An Investigation of the Role of Grapheme Units in Word Recognition

Stephen J. Lupker University of Western Ontario Joana Acha Basque Center on Cognition, Brain, and Language, Donostia—San Sebastián, Spain, and University of the Basque Country

Colin J. Davis University of London Manuel Perea Universitat de València

In most current models of word recognition, the word recognition process is assumed to be driven by the activation of letter units (i.e., that letters are the perceptual units in reading). An alternative possibility is that the word recognition process is driven by the activation of grapheme units, that is, that graphemes, rather than letters, are the perceptual units in reading. If so, there must be representational units for multiletter graphemes like CH and PH, which play a key role in this process. We examined this idea in four masked priming experiments. Primes were created by transposing, replacing entirely, or removing one component of either multiletter graphemes or two adjacent letters that each represented a grapheme, using both English and Spanish stimuli. In none of the experiments was there any evidence of differential priming effects depending on whether the two letters being manipulated formed a single grapheme or formed two separate graphemes. These data are most consistent with the idea that multiletter graphemes have no special status at the earliest stages of word processing and, therefore, that word recognition is, indeed, driven by the activation of units for individual letters.

Keywords: graphemes, masked priming, word recognition, transposed letters

Phonemes are defined as the smallest sound units in a language, whereas graphemes are defined as the letter-based units that represent phonemes. Often, these units consist of a single letter (e.g., the letter B and the phoneme /b/). In some cases, however, a grapheme involves

Editor's Note. Marc Brysbaert served as the guest editor for this article. His help is greatly appreciated .—JTE

This article was published Online First February 6, 2012.

Stephen J. Lupker, Department of Psychology, University of Western Ontario, London, Ontario; Joana Acha, Basque Center on Cognition, Brain, and Language, Donostia—San Sebastián, Spain, and Faculty of Psychology, University of the Basque Country, Gipuzkoa, Spain; Colin J. Davis, Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom; Manuel Perea, Faculty of Psychology, Universitat de València, València, Spain.

Supported in part by the Economic and Social Research Council (Grant RES-000-22-3354), the Spanish Ministry of Science and Innovation (Grant PSI2008-04069/PSIC), and the Natural Sciences and Engineering Research Council of Canada (Grant A6333). We thank Kieren Eyles, Lindsay Chan, and Jason Perry for their assistance in testing participants and data analysis, as well as Max Coltheart, Sachiko Kinoshita, Arnaud Rey, Jennifer Stolz, and Carol Whitney for their comments on earlier drafts of this article. Portions of this article were reported at the 17th meeting of the European Society for Cognitive Psychology, September 2011, Donostia–San Sebastián, Spain, and the 52nd annual meeting of the Psychonomic Society, November 2011, Seattle, WA

Correspondence concerning this article should be addressed to Stephen J. Lupker, Department of Psychology, University of Western Ontario, London ON N6A 5C2, Canada. E-mail: lupker@uwo.ca

two letters (e.g., the bigram CH representing the phoneme /J/). A question that researchers have been addressing recently is the processing implications of the existence of multiletter graphemes.

There are now a considerable number of published studies suggesting that multiletter graphemes have a special status. For example, Tainturier and Rapp (2004) have suggested that multiletter graphemes are represented by units in the sublexical system. One source of support for this conclusion comes from their examination of errors made by individuals with graphemic buffer impairments (see Rapp & Kong, 2002; and see Buchwald & Rapp, 2004, for more information about the graphemic buffer). Those individuals made fewer lettertransposition errors on consonant graphemes like CH than on control (i.e., two-grapheme) bigrams like CR. A second source of support comes from the demonstration that word identification and naming latencies are longer for five-letter words with three graphemes/ phonemes (ROUTE) than for five-letter words with five graphemes/ phonemes (CRISP) (Rastle & Coltheart, 1998; Rey, Jacobs, Schmidt-Weigand, & Ziegler, 1998; Rey & Schiller, 2005). These particular results suggest that letter pairs making up a grapheme must be combined by the processing system in order for a word to be read, a process that takes time and effort. Other support comes from Rey, Ziegler, and Jacobs's (2000) and Marinus and de Jong's (2011) demonstrations that it is harder to detect the presence of a target letter when it is embedded in a multiletter grapheme (detect "A" in COAST) than when it is not (detect "A" in STAND). Finally, Havelka and Frankish (2010) have reported that, in a lexical-decision experiment, case-mixing manipulations that divide multiletter graphemes (e.g., cOaSt) produce longer latencies than case-mixing manipulations that do not (e.g., cOAst).

Based on these types of results, a number of authors have claimed that grapheme units are "perceptual" or "functional" reading units that drive the early stages of visual word recognition (e.g., Havelka & Frankish, 2010; Marinus & de Jong, 2011; Rey et al., 2000), although the precise role that these units are assumed to play was not fully specified by these authors. In itself, the claim that the reading system represents multiletter graphemes is uncontroversial. Such representations are commonplace in well-known models of visual word recognition (e.g., Coltheart, Rastle, Perry, Ziegler, & Langdon, 2001; Perry, Ziegler, & Zorzi, 2010; Plaut, McClelland, Seidenberg, & Patterson, 1996; Zorzi, Houghton, & Butterworth, 1998). However, the idea that grapheme units are perceptual reading units appears to be a stronger claim about the architecture of the visual word recognition system.

This distinction can be illustrated with reference to two different versions of a dual-route model of visual word recognition (see Figure 1). Within a dual-route framework, one can ask the question: At what point do the two routes diverge? Or to put it another way: What are the largest common units shared by the two routes? The model illustrated on the left-hand side of Figure 1 illustrates what might be considered the standard approach, according to which the largest common units shared by the two routes are letter units. This model includes grapheme units, but they are assumed to be an intermediate level of

representation between letter units and phonologically based units and, hence, their role is to activate phonology rather than to activate word units.

This letter-input approach is the one that is assumed in most computational implementations of the dual-route framework, as in the dual-route cascaded model (Coltheart et al., 2001), the connectionist dual process (CDP) and CDP++ models (Perry et al., 2010; Zorzi et al., 1998), and the bimodal interactiveactivation model (Diependaele, Ziegler, & Grainger, 2010). Furthermore, most models that attempt to describe the early stages of visual word recognition (i.e., orthographic-coding or lexical-activation models) do not assume the existence of grapheme units (e.g., Davis, 2010; Gómez, Ratcliff, & Perea, 2008; Grainger & Jacobs, 1996; McClelland & Rumelhart, 1981; Norris, Kinoshita, & van Casteren, 2010; Paap, Newsome, McDonald, & Schvaneveldt, 1982; Whitney, 2001). Some of the latter models do posit multiletter orthographic units, specifically, the highly influential open-bigram models (e.g., Dehaene, Cohen, Sigman, & Vinckier, 2005; Grainger & van Heuven, 2003; Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006; Schoonbaert & Grainger, 2004; Whitney, 2001, 2004), which assume a level of representation between the letter and the word level in which the units represent all the possible letter pairs. It is these units that drive activation of word units. The point to note, however, is that the multiletter

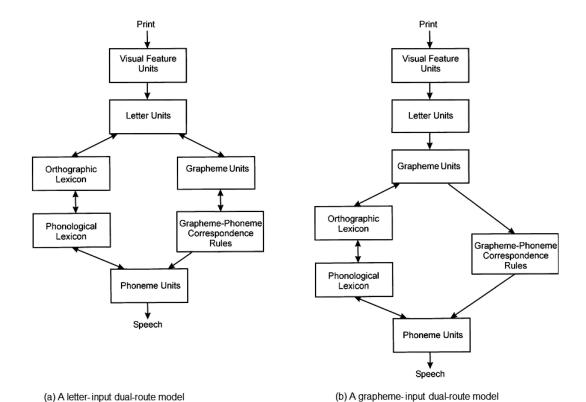


Figure 1. Two possible versions of a dual-route model of visual word recognition. A letter-input model, in which the common input to both routes comes from a level of (abstract) letter units (a), and a grapheme-input model, in which the common input to both routes comes from a level of grapheme units (b). Both models assume the existence of grapheme representations, but in the letter-input model these units are assumed to be specific to the nonlexical, grapheme—phoneme conversion route.

units in these models are assumed to represent all letter pairs, not simply those pairs corresponding to multiletter graphemes.¹

The model illustrated on the right-hand side of Figure 1 illustrates an alternative solution, according to which the largest common units shared by the two routes are grapheme units. Indeed, such an assumption was made in the first computational implementation of the dual-route framework (Reggia, Marsland, & Berndt, 1988). In this model, the input layer is a set of positionspecific grapheme units. These units code 168 different possible graphemes, including multiletter graphemes like CH, OU, and EIGH. Each grapheme unit has two sets of output connections, one to phoneme nodes (the grapheme-phoneme conversion route) and one to word nodes (the lexical route; see Figure 4 in Reggia et al., 1988). One rationale for such a solution could be that the use of grapheme units as inputs to the lexical route helps to increase the efficiency of the orthographic code (e.g., coding SCHOOL requires only three graphemes rather than six letters). A further rationale might be that the nature of the orthographic units developed during reading acquisition is constrained by phonological representations (cf. Perry et al., 2010; Plaut et al., 1996).

Although Figure 1 illustrates the distinction between letter-input and grapheme-input models of visual word recognition with regard to dual-route framework, the same issue arises for models in the triangle framework (e.g., Seidenberg & McClelland, 1989; Plaut et al., 1996). In these models, a common set of orthographic input representations projects along one vertex of the triangle to phonological representations and along another vertex to semantic representations. According to Plaut et al. (1996), these orthographic input representations are grapheme units. In their implemented model, the input layer consists of 105 grapheme units. Note, however, that this assumption is not a necessary feature of models in the triangle framework. For example, a subsequent model proposed by Harm and Seidenberg (1999) assumed that the orthographic input layer codes position-specific letter units.

The question addressed in the present research is not, therefore, whether there are any units at all in the reading system representing multilevel graphemes. The fact that readers are able to recognize that, for example, the digraph CH should be pronounced /J/ means that there must be phoneme units for multilevel graphemes somewhere in the system. Rather, the question is whether it is necessary for models of word recognition to give grapheme units a central role in the word recognition process. That is, do grapheme units provide the input to both the lexical and nonlexical routes (in dual-route models) or in the mappings from orthography to both phonology and meaning (in triangle models)? If it can be demonstrated that graphemes represent the "perceptual units" driving word recognition, many of the existing computational models of visual word recognition will have to be modified.

