the drift rate model has the
same free parameters across procedure as the decision criteria model,
plus all the drift rates.

Table 6 shows the best fitting parameters for the three models
along with the BIC values. The three models produce good fits to

the data, but the decision criteria model produces the best fit
according to the BIC (1,301 for the decision criteria model; 1,303
for the drift criterion model; and 1,351 for the drift rate model).
Hence, the conclusion from this experiment is similar to the one
obtained for the lexical decision experiments: The go/no-go task
seems to affect the decision criteria (parameters a and z) and the
nondecisional components of the RT (Ter parameter), and in this
experiment, it might bias the accumulation of evidence (drift
criterion parameter).

Experiment 6

Experiment 6 was designed to provide data to allow the mod-
eling to be extended to the domain of recognition memory. In this
experiment, word frequency and the number of presentations dur-
ing study were manipulated as in Ratcliff, Thapar, and McKoon
(2004).

Method

Subjects. A new group of 17 DePaul University undergradu-
ates took part in this experiment.

Stimuli. There were 800 high-frequency words, with frequen-
cies from 78 to 10,600 per million (M � 325, SD � 645); 800
low-frequency words, with frequencies of 4 and 5 per million
(M � 4.41, SD � 0.19); and 741 very low frequency words, with
frequencies of 1 per million or no occurrence in Kučera and
Francis’s (1967) corpus. All of the very low frequency words did
appear in the Merriam-Webster’s Collegiate Dictionary (1990).

Procedure. The experiment consisted of 26 study–test blocks
per session. Each study list consisted of 25 words, 4 high- and 4
low-frequency words presented once, and 4 high- and 4 low-
frequency words presented two times. One very low frequency

Table 5
Summary of Results for Experiments 5 and 6

Stimulus type

Error RT Correct RT
Proportion of “large”/“old”

responses Correct RT at .1 quantile

Choice Go/no-go Choice Go/no-go Choice Go/no-go Choice Go/no-go

Experiment 5

66–70 asterisks 384 (39) 468 (11) 444 (19) .916 (.019) .985 (.007) 343 (9) 347 (9)
61–65 asterisks 456 (36) 485 (12) 459 (19) .885 (.023) .949 (.017) 345 (10) 342 (8)
56–60 asterisks 592 (24) 497 (15) 487 (23) .817 (.017) .933 (.016) 340 (10) 349 (11)
51–55 asterisks 531 (21) 524 (18) 539 (28) .698 (.026) .840 (.035) 355 (14) 348 (13)
46–50 asterisks 562 (23) 561 (27) 547 (22) .475 (.024) .617 (.049) 347 (17)
41–45 asterisks 538 (27) 562 (30) 548 (19) .311 (.022) .389 (.045) 392 (15)
36–40 asterisks 466 (23) 530 (50) 523 (14) .160 (.025) .218 (.035) 370 (10)
31–35 asterisks 434 (29) 517 (80) 507 (13) .100 (.025) .104 (.032) 366 (9)

Experiment 6

High frequency (2) 678 (41) 572 (29) 623 (35) .738 (.049) .676 (.067) 421 (11) 430 (14)
High frequency (1) 661 (41) 600 (24) 654 (39) .583 (.049) .586 (.049) 430 (14) 448 (11)
High frequency (0) 647 (40) 681 (37) 621 (27) .193 (.038) .196 (.036) 446 (13)
Low frequency (2) 689 (55) 556 (21) 594 (51) .888 (.037) .819 (.061) 432 (14) 416 (9)
Low frequency (1) 636 (54) 590 (24) 634 (41) .754 (.046) .726 (.054) 440 (14) 434 (8)
Low frequency (0) 681 (71) 710 (46) 636 (31) .145 (.028) .162 (.031) 444 (15)

Note. Values are means, with standard errors in parentheses. Response times (RTs) are in milliseconds. In Experiment 5, 50 asterisks or fewer was
considered small. The number in parentheses next to the stimulus type for Experiment 6 represents the number of presentations during the study phase.
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word was presented as the final word in the study list. Each study
word was displayed for 1,300 ms. The repeated words were
presented with at least 2 other words intervening between presen-
tations. Each test list consisted of the 17 studied words and 17 new
words, the latter consisting of 8 high, 8 low, and 1 very low
frequency word. In each test block, either the new very low
frequency word was the first test item and the old very low

frequency word was the second item, or vice versa; these very low
frequency items were used as a buffer and hence were not part of
the analysis presented below. To match the procedure used in the
other experiments presented in this article, the test item was
presented for 100 ms. In each trial 2,000 ms was allowed for
responding. After the 2,000 ms or once a response was made, there
was a 500-ms intertrial interval.