An empirical demonstration supporting a grapheme-input model would, at the very least, require eliminating any explanation of those results based on the recruitment of phonological information. Unfortunately, it is somewhat difficult to argue that any of the evidence cited above satisfies that criterion. Many of the results cited above, for example, come from experiments in which the task is naming, a task that clearly requires the retrieval of phonological information. The letter search experiments (Marinus & de Jong, 2011; Rey et al., 2000) are not subject to this same criticism, however, it seems quite likely that phonological information plays at least some role in these types of tasks (e.g., Ziegler & Jacobs, 1995). That is, a letter search for an

A is likely a multipronged search for both the letter A and the phoneme /{/. Because only the former is in the word COAST, that may make it more difficult to respond positively than when both the letter and the phoneme are in the target word (i.e., when searching for A in STAND). This problem, of course, would essentially be restricted to searches for the second letter in a multiletter grapheme, which was true in most of these experiments. The only experiment demonstrating an effect when searching for the initial letter in a multiletter grapheme is Experiment 2 in Rey et al. (2000), in which they reported that it took longer to find the O in FLOAT than in SLOPE. Brand, Giroux, Puijalon, and Rey (2007), however, were unable to replicate this effect in their Experiment 3, while at the same time nicely replicating the effect when the search involved the second letter in multiletter graphemes (e.g., Is there an A in COAST vs. STAND?). (See also Ziegler and Jacobs, 1995, for a demonstration of the difficulty in finding a letter in a nonword if that letter is the second letter in a multiletter grapheme.)

Finally, a similar issue arises when considering case-mixing experiments. Case mixing involves the presentation of a visually unfamiliar stimulus. Although this manipulation has no differential impact when the stimuli are presented as masked primes (e.g., Forster, 1998), as Mayall, Humphreys, and Olson (1997) have noted, with clearly visible stimuli, this particular manipulation seems to force readers to automatically group letters together based on similarity of size and case. As a result, completing the (lexical-decision) task requires readers to invoke processes not involved in normal reading. For example, making a lexicaldecision response to cOaSt or cOAst may be, to a large degree, based on successfully generating a phonological code for the letter string that matches a lexical code in a reader's phonological lexicon. For cOaSt, this process would be somewhat more difficult (than for cOAst) because of the difficulty of separating the "O" from the "S" and linking the "O" together with the "a" and the "S" together with the "t" in order to produce the correct phonological code. The present experiments were, therefore, designed to examine this issue, using a procedure or task in which the contrast between a stimulus containing a multiletter grapheme and a stimulus that does not is less likely to be affected by the recruitment of phonological information in order to perform the task.

In recent years, the masked priming paradigm (Forster & Davis, 1984) has been used extensively to investigate questions about orthographic coding (e.g., Davis & Lupker, 2006; Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006; Lupker & Davis, 2009; Perea & Lupker, 2003, 2004; Perry, Lupker, & Davis, 2008; Schoonbaert & Grainger, 2004). The basic premise of this research is that there is a

¹ Over the past decades, a number of models have assumed multiletter representational units. For example, almost 40 years ago, Smith and Spoehr (1974) and Spoehr and Smith (1975) proposed a theory involving units representing "vocalic center groups," units that code various consonant—vowel and vowel—consonant combinations. A few years later, Taft (1979) proposed units representing basic orthographic syllable structures (or BOSSes), subsequently extending this idea with a proposal that there are units representing the body of the BOSS (the BOB, Taft, 1992). Treiman and colleagues (Treiman & Chafetz, 1987; Treiman, Mullennix, Bijeljac-Babic, & Richmond-Welty, 1995; Treiman & Zukowski, 1988) have suggested that there may be units corresponding to word onsets and rimes. Note again that none of these models was based on the idea of representational units for graphemes.

fairly direct (although imperfect) relationship between prime-target similarity at the orthographic level and the size of the priming effect. For present purposes, the basic idea is that, if word recognition is based on the activation of grapheme units, disturbing the letters in a multiletter grapheme when creating a prime should have costs that will differ from the costs of disturbing letters that constitute two graphemes. (A similar line of reasoning has been employed in experiments examining the cost of disturbing morphemes in the course of visual word recognition, see Christianson, Johnson, and Rayner, 2005, and Perea and Carreiras, 2006.)²

In the present experiments, we disturbed multiletter graphemes in a number of ways. In the first experiment, conducted in English, we contrasted the priming effect created by a prime in which a multiletter grapheme has been replaced (e.g., the one-grapheme condition: amxxnt-AMOUNT) with the priming effect created by a prime in which one letter in a multiletter grapheme and a neighboring letter/ grapheme have been replaced (e.g., the two-grapheme condition: axxunt-AMOUNT). The latencies produced in these two conditions were compared to the latencies in their respective control conditions to measure the priming effects obtained. A word like AMOUNT has five graphemes. If grapheme units are central to the word recognition process, a word prime in which a multiletter grapheme has been replaced (i.e., amxxnt) still shares four graphemes with its target (i.e., AMOUNT), which should make it a reasonably effective prime. In contrast, a prime like axxunt shares only three graphemes with AMOUNT as well as having a grapheme not actually in AMOUNT (the "u" grapheme), which should make it a much less effective prime (Grainger, 2008; Lupker & Davis, 2009; Schoonbaert & Grainger, 2004). In contrast, if the orthographic units driving word recognition are all letter-based, there should be no difference in the priming effects from the two prime types.

One aspect peculiar to Experiment 1 should be noted. All of the multiletter graphemes used were multivowel graphemes. A reasonable proportion of the prior work (e.g., Havelka & Frankish, 2010; Marinus & de Jong, 2011) has focused on multivowel graphemes and, therefore, it was important to investigate them in the present research as well. In our subsequent experiments, however, only multiconsonant graphemes were used. The reason is that the main manipulation in those experiments involved disturbing graphemes by transposing letters. When primes are created by transposing vowels, even when they are nonadjacent vowels and, therefore, do not form a grapheme (e.g., cisano-CASINO), the resulting letter strings tend to be no more effective primes than primes created by simply replacing those vowels (e.g., cesuno-CASINO; Perea & Lupker, 2004). Such is not true for consonants which show much larger priming effects when letters are transposed than when they are replaced (the transposed-letter [TL] prime advantage). Because this difference between transposing and replacing letters is a key contrast in Experiments 2, 3, and 4, only multiconsonant graphemes were used in those experiments.

A final point is that, even in the manipulation involved in Experiment 1, the use of multivowel graphemes did create a small issue. The primes in the one-grapheme condition (e.g., amxxnt for AMOUNT or prxxst for PRIEST) inevitably maintained one more consonant than the primes in the two-grapheme condition (e.g., axxunt or prixxt). In general, primes that maintain consonants are better primes than primes that maintain vowels (New, Araújo, & Nazzi, 2008). Therefore, the one-grapheme condition may have had a slight advantage over the two-grapheme condition for reasons unrelated to

the issue being investigated here (i.e., the question of whether units for multiletter graphemes play a role in word recognition). To look ahead slightly, the failure to observe a difference in the size of the priming effects in the two conditions in Experiment 1 indicates that this difference in terms of the number of consonants maintained in the primes was not a crucial one.

As just noted, in the remainder of the experiments, we added a slightly different type of manipulation to disturb multiletter graphemes, transposing letters. Further, unlike in Experiment 1, in each of these experiments a second set of words was selected to create the two-grapheme (control) condition. The manipulations done to the two letters in multiletter grapheme words were also done to pairs of letters in these words (e.g., two single-letter graphemes were transposed). As noted, typically, TL primes involving consonants produce reasonable size priming effects (O'Connor & Forster, 1981; Perea & Lupker, 2003, 2004; Schoonbaert & Grainger, 2004; Van der Haegen, Brysbaert, & Davis, 2009), although they rarely produce priming at the same level as produced by identity primes, indicating that maintaining letter order is useful but not crucial in producing an effective prime. A potentially key distinction between transposing letters of a multiletter grapheme and transposing letters that create two graphemes is that, in the former case, there is no transposition of grapheme units. That is, the grapheme order in anhtem (ANTHEM) is maintained whereas the grapheme order in emlbem (EMBLEM-a twographeme control word) is not. Therefore, if grapheme units play a key role in word recognition, one would expect more priming when the letters in a multiletter grapheme are transposed than when letters that make up two separate graphemes are transposed.

Also reexamined in Experiment 2 was the impact of replacement-letter (RL) primes. As in Experiment 1, when both letters in a multiletter grapheme are replaced, the prime and target differ in only a single grapheme. By contrast, when two letters are replaced in a word in the two-grapheme condition, the prime and target differ in two graphemes. Therefore, as in Experiment 1, one would expect that there would be more priming when a multiletter grapheme is replaced (the one-grapheme condition) than when two separate letters are replaced (the two-grapheme condition).³

² The masked priming paradigm is not completely immune to the impact of phonology (Ferrand & Grainger, 1993, 1994). For example, Ferrand and Grainger (1994) have shown that pseudohomophone primes can facilitate lexical decision making slightly more than orthographic control primes for low-frequency targets when the prime duration is 50 ms, a duration that is essentially the same as those used here. What is more relevant, however, is that these effects are, presumably, not due to the recruitment of phonological information to aid in response production, but rather are due to the normal processes involved in word recognition. Therefore, any evidence for the impact of grapheme units in experiments of the sort reported here will need to be explained by models of word recognition, even if the effects ultimately are determined to be phonological in nature.

³ Because all of the graphemes are maintained in the TL primes in the two-grapheme condition (i.e., emlbem-EMBLEM) but not in the one-grapheme condition (i.e., anhtem-ANTHEM), one could make the counter prediction, that the two-grapheme condition should actually produce more (or at least equivalent) priming. Such would not be the case, however, when using RL primes. The fact that the data patterns turned out to be the same in the TL and RL prime conditions removes this concern. We thank Carol Whitney for bringing this issue to our attention.

Experiment 2 was carried out in English. Experiment 3 was a parallel experiment carried out in Spanish. Because Spanish is an orthographically shallow language, the expectation was that phonology would have a greater impact on the nature of orthographic representations than in English, which is a somewhat deeper language. In Spanish, there are only two multiletter graphemes that one can use in this type of situation: CH and QU. Because the CH grapheme involves two consonants, the impact of transposing or replacing CH was investigated in Experiment 3 (with those effects being compared to the impact of transposing or replacing letters that do not form multiletter graphemes).

Finally, Experiment 4, also carried out in Spanish, involved two new manipulations that again allowed a contrast between words with multiletter graphemes and words without. One was again based on a comparison between TL and RL primes, except that, in multiletter grapheme words, the letters in question were the final letter in the grapheme and the following letter (mecehro-MECHERO vs. menedro-MECHERO). Both of these changes involve eliminating the multiletter grapheme and adding two new incorrect graphemes (i.e., one for "c" and one for "h" in mecehro as well as one for the "n" and one for the "d" in menedro). As a result, TL and RL primes for these words should be relatively ineffective and certainly should not be differentially effective (i.e., there should be no TL prime advantage). In contrast, when the letters being transposed or replaced do not form a multiletter grapheme (e.g., secerto-SECRETO vs. senesto-SECRETO), the standard TL prime advantage should be observed (i.e., for these words, the pattern in Experiment 4 should be identical to that in Experiment 3).

Also included in these experiments were two other conditions that act as a type of control manipulation to evaluate a potential alternative account. One involved deleting the second letter of the grapheme (e.g., mecero-MECHERO) and the other involved replacing the multiletter grapheme with a single letter grapheme (e.g., menero-MECHERO). The purpose of the deleted-letter (DL) primes was to focus on the possibility that a single letter in a multiletter grapheme may partially activate that grapheme's unit (a possibility that could impact the interpretation of the contrast between the TL (i.e., mecehro) and RL primes (i.e., menedro) in this experiment). If single letters have the ability to activate units for multiletter graphemes, one would expect these DL primes to be quite effective primes for words containing multiletter graphemes (in contrast to when both letters of the grapheme have been replaced by a new single letter). Words without multiletter graphemes would receive no such benefit.

Experiment 1

Method

Participants. Participants were 48 undergraduates from Royal Holloway, University of London, who received course credit or a small payment for their participation. All were native speakers of English and reported having normal or corrected-to-normal vision.

Stimuli and apparatus. The target stimuli were 60 six-letter words and 60 orthographically legal, six-letter nonwords. Each of the stimuli contained a medial vowel digraph (e.g., EA, OU). The nonwords were constructed by changing two letters of each of the

target words (e.g., BLEACH \Rightarrow BREASH). The mean frequency of the target words was 37.3 per million (CELEX written frequency, range 1–612). The mean neighborhood size (N-obtained from N-Watch, Davis, 2005) was 1.0 (range 0–5) for the word targets and 0.4 for the nonword targets (range 0–3).

There were four prime conditions, corresponding to a 2×2 (Number of Graphemes Changed [1, 2] × Relatedness [related, unrelated]) design. Related primes were formed by replacing two letters of the target word with "xx," such that only the target's multiletter grapheme was affected (e.g., BLEACH ⇒ blxxch) or two graphemes, including the multiletter grapheme, were affected (e.g., BLEACH \Rightarrow bxxach). (The stimuli for all of the present experiments are listed in the Appendix.) The average ordinal position of the substituted letters in these two conditions was matched. The unrelated primes were formed by changing the corresponding letters of an unrelated word; for example, the unrelated primes for the target BLEACH were trxxty and txxaty. Each nonword target was associated with only a single prime, which was formed by replacing two medial letters with "xx." Four different counterbalanced versions of the experiment were designed, so that each participant saw a given target word only once, paired with one of its four primes; 12 participants completed each version of the experiment.

The experiment was run using DMDX experimental software produced by Forster and Forster (2003). Stimuli were presented on a SyncMaster monitor (Model 753DF). The presentation was controlled by an IBM-clone Intel Pentium. Stimuli appeared as black characters on a white background. Responses to stimuli were made by pressing one of two buttons on a custom-made button box.

Procedure. Participants were tested individually. Each participant sat approximately 45 cm in front of the computer screen. Participants were instructed to respond to strings of letters presented on the computer screen by pressing one button if the letters spelled an English word or another button if the letters did not spell a word. They were also told that a string of number signs (i.e., #######) would appear prior to the string of letters. They were not told of the existence of the prime. They were also told to respond to each target as quickly and as accurately as possible.

On each trial, participants saw the string of number signs for 500 ms followed by the presentation of the prime for 50 ms in lower-case letters. The target then appeared in uppercase for either 3 s or until the participant responded. All stimuli were presented in 12-point Arial font.

Participants performed 12 practice trials before beginning the experiment and were given the opportunity both during the practice trials and immediately afterward to ask the experimenter any questions to resolve confusion about what was required.

Results

The analysis of reaction times (RTs) excluded the 6.6% of trials in which participants made errors. Of the remaining 5,382 trials, six trials in which RTs were longer than 1,500 ms (three word trials and three nonword trials) and one word trial in which the RT was less than 250 ms were also excluded from the analysis.

Mean latencies and error rates for word targets from the subject analysis are shown in Table 1. Data were analyzed using analyses of variance (ANOVAs) based on a $2 \times 2 \times 4$ (Number of Graphemes Changed [1, 2] \times Relatedness [related, unrelated] \times

Table 1
Mean Lexical Decision Times for Word Targets in Experiment 1

Relatedness	One grapheme	Two graphemes	
Related	536 (4.0)	541 (6.0)	
Unrelated Priming	556 (6.0) 20 (2.0)	558 (6.0) 17 (0.0)	

Note. Values in parentheses are mean error percentages.

List [1, 2, 3, 4]) design. Number of graphemes changed and relatedness were both within-subject and within-item factors. List was a between-subject and between-item factor. List was included as a factor in the analysis in order to extract variance due to the method of counterbalancing, following the procedure recommended by Pollatsek and Well (1995). We conducted separate analyses treating either subjects (F_I) or items (F_2) as a random factor.

Word latencies. The analysis of correct latencies revealed a significant main effect of relatedness, $F_I(1, 44) = 24.57$, MSE = 664.7, p < .001; $F_2(1, 56) = 20.97$, MSE = 983.5, p < .001. Responses to targets preceded by related primes were faster than responses to targets preceded by unrelated primes. There was no main effect of the number of graphemes changed, $F_I(1, 44) = 0.84$, MSE = 811.55, p > .30; $F_2(1, 56) = 1.09$, MSE = 844, p > .30. Critically, there was no hint of a significant interaction of relatedness and number of graphemes changed, $F_I(1, 44) = 0.24$, MSE = 626.96, p > .50; $F_2(1, 56) = 0.12$, MSE = 983.5, p > .50.

Word errors. The analysis of error rates showed nonsignificant main effects of relatedness, $F_I(1,44) = 1.86$, MSE = 0.0036, p > .15; $F_2(1,56) = 1.89$, MSE = 0.0046, p > .15, and number of graphemes changed, $F_I(1,44) = 0.13$, MSE = 0.0017, p > .50; $F_2(1,56) = 0.07$, MSE = 0.0030, p > .50. The interaction of these factors was also not significant, although there was a trend toward significance in the items analysis, $F_I(1,44) = 2.48$, MSE = 0.0050, p < .15; $F_2(1,56) = 3.31$, MSE = 0.0048, p < .10, due to the fact that there was no priming effect for the two-grapheme target primes and a 2% priming effect (4% errors in the related condition, 6% errors in the unrelated condition) for the one-grapheme target primes.

Nonword targets. The mean correct RT for nonword targets was 584 ms, and the mean error rate was 7.5%.

Discussion

If grapheme units (rather than letter units) drive the word recognition process, primes like amxxnt preserve four out of five units in AMOUNT, while primes like axxunt preserve only three out of five units in AMOUNT (as well as activating a grapheme unit not involved in the encoding of AMOUNT, the unit for "u"). Therefore, one would expect the former primes to be more effective than the latter. In Experiment 1, there was no statistical evidence to support this prediction.

Experiment 2

Although the interaction in Experiment 1 was far from significant, the amxxnt primes produced a numerically larger priming effect than the axxunt primes (in both the error and latency data).

If this difference were real, it would be consistent with the idea that there are representational units for multiletter graphemes that affect the word recognition process. Such small differences, however, could also have been due to the fact that the one-grapheme primes maintained one more consonant than the two-grapheme primes (New et al., 2008). In Experiment 2, we reexamined the question of grapheme units driving the word recognition process again, with a complete control on the number of consonants in the prime.

In this experiment, priming effects were contrasted for words having multiletter graphemes (one-grapheme targets) with priming effects for matched words without multiletter graphemes (twographeme targets). Both word types were primed by either TL primes (i.e., the two letters in the grapheme or two internal letters in words without multiletter graphemes were transposed, e.g., anhtem-ANTHEM or emlbem-EMBLEM) or RL primes (i.e., the two letters in question were replaced, e.g., ankfem-ANTHEM or emfdem-EMBLEM). As in Experiment 1, the expectation is that disrupting a multiletter grapheme would be less problematic than disrupting two graphemes in the words without multiletter graphemes. Hence, the words containing a multiletter grapheme (onegrapheme targets) should produce larger priming effects. Note also that, as mentioned, the primes and targets in the two target type conditions were matched in terms of the number of consonants maintained in the prime.

Method

Participants. Participants were 56 undergraduate students from the University of Western Ontario who received either course credit or \$10 (CAD) for their participation in a set of (unrelated) experiments. All participants were native speakers of English and had normal or corrected-to-normal vision.

Stimuli and apparatus. The word targets were 96 English words between six and nine letters in length. Forty-eight of the words contained a two-consonant grapheme in the middle and 48 had a two-consonant bigram involving two graphemes. The two word sets were matched on mean frequency (13.3 vs. 14.5 per million, respectively; Kuçera & Francis, 1967), bigram frequency (2.23 vs. 2.36, respectively), *N* (1.06 vs. 1.02, respectively; Coltheart, Davelaar, Jonasson, & Besner, 1977), and length (7.56 vs. 7.58, respectively). They were also matched on the position of the first letter that was to be manipulated (3.50 vs. 3.60, respectively).

For each of these word types, two related primes were created. In one, the two letters of interest were transposed (e.g., anhtem-ANTHEM, emlbem-EMBLEM). In the other, those two letters were replaced by letters not contained in the target word (e.g., ankfem, emfdem). Each set of 48 targets was further divided into four subsets for purposes of counterbalancing. One set was presented with their TL primes, a second with their RL primes, a third with unrelated TL primes, and a fourth with unrelated RL primes. Primes for the last two conditions were selected by re-pairing primes and targets from within a subset with the restriction that the prime and target share no letters.

Ninety-six nonwords were created by changing one letter of a real word having between six and nine letters. Forty-eight contained a two-letter grapheme and 48 contained a bigram involving two graphemes. Primes for the nonwords were created in the same

way as they were for the words. Because a given participant saw each target only once, to successfully counterbalance the assignment of targets to conditions, there were four groups of participants (each group containing 14 people).

The experiment was run using DMDX experimental software (Forster & Forster, 2003). Stimuli were presented on a SyncMaster monitor (Model 753DF). Presentation was controlled by an IBM-clone Intel Pentium. Stimuli appeared as black characters on a white background. Responses to stimuli were made by pressing one of two Shift keys on the keyboard.

Procedure. The procedure was the same as that in Experiment 1, except that the string of number signs was presented for 550 ms, the primes were presented for 55 ms, and there were only eight practice trials.

Results

Error trials (6.3% of the word trials, 5.0% of the nonword trials) and trials with latencies longer than 1500 ms or less than 250 ms (6.5% of the word trials, 10.6% of the nonword trials) were removed from the latency analyses. For both the word and the nonword analyses, $2 \times 2 \times 2 \times 4$ (Prime Type [transposed letter, replacement letter] \times Relatedness [related, unrelated] \times Target Type [one grapheme, two graphemes] \times List) ANOVAs were performed with either subjects (F_I) or items (F_2) as a random factor. Prime type and relatedness were within-subject and withinitem factors. Target type was a within-subject and between-item factor. List was a between-subject and between-item factor that was again included as a dummy factor in order to remove variance due to the counterbalancing of stimuli across conditions (Pollatsek & Well, 1995). The mean latencies and error rates from the subject analyses are contained in Table 2.

Word latencies. The only significant main effects were relatedness, $F_I(1, 52) = 46.85$, MSE = 4368.3, p < .001; $F_2(1, 88) = 80.54$, MSE = 2524.0, p < .001, and prime type, $F_I(1, 52) = 5.68$, MSE = 4060.3, p < .05; $F_2(1, 88) = 6.25$, MSE = 3037.8, p < .05). Words were responded to more rapidly following related primes and more rapidly in the TL prime condition. These effects were qualified by a significant Relatedness \times Prime Type interaction, $F_I(1, 52) = 4.73$, MSE = 2942.8, p < .05; $F_2(1, 88) = 4.17$, MSE = 3324.7, p < .05, due to the fact that the relatedness (i.e., priming) effect was larger with TL primes than

with RL primes (the TL prime advantage). None of the interactions involving target type approached significance, Fs < 1.00.