Thirteen of the study–test blocks used the two-choice procedure;
subjects were instructed to respond by pressing the ? key for old
words and the Z key for new words. The other 13 blocks used the
go/no-go procedure; subjects were instructed to respond by press-
ing the ? key for old words and not to respond for new words. The
go/no-go and two-choice blocks were grouped; half of the subjects
were tested in the go/no-go procedure first, and the other half in the
two-choice procedure first.

Results and Modeling

Out of the 17 subjects, 3 were not included in the present
analysis because they failed to follow instructions. Responses
shorter than 300 ms were not included in this analysis (about 2.3%
of all responses).

Table 5 shows a summary of the results for this experiment, and
Figure 2 (available in the online supplement) shows the proportion
of “old” responses for each condition (the variable of interest in
most recognition memory studies). The mean RT for correct re-
sponses and the proportion of correct responses for old items were
submitted to separate ANOVAs with number of presentations
during study (one vs. two), word frequency (high vs. low), and
procedure (go/no-go vs. two-choice) as within-subject factors. The
same dependent variables for correct responses to new items were
submitted to separate ANOVAs with word frequency and proce-
dure as within-subject factors. For the correct responses to old
items, for the mean RT, significant differences were found only for
the main effects of word frequency (shorter RTs to low-frequency
words), F(1, 13) � 6.29, �p

2 � .326, and number of presentations
(shorter RTs for two presentations), F(1, 13) � 16.27, �p

2 � .556.
These same two factors were significant for proportion of correct
responses: F(1, 13) � 56.77, �p

2 � .326, for word frequency and
F(1, 13) � 39.05, �p

2 � .326, for number of presentations during
study. In the ANOVAs for correct responses to new items, we
found only marginal effects of word frequency on false alarms
rates, which were lower for low-frequency words (.154) than for
high-frequency words (.195), F(1, 13) � 3.13, p � .10; �p

2 � .194,
and also a marginal effect of frequency on correct RTs to new
items, with shorter RTs for high- than for low-frequency words,
F(1, 13) � 3.16, p � .10; �p

2 � .196. Just like in the other
experiments, the RTs for the go/no-go procedure have a larger
spread than those for the two-choice procedure, as can be seen in
Figure 7, which includes the data and the model fits that are
discussed below.

These results replicate well-known patterns of results in
recognition memory. Lower frequency words are easier to rec-
ognize than higher frequency words (e.g., Glanzer & Bowles,
1976; Gorman, 1961), and words that are presented more fre-
quently during study are easier to recognize than words pre-
sented less frequently (e.g., Ratcliff & Murdock, 1976). The
diffusion model assumes that the match between the probe and
the memory representation maps into drift rate. For this exper-

Figure 6. Quantile-probability functions for the averaged data in Exper-
iment 5. The panels on the left correspond to “large” responses; the filled
dots represent the data from the two-choice task, and the open dots
represent the data from the go/no-go procedure. The panels on the right
represent “small” responses in the two-choice procedure. The empirical
data are the same across the three rows, but the fits of the models change.
The solid line represents the fit of the model to the two-choice data, and the
dashed line represents the fit of the model to the go/no-go data. The
quantile-probability functions displayed in this figure better allow us to
observe the effects of the task on the latency and accuracy data simulta-
neously. Given the large number of conditions, we use this displaying
method instead of the confidence dots shown in the previous experiments.
RT � response time.
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iment, we allowed the drift rates to vary freely for each type of
item (one-presentation low-frequency words, two-presentation
low-frequency words, one-presentation high-frequency words,
two-presentation high-frequency words, new high-frequency
words, and new low-frequency words). The response propor-
tions and the quantile RTs averaged across subjects for error
and correct responses were entered into the minimization rou-
tine for each of the 12 experimental conditions (two levels of
word frequency, three levels of the number of presentations,
and two levels of task). Figure 7 shows the latency-probability
functions for the data (open dots represent the go/no-go data
and filled dots represent the two-choice data). The three panels
show the same data but differ in the model used to fit the data.
The solid lines represent the fits to the two-choice procedure,
and the dashed lines represent the fits to the go/no-go proce-
dure. The three models evaluated are the ones that contain an
implicit negative (“low”) boundary for the go/no-go task (the
same models as in Experiments 1 to 5). The decision criteria
model has three free parameters across procedures: Ter, a, and
z. The drift criterion model has four free parameters across
procedures: the same three as the decision criteria model plus
the drift rate criterion. The drift rate model has nine free
parameters, the same as the decision criteria model plus all of
the drift rates.