Word errors. The only significant main effects were the relatedness effect in the item analysis, $F_1(1,52) = 3.40$, MSE = 0.005, p < .08; $F_2(1,88) = 4.92$, MSE = 0.005, p < .05, and the target type effect in the subject analysis, $F_1(1,52) = 4.25$, MSE = 0.004, p < .05; $F_2(1,88) = 0.92$, MSE = 0.034, p > .25. Error rates were 1.3% higher for words following unrelated primes than for words following related primes, and 1.3% higher for words containing multiletter graphemes than for words not containing multiletter graphemes. None of the interactions was significant, ps > .10.

Nonword latencies. The only significant main effect was the effect of target type, $F_I(1, 52) = 20.94$, MSE = 3129.2, p < .001; $F_2(1, 88) = 4.97$, MSE = 12170.6, p < .05. Nonwords containing multiletter graphemes were rejected 25 ms faster than nonwords not containing multiletter graphemes. The only other significant effect was the Target Type \times Relatedness interaction in the item analysis, $F_I(1, 52) = 1.65$, MSE = 3360.3, p > .20; $F_2(1, 88) = 4.39$, MSE = 4217.4, p < .05. Nonwords with multiletter graphemes showed a 7-ms negative priming effect whereas nonwords without multiletter graphemes showed a 7-ms positive priming effect. None of the other interactions was significant, ps > .10.

Nonword errors. As in the latency data, the only main effect that was significant was the main effect of target type, although only in the subject analysis, $F_1(1, 52) = 9.09$, MSE = 0.005, p < .01; $F_2(1, 88) = 1.66$, MSE = 0.022, p > .20. Nonwords containing multiletter graphemes had an error rate 1.9% less than nonwords not containing multiletter graphemes. None of the other effects approached significance, ps > .25.

Discussion

As in Experiment 1, there is little in these data supporting the idea that grapheme units are important in the word recognition process. That is, it did not seem to matter whether the multiletter grapheme were transposed or replaced: The resulting prime produced virtually the same amount of priming as the same manipulation done to two adjacent letters that represented separate graphemes.

Table 2
Mean Lexical Decision Times for Word and Nonword Targets in Experiment 2

	Transpo	osed letter	Replacement letter		
Relatedness	One grapheme	Two graphemes	One grapheme	Two graphemes	
Word Data					
Related	710 (6.7)	701 (4.7)	733 (6.5)	729 (7.0)	
Unrelated	767 (8.7)	752 (6.2)	766 (7.9)	759 (7.0)	
Priming	57 (2.0)	51 (1.5)	33 (1.4)	30 (0.0)	
Nonword Data	` '	` /	. ,	. ,	
Related	819 (5.4)	840 (6.9)	824 (4.2)	837 (7.1)	
Unrelated	828 (5.2)	851 (6.4)	801 (3.8)	840 (6.2)	
Priming	9 (-0.2)	11 (-0.5)	-23(-0.4)	3 (-0.9)	

Note. Values in parentheses are mean error percentages.

Experiment 3

As in Experiment 1, although there was no statistical evidence to support the idea that the priming patterns differed in the oneand two-grapheme conditions, the data pattern in Experiment 2 was not completely inconsistent with that possibility. That is, the priming effects were slightly larger for the multiletter grapheme words than for the other words in both the TL (6 ms) and RL (3 ms) conditions. Thus, the question again emerged whether these effects might be real, albeit small. In Experiment 3, we attempted to increase the potential for observing the effects we sought. Experiments 1 and 2 were done in English. English has a fairly deep orthography and one could argue that the nature of the representational units for English readers is not likely to be strongly shaped by phonology. By contrast, Spanish has a fairly shallow orthography. Hence, it seemed reasonable that the nature of the orthographic representations would be more strongly shaped by phonology in Spanish and, therefore, one might be able to find effects of the sort being examined here in experiments using Spanish words.⁴

As it turns out, there are only a few multiletter graphemes in Spanish. Leaving aside the graphemes "rr" and "ll" (which contain repeated letters), in Spanish there are only two multiletter graphemes: CH and QU. The focus of Experiments 3 and 4 was the Spanish grapheme CH, which is pronounced as the phoneme /J/.

In both of these experiments, the manipulation was similar to that in Experiment 2. There were TL and RL manipulations involving both words with a CH grapheme (one-grapheme targets) and matched words without a multiletter grapheme (two-grapheme targets). The main difference between the manipulation in Experiment 3 and that in Experiment 2 was that no unrelated control conditions were used. Thus, the specific prediction differed slightly as well. As noted previously, both removing and transposing the letters in a multiletter grapheme should be less damaging than similar manipulations done to two adjacent letters that create two graphemes. Therefore, one would expect shorter latencies in both the TL and RL prime conditions for words containing a multiletter grapheme than for words that do not.⁵

Following from the argument presented in footnote 3, the contrast between the two related prime conditions (i.e., the RL-TL difference) as a function of target type may also be of interest. In the TL prime conditions, all the target's graphemes are maintained in the primes for two-grapheme stimuli (serceto for SECRETO) but not in the primes for the one-grapheme stimuli (mehcero for MECHERO). Such is not the case in the RL prime condition (i.e., senseto and mebvero). Therefore, one could construct an argument that the two-grapheme condition targets might have an advantage over the one-grapheme targets when using TL, but not RL, primes. If this argument were valid, one would expect a larger TL-RL difference for two-grapheme targets than for one-grapheme targets.

Method

Participants. Participants were 28 undergraduate students from the Universitat de València. All participants were native speakers of Spanish. All had normal or corrected-to-normal vision.

Materials. The word targets were 128 Spanish words that were six to 10 letters in length (M = 7.7). Sixty-four of these

words (the one-grapheme targets) had the grapheme CH in an internal position of the word (second or third syllable, e.g., MECHERO—the Spanish word for lighter). The other 64 words (two-grapheme targets) had two adjacent consonants in internal positions of the word and those consonants formed two graphemes (e.g., SECRETO—the Spanish word for secret). Word frequency was controlled across one-grapheme and two-grapheme target words (mean frequency per one million = 4.6 and 4.9 for onegrapheme and two-grapheme target words, respectively, in the Spanish database; Davis & Perea, 2005). The targets were presented in uppercase and were preceded by primes in lowercase that were (a) the same as the target, except for a transposition of either the two grapheme constituents or the two adjacent consonants (mehcero-MECHERO or serceto-SECRETO, the TL condition) or (b) the same as the target, except for the replacement of the two letters of interest by two consonants with the same word shape (mebvero-MECHERO or sensato-SECRETO, the RL condition). The primes were always nonwords. Bigram frequencies for the TL and RL primes were matched (M = 1.8 and 1.8, respectively, p >.50). An additional set of 128 nonwords was selected because the task was lexical decision (64 containing a CH and 64 not containing a CH or any other multiletter grapheme). The manipulation for the nonword targets was the same as that for the word targets.

Two lists of materials were constructed so that each target appeared once in each list. In one list, half the targets were primed by TL primes and half were primed by RL primes. In the other list, targets were assigned to the opposite prime conditions. Half of the participants were presented with each list.

Procedure. The procedure was the same as that for Experiment 1.

Results

Incorrect responses (5.6% for word targets and 9.6% for non-word targets) and latencies less than 250 ms or greater than 1,500 ms (3.1%) were excluded from the latency analysis. The mean latencies for correct responses and the error percentages are presented in Table 3. Subject and item ANOVAs based on both subject and item correct response latencies and error rates were conducted, based on a $2 \times 2 \times 2$ (Target Type [one grapheme, two graphemes] \times Prime Type [transposed letter, replacement letter] \times List) design. Prime type was a within-subject and between-item

⁴ One could make the counterargument that, because English has many more multiletter graphemes than Spanish, it would be more likely to observe the impact of multiletter graphemes in English than in Spanish. Although we do not agree with this argument, in the end, it becomes immaterial which language might be optimal for observing these effects because the data patterns were virtually the same in the two languages.

⁵ The same contrast can be carried out based on the data from Experiment 2. The results in Experiment 2 provided no support for the idea that it is easier to respond to multiletter grapheme words following RL or TL primes than it is to respond to words without multiletter graphemes. Indeed, in both cases, the small difference went in the opposite direction. Experiments 3 and 4, however, provide a much better examination of this issue because they are based on a larger set of words and, as we have argued, in the language used (Spanish), it is more likely that the nature of a reader's orthographic representations would be shaped by phonology.

Table 3
Mean Lexical Decision Times for Word and Nonword Targets in
Experiments 3

Prime type	CH (one grapheme)	Two graphemes	
Word Data			
TL	692 (5.9)	694 (5.0)	
RL	706 (5.1)	706 (6.4)	
TL effect	14(-0.8)	12 (1.4)	
Nonword Data			
TL	833 (11.2)	849 (10.8)	
RL	837 (10.0)	843 (10.9)	
TL effect	3 (-1.2)	-6(0.1)	

Note. Values in parentheses are mean error percentages. CH = target containing a CH grapheme; TL = transposed-letter condition; RL = replacement-letter condition.

factor. List was a between-subject and between-item factor. The mean latencies and error rates from the subject analyses are contained in Table 3.

Word latencies and errors. Words preceded by a TL prime were responded to 13 ms faster than the targets preceded by an RL prime, $F_I(1, 26) = 6.16$, MSE = 740.3, p < .025; $F_2(1, 124) = 5.08$, MSE = 1506.8, p < .025. This TL prime advantage was similar for one-grapheme and two-nongrapheme targets, as indicated by the lack of an interaction between prime type and target type, ps > .15. More importantly, there was no significant effect of target type, ps > .15. The ANOVA on the error data did not reveal any significant effects, ps > .15.

Nonword latencies and errors. None of the effects approached significance in the ANOVAs on the nonword data, ps > .15.

Discussion

The results of Experiment 3 (in Spanish) supported the main finding and conclusion of Experiment 2 (in English). Neither RL nor TL primes conveyed any advantage on words with a multiletter grapheme over words without a multiletter grapheme. Note also that the TL-RL difference did not vary as a function of whether the letters involved form a multiletter grapheme. These results provide additional support for the idea that adjacent letters forming a single grapheme are processed no differently than adjacent letters that involve two graphemes.

Experiment 4

In Experiments 2 and 3, both the TL and RL manipulations were designed in a way that maintained the integrity of the multiletter grapheme (as was in the one-grapheme condition in Experiment 1). That is, the two letters making up the multiletter grapheme either were removed together or both were maintained with their order reversed. The expectation was that doing so would produce a prime that would be superior to the prime in the two-grapheme condition because the primes in the two-grapheme conditions in all experiments disturbed two graphemes. As noted, none of these manipulations produced the expected result (i.e., the primes were equally effective in the one- and two-grapheme conditions). In Experiment 4, a different approach was taken. In this experiment,

the main manipulation was designed to produce primes that would be less effective for the one-grapheme words than for the twographeme words.

In Experiment 4, there were two separate manipulations. In the first and more central manipulation, there were again TL and RL primes, however, the transposition involved the second letter of the grapheme and the next letter in the word (e.g., mecehro-MECHERO or menedro-MECHERO) in the one-grapheme words. As in Experiment 3, the impact of these primes was compared to the impact of similar manipulations for two-grapheme words, that is, words not having a multiletter grapheme (e.g., secerto-SECRETO or senesto-SECRETO). Because the two-grapheme words, as in Experiments 2 and 3, involved the transposition or replacement of two graphemes, the pattern they should produce in Experiment 4 should be comparable to the patterns they produced in Experiments 2 and 3 (i.e., a TL prime advantage). In contrast, for the one-grapheme words, there should be a clear difference between these manipulations and the TL and RL manipulations in previous experiments (manipulations that were, as noted, intended to maintain the integrity of the multiletter grapheme). Specifically, in Experiment 4, both TL and RL primes not only eliminated the two-letter grapheme sequence, but they also added 2 incorrect graphemes (i.e., in mecehro, the "c" and the "h," in menedro, the "n" and the "d"). The expectation, therefore, was that the TL and RL primes would not differ in effectiveness and they would be less effective than in the prior experiments. That is, unlike in Experiments 2 and 3, they should now be less effective than the RL and TL primes in the two-grapheme condition, yielding a target type main effect.

In addition, in Experiment 4, we included two new conditions, one in which the prime was the same as the target except for the deletion of the second constituent of the grapheme (mecero-MECHERO, DL condition), and one in which the two-letter grapheme was replaced by a single letter (menero-MECHERO, substituted-letter [SL] condition). There were also parallel conditions involving words not containing multiletter graphemes (e.g., seceto-SECRETO or seneto-SECRETO). These conditions were included to address a potential alternative account of the results in the other conditions. That is, if the TL condition described above did not produce longer latencies for one-grapheme targets, one possible reason would be that the letter from the grapheme that remained in position (e.g., "c" in mecehro-MECHERO) may have some ability to partially activate the relevant multiletter grapheme representational unit. If so, because that first letter was also contained in the DL condition with the one-grapheme words (i.e., mecero-MECHERO), one would expect DL primes to be effective primes for those words, leading to a larger DL-SL difference for words having multiletter graphemes.

Method

Participants. Participants were 44 undergraduate students from the Universitat de València. All had normal or corrected-to-normal vision and were native speakers of Spanish.

Materials. The word and nonword targets were the same as used in Experiment 3. The targets were presented in uppercase and were preceded by primes in lowercase that were the same as the target (a) except for a transposition of the second letter of the grapheme and the following letter (mecehro-MECHERO, TL con-

dition), (b) except for the replacement of the transposed letters (menedro-MECHERO, RL condition), (c) except for the deletion of the second letter of the grapheme (mecero-MECHERO, DL condition), and (d) except for the replacement of the grapheme by a single letter (menero-MECHERO, SL condition). These four conditions were mimicked for words, like SECRETO, having no multiletter graphemes. The primes were always nonwords and bigram frequencies between conditions did not differ significantly, ps > .50. The priming manipulations for the nonword targets were the same as those for the word targets.

Four lists of materials were constructed to counterbalance the items, so that each target appeared once in each list. One quarter of the participants were presented with each list.

Procedure. The procedure was the same as used in Experiment 1.

Results

Incorrect responses (5.9% for word targets and 8.8% for nonword targets) and latencies less than 250 ms or greater than 1,500 ms (1.6% for word targets) were excluded from the latency analysis. In one analysis, ANOVAs involving both subject and item response latencies and error rates were conducted based on a 2 \times 2 \times 4 (Target Type [one-grapheme, two-grapheme] \times Prime Type [transposition, replacement] \times List) design. In a second analysis, ANOVAs involving both subject and item response latencies and error rates were conducted based on a 2 \times 2 \times 4 (Target Type [one-grapheme, two-grapheme] \times Prime Type [deletion, substitution] \times List) design. In both analyses, prime type was a within-subject and within-item factor, target type was a within-subject and between-item factor, and list was a between-subject and between-item factor. The mean latencies and error rates from the subject analyses are presented in Table 4.

TL Versus RL Effects

Word latencies and errors. Words preceded by TL primes were responded to 17 ms faster than words preceded by RL primes, $F_I(1, 40) = 13.19$, MSE = 933.9, p < .001; $F_2(1, 120) = 10.21$, MSE = 2155.1, p < .005. In addition, words without multiletter graphemes were responded to 15 ms slower than words with a CH grapheme in the analysis by subjects, $F_I(1, 40) = 10.51$, MSE = 905.1, p < .005; $F_2 > 1$. There was no interaction. No significant effects were found in the error data, ps > .15.

Nonword latencies and errors. There was an effect of nonword type, $F_1(1, 40) = 8.24$, MSE = 1271.3, p < .01; $F_2(1, 120) = 4.36$, MSE = 5854.3, p < .05, because nonwords that contained a CH grapheme were responded to 15 ms slower than nonwords without a multiletter grapheme. No other effects were significant in either the latency or the error ANOVAs, ps > .15.

DL Versus SL Effects

Word latencies and errors. The ANOVA on the latency data showed an effect of target type in the subject analysis, $F_I(1, 40) = 16.42$, MSE = 939.4, p < .001; $F_2 < 1$: words without a multiletter grapheme were responded to 19 ms slower than words with a CH grapheme. No other effects were significant in either the latency or the error ANOVAs, ps > .15.

Nonword latencies and errors. There were no significant effects in the nonword analyses, ps > .15.

Discussion

The results of Experiment 4 showed that the TL-RL contrast was remarkably similar in size when the prime manipulation involved splitting a multiletter grapheme (CH) versus when the prime manipulation involved splitting two letters that did not form a grapheme (e.g., CR). With respect to the main prediction, that the primes would be more effective for two-grapheme targets than for one-grapheme targets, the data showed exactly the opposite pattern. In addition, the DL-SL contrast also showed no effect for the CH targets. This final result provided no support for the idea that the first letter in a multiletter grapheme may be able to partially activate a sublexical representational unit for that grapheme. Taken together (and along with the results of the previous experiments), the results of Experiment 4 supported the conclusion that units for (multiletter) graphemes have no special status and, therefore, those units are not the perceptual units driving the word recognition process.

General Discussion

The main goal of these experiments was to investigate the idea that representational units for (multiletter) graphemes drive the word recognition process. To that end, a number of priming conditions were created involving primes that disturbed the two letters in a multiletter grapheme as well as two adjacent letters

Table 4
Mean Lexical Decision Times for Word and Nonword Targets in Experiments 4

Target type	TL	RL	TL effect	DL	SL	DL effect
Word Data						
CH (one grapheme)	636 (5.4)	656 (6.8)	20 (1.4)	647 (4.8)	643 (5.0)	-4(0.2)
Two graphemes	654 (5.4)	668 (6.1)	14 (0.7)	661 (6.6)	667 (4.2)	6(-2.4)
Nonword data		` ′	` '	` ′	` ′	
CH (one grapheme)	772 (8.0)	774 (6.6)	2(-1.4)	791 (7.5)	776 (7.8)	-16(0.3)
Two graphemes	787 (10.2)	790 (7.6)	3 (-2.6)	781 (6.9)	781 (5.4)	0 (-1.5)

Note. Values in parentheses are mean error percentages. CH = target containing a CH grapheme; TL = transposed-letter condition; RL = replacement-letter condition; TL effect = difference between RL and TL conditions; DL = deleted-letter condition; SL = substituted-letter condition; DL effect = difference between DL and SL conditions.

either in the same words or in words not containing a multiletter grapheme. In Experiments 1, 2, and 3, more priming was expected when the letters in multiletter graphemes were disturbed, whereas in the TL and RL prime conditions in Experiment 4, it was expected that the primes would be less potent when using targets containing multiletter graphemes. In virtually all of the experiments, however, the effects were essentially the same when the constituents of a multiletter grapheme were disturbed as when two letters that did not form a multiletter grapheme were disturbed. Further, results in Experiment 4 showed that: (a) there was still an TL prime advantage when the second letter in a multiletter grapheme was transposed with the subsequent letter despite the fact that the TL and RL manipulations should have been equally destructive to the multiletter grapheme and (b) a prime containing the first letter of a multiletter grapheme (the DL condition) did not produce significantly shorter latencies than a prime containing a letter that was not a constituent of the multiletter grapheme (the SL condition), suggesting that single letters do not have the ability to activate multiletter grapheme units.

The present findings are, therefore, entirely consistent with the argument that multiletter graphemes are not represented as units in the visual word recognition system at a level of processing relevant to initial visual word identification. As noted previously, readers do recognize that the pronunciation of a multiletter grapheme is not the concatenation of the pronunciations of its constituent letters, which means that there must be representational units for the phonemes of multiletter graphemes somewhere in the system. The phonological computation leading to activation of these phonemes may, of course, be directly linked to early orthographic activation processes, however, that fact does not imply that those units play any role in the normal word recognition process.

So, what are the sublexical units that drive the word recognition process? The most obvious answer, and the one consistent with most current models of word recognition, is that they are letter units. However, the present data cannot be regarded as providing incontrovertible proof of this specific conclusion. That is, for example, the present results are not at all incompatible with the proposal, incorporated in open-bigram models (e.g., Dehaene et al., 2005; Grainger & van Heuven, 2003; Grainger et al., 2006; Schoonbaert & Grainger, 2004; Whitney, 2001, 2004), that word units are activated by bigram units. In fact, models of this sort would be very consistent with the present findings because, by their nature, they make no distinction between the bigrams forming a grapheme and all other bigrams. Similarly, the present data would not necessarily rule out accounts based on larger sublexical units like vocalic center groups (Smith & Spoehr, 1974; Spoehr & Smith, 1975), basic orthographic syllable structures (Taft, 1979), or rimes (Treiman et al., 1995), because the present experiments were not specifically designed to test these alternatives.

The present results also point to the conclusion that the prior results, supporting the existence of representational units for multiletter graphemes, were more likely effects of phonology. Indeed, many of those experiments involved processes far removed from the lexical-activation process involved in normal reading, for example, the spelling experiments of Rapp and colleagues (e.g., Buchwald & Rapp, 2004; Tainturier & Rapp, 2004) and the luminance incrementing experiment of Rey et al. (1998). Others expressly required the activation of phonological information because the task was a naming task (Rastle & Coltheart, 1998; Rey

et al., 1998; Rey & Schiller, 2005). The two exceptions are the letter detection task used by Marinus and de Jong (2011) and Rey et al. (2000), and the mixed-case lexical-decision task used by Havelka and Frankish (2010). Performance in both tasks likely involves the lexical-activation processes involved in reading, and in neither task is use of phonology required.

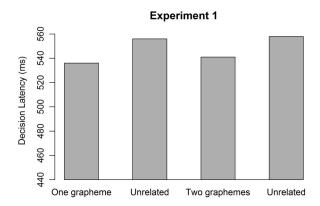
What is true about both tasks, however, is that performance would certainly be aided by use of phonology. In a letter detection task, when presented with the letter H as a target, it would be quite useful to simultaneously search the visual stimulus for that letter and the phonological code generated by that stimulus for the phoneme /h/. When that letter is in a multiletter grapheme like CH, only one of those searches would be successful, slowing down detection latency as compared to the case when both the letter H and the grapheme /h/ exist in the word (e.g., OVERHANG). The only result inconsistent with this analysis is Rey et al.'s Experiment 2 result, which, as noted, could not be replicated by Brand et al. (2007).