Table 7 shows the best fitting parameters for the three models
along with the BIC values. As in the previous experiments, the
three models produce good fits to the data (this time the fits of the
three models are visually indistinguishable). Nonetheless, the de-
cision criteria model fits better (BIC � 666) than the other two
models according to the BIC value (a difference of 6 and 36 from
the drift criterion and drift rate models, respectively). The advan-
tage in terms of BIC for the decision criteria model is because it is
the model that has the fewest number of free parameters. Thus, the
conclusion from this experiment for recognition memory is that the
go/no-go task can be adequately modeled in the same way as for
the lexical decision and numerosity discrimination experiments.
The changes in the model between the go/no-go task and the
two-choice task are in the placement of the decision criteria
(parameters a and z) and in the duration of the nondecisional
components of the RT (Ter parameter).

General Discussion

Across the six experiments presented in this article, we obtained
values of accuracy, mean RT, and RT distributions for correct and
error responses for both two-choice and go/no-go tasks. We found
three robust effects that any model of the go/no-go task must
explain: (a) There is an improvement in the accuracy rate for items
associated with the overt response in the go/no-go task compared
with the two-choice task; (b) the spread of RT distributions in the
go/no-go task is larger than that in the two-choice task; and (c)
there is a shift in the leading edge of the RT distributions from the
two-choice task to the go/no-go task, with the .1 quantile for go
responses from 10 to 30 ms shorter than the equivalent response in
the two-choice task.4 Because of the larger spread in the RT
distributions in the go/no-go task and the reduction in the leading
edge, the advantage of the go/no-go task may not always appear
using mean RT as the dependent variable (e.g., in Experiments 1
and 2 the difference in the mean RT across tasks is less than 10 ms
for low-frequency words).

The fits of the diffusion model to the data from the six exper-
iments provide a good account of the two-choice tasks (see also
Ratcliff, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon,
2001, 2004; Ratcliff, Thapar, et al., 2004). By implementing
assumptions about the go/no-go task in the diffusion model, we
were able to simultaneously account for data from the go/no-go
task with some parameter invariance across tasks. The model fails
only to fully account for error RT distributions for low-frequency
words in Experiments 1 to 3. Specifically, the model predicts a
larger spread than the one found in the data. There are several
possible reasons for the misfit, and we discuss two. In data from
tasks in which there is high accuracy (like the lexical decision
task), the estimates of the error RT distributions have large con-
fidence intervals. The second issue is that in our lexical decision
experiments, we eliminated data with RTs longer than 1,600 ms,

4 Although the effect of task at the .1 quantile did not occur in the
nonword go/no-go experiment (Experiment 3), it did occur in four other
word go/no-go experiments that are not included in this article. As we said
earlier, it may be the case that this decrease in Ter occurs especially with
word responses in the go/no-go task.

Table 6
Parameter Values for Experiment 5, Numerosity Discrimination Experiment

Drift rates

Model and task a Ter 66–70 61–65 56–60 51–55 46–50 41–45 36–40 31–35 a–z No. parameters G2 BIC

Decision criteria 17 1,183 1,301
Two-choice .095 .290 .591 .467 .345 .178 .009 �.120 �.279 �.404 .048
Go/no-go .111 .263 .047

Drift criterion 18 1,177 1,303
Two-choice .100 .293 .608 .481 .336 .160 �.019 �.187 �.353 �.485 .049
Go/no-go .113 .259 Drifts in two-choice �.120 .049

Drift rate 25 1,176 1,351
Two-choice .100 .289 .510 .439 .305 .153 �.033 �.170 �.343 �.447 .048
Go/no-go .111 .261 .786 .608 .472 .264 .086 �.071 �.210 �.362 .056

Note. In the decision criteria model, sz � .163, � � .082, st � .246; in the drift criterion model, sz � .175, � � .096, st � .244; in the drift rate model,
sz � .160, � � .093, sz � .237. BIC � Bayesian information criterion.
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Figure 7. Quantile-probability functions for the averaged data in Experiment 6. The panels on the left
correspond to “old” responses; the filled dots represent the data from the two-choice task, and the open dots
represent the data from the go/no-go procedure. The panels on the right represent “new” responses in the
two-choice procedure; in these right panels, the “new” responses to low-frequency two-presentation words are
represented by a single point (the median), because there were not enough responses per subject to estimate the
quantiles for the response time (RT) distribution. The empirical data are the same across the three rows, but the
fits of the models change. The solid line represents the fit of the model to the two-choice data, and the dashed
line represents the fit of the model to the go/no-go data.
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which was the time-out delay for no-go responses. This, of course,
would produce RT distributions with shorter spreads.