In the mixed case lexical-decision task used by Havelka and Frankish (2010), phonological codes may also play an important role in a participant's processing strategy. Stimuli like cOaSt do not have a familiar visual form and, as Mayall et al. (1997) have noted, they can lead to some rather unusual grouping processes causing the normal sublexical processes to unfold somewhat slowly, if at all. If a phonological code could be derived and compared to lexical representations in a phonological lexicon, some of the delay caused by the unfamiliar visual representation could be overcome. If this is what is done, it would seem like it would be easier to group the two letters of a grapheme together to derive that phonological code if they are the same case (e.g., "OA") rather than if they are different cases (e.g., "Oa"), producing the same case advantage that Havelka and Frankish reported.

Findings of No Difference

One aspect of the present data that should be mentioned is that, in virtually all cases, the results showed equivalent effects in two key conditions. That is, there were equivalent priming effects in Experiment 1, there were equivalent priming effects for the two word types in both the RL and TL conditions in Experiment 2, and there were essentially equivalent latencies and TL advantages for the two word types in Experiments 3 and 4. Such a situation is far from ideal. It would have been better to have been able to base our conclusions on a set of findings showing significant differences between conditions. Therefore, one may be tempted to feel that the support for our conclusion provided by the present results is weaker than one would want. To a large degree, however, these concerns are mitigated by a number of considerations.

First, in Experiments 1 and 2 and, to some extent, in Experiments 3 and 4, the observed equivalency was not between two mean latencies but between the sizes of two effects with the effects themselves (as well as the TL-RL difference in Experiment 2) being highly significant. Therefore, our analyses did not seem to lack any power. Second, while a number of factors could cause a single difference not to be significant, the lack of a difference across a set of four experiments, carried out in three different labs using two languages, should rule out a simple explanation of this sort. Both of these facts speak to what Frick (1995) referred to as "the good effort" criterion that needs to be satisfied before one


accepts a null hypothesis. Third, the issue in question was whether there was any role for units representing multiletter graphemes in the word recognition process. Our conclusion is that there is not. Something's lack of an impact can only be demonstrated by showing that the system does not operate in the fashion expected if that something did have an impact. Therefore, a demonstration that something does not have an impact, by definition, would require a set of findings like those reported here. As Rouder, Speckman, Sun, Morey, and Iverson (2009) have argued, identifying invariance is critical for theoretical advancement (see Rouder et al., 2009, for a number of examples in psychology and other sciences).

The final consideration is statistical. Because the standard way of analyzing data in psychology (i.e., null hypothesis significance testing) can lead to a situation like that produced here, diminishing the ability of researchers to make strong conclusions when the null hypothesis appears to be true, new statistical methods have been developed, methods based on Bayesian analysis (e.g., see Gallistel, 2009; Masson, 2011; Rouder et al., 2009; Wagenmakers, 2007; Wagenmakers, Ratcliff, Gómez, & Iverson, 2004). One method employs parametric bootstrapping simulations (Wagenmakers et al., 2004), in which simulated data are generated on the basis of two hypotheses (the null hypothesis and the alternative hypothesis) and a likelihood ratio of the two scenarios is obtained (e.g., see Perea, Gómez, & Fraga, 2010). A simpler alternative, which does not require complex methods (and is the one we adopted), is to compute the probability of the null hypothesis being true, given the data obtained, $p(H_0|D)$ (Wagenmakers, 2007; see Masson, 2011, for examples of how to compute this index). Positive evidence that the null hypothesis is true is obtained when this probability value exceeds .75. Strong evidence is obtained with probability values above .90 (Raftery, 1995; see also Masson, 2011).

The $p(H_0|D)$ values obtained in the present experiments for the subject and the item analyses were .86 and .88 in Experiment 1 and .87 and .91 in Experiment 2, respectively, for the relevant interaction (Number of Graphemes Changed × Relatedness in Experiment 1, Target Type × Relatedness in Experiment 2). In Experiment 3, the $p(H_0|D)$ values for the relevant main effect (target type) were .84 and .91. The values for the target type main effect in Experiment 4 were .04 and .84, with the value in the subject analysis implying that the null hypothesis is wrong. As noted, however, with respect to the issues under investigation, the main effect in Experiment 4 went in the wrong direction (i.e., multiletter grapheme words had shorter latencies than words without a multiletter grapheme). This analysis, therefore, provides additional support for the conclusion that multiletter graphemes are not represented as units in the reading system at a level of processing relevant to initial visual word idenfication.⁶

Simulations

The evidence from all four experiments reported here indicates that priming effects are equivalent for primes in which a multiletter grapheme has been disturbed and primes in which the disturbed letter pair creates two graphemes. To this point, we assumed that this evidence would be consistent with letter-based models of visual word identification. To examine this assumption further, we conducted simulations of the present data. For this purpose, we used the spatial coding model, which has been shown to accom-

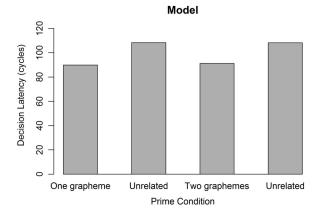
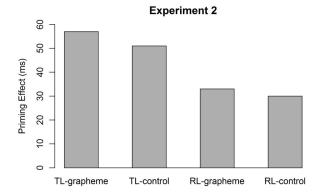



Figure 2. Observed mean decision latency for the prime conditions in Experiment 1 and corresponding mean decision latencies in the simulation.

modate a very broad range of masked form priming data (Davis, 2010). The model's default vocabulary contains 30,605 English words, and thus we used the model to simulate the results from Experiment 1 and 2 (i.e., the English-language experiments that we reported here). The testing procedure and parameters were identical to those in Davis (2010), except that the mismatch inhibition parameter was set to zero (a setting of .04, as in Davis, 2010, would have resulted in an identical pattern of predictions, but smaller predicted priming effects overall). Both simulations produced a good fit to the observed data. Figure 2 shows the correspondence between the data and the model predictions for Experiment 1. The predicted priming effects for one- and two-grapheme conditions were 17.0 and 18.4 cycles, respectively, compared with observed priming effects of 17 and 20 ms (the parameter settings used by Davis, 2010, were scaled so that priming effects in cycles could be compared directly with the effects observed in milliseconds). The interaction of prime type and number of graphemes changed was not significant in the simulation data (p = .18). Figure 3 shows the correspondence between the data and the model predictions for Experiment 2. The absolute magnitude of the priming effects was slightly smaller in the simulation than in

 $^{^6}$ The corresponding $p(H_0|D)$ values for the subject and item analyses for the parallel interactions in Experiments 3 and 4 (Target Type \times Prime Type) are .84 and .92 (Experiment 3) and .82 and .88 (Experiment 4).

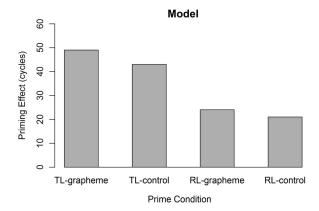


Figure 3. Observed priming effects for the prime conditions in Experiment 2 and corresponding predicted priming effects in the simulation. TL = transposed-letter; RL = replacement-letter.

the data, but the pattern of priming effects across conditions was identical in model and data (r = .999).

The results of these simulations confirm our expectation that the observed experimental data are consistent with letter-based models of visual word recognition. These simulations do not, of course, demonstrate that Davis's (2010) model is the only model that can account for these data or even that it provides the optimal account. Open-bigram models may also do a good job. In fact, even models incorporating grapheme units could be made to account for the present data if system parameters were selected judiciously (i.e., if the weightings were set so that the impact of those units was quite small). Therefore, what the simulations provide is really an existence proof for the viability of a model based completely on the assumption that the only sublexical units required for modeling word recognition are letter units.

Vowels and Consonants

As previously noted, the multiletter grapheme words in Experiment 1 were the only stimuli used here that involved multivowel graphemes. The reason, as discussed, is that Experiments 2–4 all involved transpositions of letters, and primes involving vowel transpositions are no more effective primes than replacement letter primes (i.e., they show no TL priming advantage; Lupker, Perea, & Davis, 2008; Perea & Lupker, 2003, 2004). This fact is true even when the transposed letters are not adjacent and, thus, do not form

a grapheme (e.g., caniso-CASINO vs. cisano-CASINO). Therefore, this lack of a TL priming advantage for vowel transpositions cannot be due to the fact that those transpositions break up graphemes. In any case, the implication is that the conclusions reached here are much better supported when considering multiconsonant graphemes than when considering multivowel graphemes.

As noted, at least some of the research discussed earlier specifically investigated multivowel graphemes, for example, Marinus and de Jong (2011). In their experiments, as in the experiments of Rey et al. (Rey et al., 1998, 2000), Marinus and de Jong demonstrated that there is greater difficulty finding a letter when it is part of a multiletter grapheme than when it is not. This type of finding can be explained in terms of a parallel phonologically based search. What is interesting, however, is that Marinus and de Jong found the same effects with dyslexic individuals, readers who are poor at generating phonology and, hence, presumably less likely to use such a phonologically based search strategy. Therefore, whether the present conclusions can be fully extended to multivowel graphemes is a question that would benefit from further research.

Conclusion

The masked priming experiments we report in this article provided multiple opportunities to detect evidence of the influence of multiletter graphemes. None of these experiments detected any evidence for such an influence. As such, it appears that SOLAR, SERIOL, Open Bigram, Overlap, and other similar letter-input models are able to capture the pattern of "prime-target" similarity reported in the present research. Thus, our data provide good evidence that multiletter graphemes are not represented as basic perceptual units in reading, a conclusion that is compatible with many of the letter-coding schemes in recent models of visual word recognition.

References

Brand, M., Giroux, I., Puijalon, C., & Rey, A. (2007). Syllable onsets are perceptual reading units. *Memory & Cognition*, 35, 966–973.

Buchwald, A., & Rapp, B. (2004). Rethinking the graphemic buffer? *Brain and Language*, 91, 100–101. doi:10.1016/j.bandl.2004.06.052

Christianson, K., Johnson, R. L., & Rayner, K. (2005). Letter transpositions within and across morphemes. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 31, 1327–1339. doi:10.1037/0278-7393.31.6.1327

Coltheart, M., Davelaar, E., Jonasson, J. F., & Besner, D. (1977). Access to the internal lexicon. In S. Dornic (Ed.), Attention and performance VI (pp. 535–555). Hillsdale, NJ: Erlbaum.

Coltheart, M., Rastle, K., Perry, C., Ziegler, J., & Langdon, R. (2001).
DRC: A dual-route cascaded model of visual word recognition and reading aloud. *Psychological Review*, 108, 204–256. doi:10.1037/0033-295X.108.1.204

Davis, C. J. (2005). N-Watch: A program for deriving neighborhood size and other psycholinguistic statistics. *Behavior Research Methods*, 37, 65–70. doi:10.3758/BF03206399

Davis, C. J. (2010). The spatial coding model of visual word identification. Psychological Review, 117, 713–758. doi:10.1037/a0019738

Davis, C. J., & Lupker, S. J. (2006). Masked inhibitory priming in English: Evidence for lexical inhibition. *Journal of Experimental Psychology: Human Perception and Performance*, 32, 668–687. doi:10.1037/0096-1523.32.3.668

- Davis, C. J., & Perea, M. (2005). BuscaPalabras: A program for deriving orthographic and phonological neighborhood statistics and other psycholinguistic indices in Spanish. *Behavior Research Methods*, 37, 665– 671. doi:10.3758/BF03192738
- Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for written words: A proposal. *Trends in Cognitive Sciences*, 9, 335–341. doi:10.1016/j.tics.2005.05.004
- Diependaele, K., Ziegler, J. C., & Grainger, J. (2010). Fast phonology and the bimodal interactive activation model. *European Journal of Cognitive Psychology*, 22, 764–778. doi:10.1080/09541440902834782
- Ferrand, L., & Grainger, J. (1993). The time course of orthographic and phonological code activation in the early phases of visual word recognition. *Bulletin of the Psychonomic Society*, 31, 119–122.
- Ferrand, L., & Grainger, J. (1994). Effects of orthography are independent of phonology in masked form priming. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 47, 365– 382.
- Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 10,* 680–698. doi:10.1037/0278-7393.10.4.680
- Forster, K. I. (1998). The pros and cons of masked priming. *Journal of Psycholinguistic Research*, 27, 203–233. doi:10.1023/A: 1023202116609
- Forster, K. I., & Forster, J. C. (2003). DMDX: A Windows display program with millisecond accuracy. *Behavior Research Methods, Instru*ments, & Computers, 35, 116–124. doi:10.3758/BF03195503
- Frick, R. W. (1995). Accepting the null hypothesis. *Memory & Cognition*, 23, 132–138. doi:10.3758/BF03210562
- Gallistel, C. R. (2009). The importance of proving the null. *Psychological Review*, 116, 439–453. doi:10.1037/a0015251
- Gómez, P., Ratcliff, R., & Perea, M. (2008). The overlap model of the encoding of letter positions. *Psychological Review*, 115, 577–600. doi: 10.1037/a0012667
- Grainger, J. (2008). Cracking the orthographic code: An introduction. Language and Cognitive Processes, 23, 1–35. doi:10.1080/01690960701578013
- Grainger, J., Granier, J.-P., Farioli, F., Van Assche, E., & van Heuven, W. J. B. (2006). Letter position information and printed word perception: The relative-position priming constraint. *Journal of Experimental Psychology: Human Perception and Performance*, 32, 865–884. doi: 10.1037/0096-1523.32.4.865
- Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. *Psychological Review*, 103, 518–565. doi:10.1037/0033-295X.103.3.518
- Grainger, J., & van Heuven, W. J. B. (2003). Modeling letter position coding in printed word perception. In P. Bonin (Ed.), *The mental lexicon* (pp. 1–23). New York, NY: Nova Science.
- Harm, M. W., & Seidenberg, M. S. (1999). Phonology, reading acquisition, and dyslexia: Insights from connectionist models. *Psychological Review*, 106, 491–528. doi:10.1037/0033-295X.106.3.491
- Havelka, J., & Frankish, C. (2010). Is RoAsT tougher than StEAk? The effect of case mixing on perception of multi-letter graphemes. *Psi-hologija*, 43, 103–116. doi:10.2298/PSI1001103H
- Kuçera, H., & Francis, W. N. (1967). Computational analysis of presentday American English. Providence, RI: Brown University Press.
- Lupker, S. J., & Davis, C. J. (2009). Sandwich priming: A method for overcoming the limitations of masked priming by reducing lexical competitor effects. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 35*, 618–639. doi:10.1037/a0015278
- Lupker, S. J., Perea, M., & Davis, C. J. (2008). Transposed-letter effects: Consonants, vowels and letter frequency. *Language and Cognitive Processes*, 23, 93–116. doi:10.1080/01690960701579714
- Marinus, E., & de Jong, P. F. (2011). Dyslexic and typical-reading children

- use vowel digraphs as perceptual units in reading. *Quarterly Journal of Experimental Psychology*, 64, 504–516. doi:10.1080/17470218 2010 509803
- Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. *Behavior Research Methods*, 43, 679-690. doi:10.3758/s13428-010-0049-5
- Mayall, K., Humphreys, G. W., & Olson, A. (1997). Disruption to word or letter processing? The origins of case-mixing effects. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 23, 1275–1286.
- McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. *Psychological Review*, 88, 375–407. doi:10.1037/0033-295X.88.5.375
- New, B., Araújo, V., & Nazzi, T. (2008). Differential processing of consonants and vowels in lexical access through reading. *Psychological Science*, 19, 1223–1227.
- Norris, D., Kinoshita, S., & van Casteren, M. (2010). A stimulus sampling theory of letter identity and order. *Journal of Memory and Language*, 62, 254–271. doi:10.1016/j.jml.2009.11.002
- O'Connor, R. E., & Forster, K. I. (1981). Criterion bias and search sequence bias in word recognition. *Memory & Cognition*, 9, 78–92. doi:10.3758/BF03196953
- Paap, K. R., Newsome, S. L., McDonald, J. E., & Schvaneveldt, R. W. (1982). An activation-verification model for letter and word recognition: The word-superiority effect. *Psychological Review*, 89, 573–594. doi: 10.1037/0033-295X-89.5-573
- Perea, M., & Carreiras, M. (2006). Do transposed-letter effects occur across lexeme boundaries? *Psychonomic Bulletin & Review*, 13, 418– 422. doi:10.3758/BF03193863
- Perea, M., Gómez, P., & Fraga, I. (2010). Masked nonword repetition effects in yes/no and go/no-go lexical decision: A test of the evidence accumulation and deadline accounts. *Psychonomic Bulletin & Review*, 17, 369–374. doi:10.3758/PBR.17.3.369
- Perea, M., & Lupker, S. J. (2003). Transposed-letter confusability effects in masked form priming. In S. Kinoshita and S. J. Lupker (Eds.), *Masked priming: State of the art* (pp. 97–120). Hove, England: Psychology Press.
- Perea, M., & Lupker, S. J. (2004). Can CANISO activate CASINO? Transposed-letter similarity effects with nonadjacent letter positions. *Journal of Memory and Language*, 51, 231–246. doi:10.1016/j.jml.2004.05.005
- Perry, C., Ziegler, J. C., & Zorzi, M. (2010). Beyond single syllables: Large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model. *Cognitive Psychology*, *61*, 106–151. doi: 10.1016/j.cogpsych.2010.04.001
- Perry, J., Lupker, S. J., & Davis, C. J. (2008). An evaluation of the interactive-activation model using masked partial-word priming. *Lan-guage and Cognitive Processes*, 23, 36–68. doi:10.1080/ 01690960701578112
- Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. *Psychological Review*, 103, 56–115. doi:10.1037/0033-295X.103.1.56
- Pollatsek, A., & Well, A. (1995). On the use of counterbalanced designs in cognitive research: A suggestion for a better and more powerful analysis. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 21, 785–794. doi:10.1037/0278-7393.21.3.785
- Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–196. doi:10.2307/271063
- Rapp, B., & Kong, D. (2002). Revealing the component functions of the graphemic buffer. *Brain and Language*, 83, 112–114.
- Rastle, K., & Coltheart, M. (1998). Whammies and double whammies: The effect of length on nonword reading. *Psychonomic Bulletin & Review*, 5, 277–282. doi:10.3758/BF03212951

- Reggia, J. A., Marsland, P. M., & Berndt, R. S. (1988). Competitive dynamics in a dual-route connectionist model of print-to-sound transformation. *Complex Systems*, 2, 509–547.
- Rey, A., Jacobs, A. M., Schmidt-Weigand, F., & Ziegler, J. C. (1998). A phoneme effect in visual word recognition. *Cognition*, 68, B71–B80. doi:10.1016/S0010-0277(98)00051-1
- Rey, A., & Schiller, N. O. (2005). Graphemic complexity and multiple print-to-sound associations in visual word recognition. *Memory & Cog*nition, 33, 76–85. doi:10.3758/BF03195298
- Rey, A., Ziegler, J. C., & Jacobs, A. M. (2000). Graphemes are perceptual reading units. *Cognition*, 75, B1–B12. doi:10.1016/S0010-0277(99)00078-5
- Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. doi:10.3758/PBR 16.2.225
- Schoonbaert, S., & Grainger, J. (2004). Letter position coding in printed word perception: Effects of repeated and transposed letters. *Language and Cognitive Processes*, 19, 333–367. doi:10.1080/01690960344000198
- Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of word recognition and naming. *Psychological Review*, 96, 523–568. doi:10.1037/0033-295X.96.4.523
- Spoehr, K. T., & Smith, E. E. (1975). The role of orthographic and phonotactic rules in perceiving letter patterns. *Journal of Experimental Psychology: Human Perception and Performance*, 104, 21–34.
- Smith, E. E., & Spoehr, K. T. (1974). The perception of printed English: A theoretical perspective. In B. H. Kantowitz (Ed.), *Human information* process: Tutorials in performance and cognition (pp. 231–275). Potomac. MD: Erlbaum.
- Taft, M. (1979). Lexical access via an orthographic code: The Basic Orthographic Syllable Structure (BOSS). *Journal of Verbal Learning* and Verbal Behavior, 18, 21–39.
- Taft, M. (1992). The body of the BOSS: Sub-syllabic units in the lexical processing of polysyllabic words. *Journal of Experimental Psychology: Human Perception and Performance*, 18, 1004–1014.

Tainturier, M. J., & Rapp, B. C. (2004). Complex graphemes as functional spelling units: Evidence from acquired dysgraphia. *Neurocase*, 10, 122–131.