In all of the fits, we kept the parameters that represent variability
in processing constant across the two-choice and go/no-go tasks. It
is reasonable to expect that the change in the parameter values
would be along the same scale as changes in the main parameter;
for example, if the drift rates change about 10% from one task to
the other, then the � parameter would change by about 10% too.
Such changes in the variability parameters would have negligible
effects in the predictions of the model. Furthermore, the variability
parameters have high variability associated with them (see Ratcliff
& Tuerlinckx, 2002).

Our results suggest that the most parsimonious explanation
within the framework of random-walk or diffusion models is that
the go/no-go procedure is just a type of two-choice task in which
one response is associated with one decision boundary and the
other response is associated with the other decision boundary. The
go/no-go task differs from the two-choice task in that there is only
one observed response. Nonetheless, the decision not to respond
(no-go) seems to be associated with an implicit choice (at an
implicit decision boundary).

The model most commonly considered for the go/no-go task
assumes that there is a single decision boundary associated with
the go response and no boundary for no-go responses (see Smith,
2000; Sperling & Dosher, 1986). A similar approach is adopted by
one of the most successful computational models of the lexical
decision task, the multiple read-out model (Grainger & Jacobs,
1996). In this model, the go/no-go task is just a two-choice task
without a decision criterion for no-go responses (see Grainger &
Jacobs, 1996, p. 559). For nonword responses, Grainger and Ja-
cobs assume a time criterion. This means the model would not be
able to apply to Experiment 3 with nonwords as go responses.

The fits of our single boundary model were very poor across
experiments, in terms of both response probabilities and the spread
of the RT distributions. Given the poor quality of the fits, we can
rule out the single decision boundary model as an account of the
go/no-go task. Even when we allowed the a, z, Ter, and drift rate
parameters to differ between the two-choice task and the go/no-go
task, the single boundary model systematically missed the data in
two critical ways: It overestimated the response probabilities, and
it predicted RT distributions with much more spread than the data.

It might be thought that a single boundary model not constrained
by the fits to the two-choice task could account for the data in the
go/no-go task. We examined this possibility by allowing all nine
parameters in the single boundary model to vary freely and fitted
the single boundary diffusion model to the go/no-go data in the
experiments. The model achieves fits similar to those of the
implicit boundary models (jointly fitted with a two-choice model)
by dramatically increasing the magnitude of the negative drift rate
for no-go items (e.g., for Experiment 1, the drift rate for nonwords
went from –.234 in the two-choice task to –.551 in the go/no-go
task). That is, in this model, negative items would generate twice
as much negative evidence in the go/no-go task as in the two-
choice task. The model also dramatically increases the value of the
variability in drift rate across trials relative to the two-choice task
(from .09 in the two-choice task to .258 in the go/no-go task in
Experiment 1). These parameter values are at the extremes of those
found in other applications of the diffusion model, and indeed,
there are obvious problems of interpretation of these values. The
conclusion that the go/no-go task needed an implicit boundary is
consistent with the conclusion from the fits of models to the
response signal procedure, which showed that implicit boundaries
are necessary to fit both the regular two-choice task and response
signal data (Ratcliff, 2006).

The existence of an implicit negative decision is supported by
neurological evidence (e.g., Liddle, Kiehl, & Smith, 2001; Sasaki,
Gemba, Nambu, & Matsuki, 1993). Researchers have used the
go/no-go procedure as a paradigm to study brain activation during
operations such as error processing, response inhibition, and re-
sponse competition. For example, Drewe (1975) showed that or-
bitofrontal lesions impair performance in the go/no-go task (these
types of lesions also produce environmental dependence, which
produces behaviors in which individuals are not able to resist using
objects that are within reach). Along the same lines, intoxicated
individuals show deficits in go/no-go performance (Finn, Justus,
Mazas, & Steinmetz, 1999).

The issue of control has also been investigated with event-
related brain potential (ERP) studies. No-go trials often produce a
negative ERP component with a frontocentral scalp distribution
known as N2. The N2 has been related to executive control
mechanisms like inhibition and conflict detection. There has been
some debate on how general this finding might be, with some

Table 7
Parameter Values for Experiment 6, the Recognition Memory Experiment

Model and task a Ter

Drift rates

a–z
No.

parameters G2 BICHF(2) HF(1) HF(0) HF(2) HF(1) HF(0)

Decision criteria 15 576 666
Two-choice .111 .399 .136 .052 �.220 .252 .141 �.262 .048
Go/no-go .123 .367 .062

Drift criterion 16 576 672
Two-choice .111 .399 .125 .036 �.227 .246 .138 �.267 .048
Go/no-go .121 .355 Two-choice drifts �.04 .070

Drift rate 21 575 702
Two-choice .114 .401 .136 .045 �.260 .267 .157 �.303 .048
Go/no-go .125 .367 .132 .068 �.205 .213 .149 �.263 .056

Note. In the decision criteria model, sz � .196, � � .010, st � .141; in the drift criterion model, sz � .199, � � .010, st � .143; in the drift rate model,
sz � .210, � � .027, st � .137. BIC � Bayesian information criterion.
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researchers having failed to find it with auditory stimuli (see
Falkenstein, Hoormann, & Hohnsbein, 2002; Falkenstein, Ko-
shlykova, Kiroj, Hoormann, & Hohnsbein, 1995); however, it has
been shown that if the auditory task is made difficult enough, the
N2 emerges even in the auditory modality (Nieuwenhuis, Yeung,
& Cohen, 2004). Functional MRI studies have shown similar
results (e.g., Garavan, Ross, & Stein, 1999; Menon, Adleman,
White, Glover, & Reiss, 2001). Activation during a no-go trial is
consistent with inhibitory control. Also, there is an overlap be-
tween the regions of the brain related to error processing and those
related to inhibitory control. This overlap is not perfect, however.
For example, in no-go trials there is activation of the lateral
parietal cortex, which does not show error-related activation, and
therefore, it has been assumed that the lateral parietal cortex is
associated only with inhibitory control.

These lines of research have shown that there is activation of
brain areas related to response inhibition during no-go trials. This
finding has been interpreted as a no-go response being an inhibi-
tion of a positive response; however, the interpretation that
emerges from the fits of the diffusion model is slightly different:
Subjects might be inhibiting the negative response after they have
reached the implicit negative decision boundary.

Of note, the fits to the data from Experiment 4 show that the
model with an implicit boundary can accurately account for the
go/no-go data in a speed–accuracy manipulation. The parameters
(namely a and z) behave in the predicted way: The implicit
negative boundary changes its position depending on whether
speed or accuracy is emphasized.

A more complex issue is which of the three models that incor-
porate the implicit decision boundary is the best? To choose
among them we use three criteria: (a) Which model optimizes the
trade-off between precision and parsimony (i.e., number of free
parameters)? (b) Which model produces the smallest misses be-
tween the observed data and the predictions, and are any of the
misses systematic (e.g., does a model tend to err in one direction
for all conditions)? (c) Do parameter values behave in consistent
ways as a function of the experimental manipulations? The an-
swers to these three questions point to the decision criteria and
drift criterion models as the best of the models considered here.
These models support the notion that all that changes between the
two-choice and go/no-go tasks is the peripheral components of the
task.

An assumption made by some researchers is that the go/no-go
procedure can provide a better tool to uncover the nature of
cognitive processes. Our analysis indicates that the go/no-go pro-
cedure has rather limited benefits compared with the two-choice
procedure. In fact, it is likely to be a less sensitive tool for research
because it provides only half the number of conditions as a
two-choice task.

To summarize, in this article we have evaluated, in the context
of the diffusion model, several competing assumptions on the
decision processes involved in the go/no-go task. We have dem-
onstrated that the diffusion model successfully accounts for the
data in both tasks. Furthermore, we have provided strong empirical
and modeling evidence in favor of an implicit negative decision
boundary for the no-go task. Finally, the modeling shows that the
higher accuracy and faster responding in the go/no-go task is not
due to less noisy processing or a better extraction of information.
Instead, the go/no-go advantage seems to be due to a change in the

decision criteria combined with a faster nondecisional component
of processing.
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