- Trieman, R., & Chafetz, J. (1987). Are there onset- and rime-like units in written words? In M. Coltheart (Ed.), Attention and performance XII: The psychology of reading (pp. 281–298). London: Erlbaum.
- Treiman, R., Mullennix, J., Bijeljac-Babic, R., & Richmond-Welty, E. D. (1995). The special role of rimes in the description, use, and acquisition of English orthography. *Journal of Experimental Psychology: General*, 124, 107–136.
- Treiman, R., & Zukowski, A. (1988). Units in reading and spelling. Journal of Memory and Language, 27, 466–477.
- Van der Haegen, L., Brysbaert, M., & Davis, C. J. (2009). How does interhemispheric communication in visual word recognition work? Deciding between early and late integration accounts of the split fovea theory. *Brain and Language*, 108, 112–121. doi:10.1016/ j.bandl.2008.06.005
- Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of *p* values. *Psychonomic Bulletin & Review*, 14, 779–804.
- Wagenmakers, E.-J., Ratcliff, R., Gómez, P., & Iverson, G. J. (2004).
 Assessing model mimicry using the parametric bootstrap. *Journal of Mathematical Psychology*, 48, 28–50. doi:10.1016/j.jmp.2003.11.004
- Whitney, C. (2001). How the brain encodes the order of letters in a printed word: The SERIOL model and selective literature review. *Psychonomic Bulletin & Review*, 8, 221–243. doi:10.3758/BF03196158
- Whitney, C. (2004). *Investigations into the neural basis of structured representations* (Doctoral dissertation). Available from ProQuest Dissertations & Theses database (UMI No. 3153149).
- Ziegler, J. C., & Jacobs, A. M. (1995). Phonological information provides early sources of constraint in the processing of letter strings. *Journal of Memory and Language*, 34, 107–136.
- Zorzi, M., Houghton, G., & Butterworth, B. (1998). Two routes or one in reading aloud? A connectionist dual-process model. *Journal of Experimental Psychology: Human Perception and Performance*, 24, 1131– 1161. doi:10.1037/0096-1523.24.4.1131

(Appendix follows)

Appendix

Stimuli for all Four Experiments

Table A1
Stimuli in Experiment 1

Target	W	ords	Nonwords		
	One grapheme	Two graphemes	Target	Prime	
AMOUNT	amxxnt	axxunt	AFOURT	afxxrt	
BLOUSE	blxxse	bloxxe	BROUYE	brxxye	
BLEACH	blxxch	bxxach	BREASH	brxxsh	
BREAST	brxxst	brexxt	BLEACT	blxxct	
BREATH	brxxth	bxxath	BLEAPH	blxxph	
CHOICE	chxxce	choxxe	CROIME	crxxme	
CLOUDY	clxxdy	cxxudy	CROUSY	crxxsy	
CREAMY	crxxmy	crexxy	CLEAGY	clxxgy	
CREASE	crxxse	cxxase	CHEAME	chxxme	
DREAMT	drxxmt	drexxt	DOEANT	doxxnt	
FLAUNT	flxxnt	fxxunt	FRAUST	frxxst	
GREASY	grxxsy	grexxy	GWEABY	gwxxby	
GROUND	grxxnd	gxxund	GLOURD	glxxrd	
GROUSE	grxxse	groxxe	GLOUME	glxxme	
PLAYER	plxxer	pxxyer	SLAYEN	slxxen	
PLEASE	plxxse	plexxe	PHEAVE	phxxve	
PRAISE	prxxse	pxxise	PLAIVE	plxxve	
PREACH	prxxch	pxxach	TREAGH	trxxgh	
PRIEST	prxxst	prixxt	PLIERT	plxxrt	
QUAINT	quxxnt	quaxxt	QUAIRT	quxxrt	
SHIELD	shxxld	shixxd	SKIEND	skxxnd	
SNEAKY SPOUSE	snxxky	sxxaky	SPEANY	spxxny	
	spxxse	spoxxe	STOUWE	stxxwe	
STEADY STEAMY	stxxdy	sxxady	SWEAGY SPEADY	swxxgy	
SWEATY	stxxmy	stexxy	STEAVY	spxxdy	
TRAUMA	swxxty	sxxaty	TWAULA	stxxvy twxxla	
TREATY	trxxma	traxxa	TWEAFY	twxxfy	
UNEASY	trxxty unxxsy	txxaty unexxy	UREATY	urxxty	
WREATH	wrxxth	wxxath	WHEASH	whxxsh	
BOILER	bxxler	boxxer	COIPER	coxxer	
BOUNCE	bxxnce	boxxce	DOURCE	doxxce	
BOUNTY	bxxnty	boxxty	GOUSTY	goxxty	
COURSE	cxxrse	coxxse	FOUTSE	foxxse	
FAULTY	fxxlty	faxxty	NAUPTY	naxxty	
LAUNCH	lxxnch	laxxch	MAURCH	maxxcl	
LOUNGE	lxxnge	loxxge	MOURGE	moxxge	
MAIDEN	mxxden	maxxen	NAIFEN	naxxen	
NEARBY	nxxrby	nexxby	MEASBY	mexxby	
PEANUT	pxxnut	pexxut	REASUT	rexxut	
POUNCE	pxxnce	poxxce	SOUSCE	soxxce	
READER	rxxder	rexxer	SEAGER	sexxer	
SAILOR	sxxlor	saxxor	TAIPOR	taxxor	
SAUCER	sxxcer	saxxer	TAUGER	taxxer	
TAILOR	txxlor	taxxor	TAMLOY	taxxoy	
AFRAID	afrxxd	afxxid	AFSAIL	afxxil	
BELIEF	belxxf	bexxef	BEMIEK	bexxek	
DETAIL	detxxl	dexxil	DEVAIP	dexxip	
DEVOUT	devxxt	dexxut	DEYOUX	dexxux	
DOMAIN	domxxn	doxxin	DOPAIR	doxxir	
FAMOUS	famxxs	faxxus	FAPOUT	faxxut	
JOYOUS	joyxxs	joxxus	JOTOUP	joxxup	
OBTAIN	obtxxn	obxxin	OBWAIR	obxxir	
ORDEAL	ordxxl	orxxal	ORGEAP	orxxap	
RELIEF	relxxf	rexxef	REMIEH	rexxeh	
SCREAM	scrxxm	scxxam	SCLEAT	scxxat	
SPREAD	sprxxd	spxxad	SPLEAF	spxxaf	
STREAM	strxxm	stxxam	STUEAP	stxxap	
THREAD	thrxxd	thxxad	THEAH	thxxah	
THROAT	thrxxt	thxxat	THROAD	thxxad	

Table A2 Stimuli in Experiment 2

Words (One grapheme)		Nonwords (One grapheme)				
Target	TL prime	RL prime	Target	TL prime	RL prime	
ANTHEM	anhtem	ankfem	ZACKLE	zakcle	zabsle	
ASTHMA	ashtma	asblma	VOCKLE	vokcle	vodmle	
FARTHER	farhter	farkder	CATHSIC	cahtsic	cafksic	
PANTHER	panhter	panlder	UNCHAIC	unhcaic	unfzaic	
ORTHODOX	orhtodox	orfkodox	OLCHERD	olhcerd	olknerd	
BIRTHDAY	birhtday	birklday	TUNCHAT	tunheat	tunbvat	
DAUGHTER	dauhgter	daubiter	MINCHEON	minhceon	mindreon	
PAMPHLET	pamhplet	pamdqlet	ISPHADIC	ishpadic	iskgadic	
BIOSPHERE	bioshpere	biostgere	BEOGHTER	beohgter	beokpter	
BLASPHEMY	blashpemy	blaslgemy	UNCHATECT	unhcatect	undwatect	
PHOSPHATE	phoshpate	phosljate	GRUNCHISE	grunhcise	grunkrise	
ANTHOLOGY	anhtology	ankfology	ESPHIBION	eshpibion	esfqibion	
ARCHER	arhcer	artner	ONGHEN	onhgen	onkpen	
ORCHID	orheid	orksid	ONCHAD	onhead	onlmad	
ASPHALT	ashpalt	asfqalt	ESPHIN	eshpin	estgin	
DOLPHIN	dolhpin	dolkgin	DECKLE	dekcle	detwle	
SULPHUR	sulhpur	sultjur	ENPHILT	enhpilt	entgilt	
ATHLETE	ahtlete	afblete	RESPHUR	reshpur	resdjur	
ALPHABET RHYTHMIC	alhpabet	alfjabet rhydlmic	INPHABET COMPHURE	inhpabet comhpure	indjabet comljure	
CASHMERE	rhyhtmic cahsmere	catnmere	OERTHETIC	oerhtetic	oerfletic	
MORPHINE	morhpine	morbjine	MOCHNECAL	mohenecal	molxnecal	
TECHNICAL	tehenical	tebmnical	CLISPHOMY	clishpomy	clisdjomy	
FRANCHISE	franheise	frandxise	CLANCHITIS	clanhcitis	clantwitis	
ORPHAN	orhpan	orbgan	URCHIR	urheir	urlsir	
AFGHAN	afhgan	afdjan	ENCHOD	enhcod	entvod	
PICKLE	pikcle	pitvle	ITHNETE	ihtnete	ifdnete	
TACKLE	takcle	tabwle	GIRTHER	girhter	girbler	
ARCHAIC	arhcaic	artsaic	ALPHURYS	alhpurys	altqurys	
ARCHING	arheing	arlning	LISHMIRE	lihsmire	likvmire	
SAPPHIRE	saphpire	sapfgire	ENCHIVES	enhcives	entsives	
SYMPHONY	symhpony	symkgony	CENPHOSY	cenhposy	cenfgosy	
LUNCHEON	lunhceon	lundzeon	ARCHUNTRA	arhcuntra	artmuntra	
MERCHANT	merhcant	merfxant	CRISPHITE	crishpite	cristqite	
ORCHESTRA	orhcestra	orfwestra	LONTHESYS	lonhtesys	lonfdesys	
ARTHRITIS	arhtritis ehtnic	ardfritis efdnic	ESTHILOGY	eshtilogy	esfbilogy	
ETHNIC ANCHOR	anhcor	anlmor	ORCHOVY NURSHAL	orhcovy nurhsal	orbmovy nurtcal	
TICKLE	tikele	tidxle	URTHOM	urhtom	urklom	
MARSHAL	marhsal	martzal	ERTHME	erhtme	erbfme	
ORCHARD	orheard	orkmard	FISPHIN	fishpin	fiskgin	
TRICKLE	trikele	trihzle	BUSTHER	bushter	buskfer	
EMPHASIS	emhpasis	emtgasis	ISTHELOX	ishtelox	iskbelox	
ARCHIVES	arheives	arbsives	GIRPHINE	girhpine	girtqine	
SYNTHESIS	synhtesis	synlbesis	CEMPHLIT	cemhplit	cembilit	
ALCHEMIST	alhcemist	altzemist	BRUTHMIC	bruhtmic	bruldmic	
ANARCHIST	anarheist	anarbsist	OSIRCHIST	osirhcist	osirfwist	
ARCHITECT	arhcitect	arkvitect	ENTHRITIS	enhtritis	enkbritis	
W	Vords (Two graphemes)		Nor	Nonwords (Two graphemes)		
Target	TL prime	RL prime	Target	TL prime	RL prime	
EMPTY	emtpy	embgy	CONTROG	conrtog	convdog	
CORPSE	corspe	cormje	INCLUFE	inlcufe	inhvufe	
MARBLE	marlbe	marfke	SPRAKE	srpake	snqake	
INTRUDE	inrtude	incfude	INFLUERCE	inlfuerce	intduerce	
CATCHER	cathcer	catlzer	ANARTMENT	anatrment	anafsment	
CONFRONT	conrfont	conskont	FANCTION	fantcion	fanksion	
SCULPTOR	scultpor	sculkgor	ROMPLETE	romlpete	romdgete	
AMPLITUDE	amlpitude	amkgitude	INTRIFSIC	inrtifsic	inskifsic	
INFLATION	inlfation	indtation asmkonomy	SANCTUPRY	santcupry	sankvupry	
ASTRONOMY	asrtonomy		CONTRAXICT	conrtaxict	conslaxict	

Table A2 (continued)

Words (Two graphemes)			No	Nonwords (Two graphemes)		
Target	TL prime	RL prime	Target	TL prime	RL prime	
INTRICATE	inrticate	inskicate	CIMPREHEND	cimrpehend	cimvgehend	
SAMPLE	samlpe	samtge	HINDLE	hinlde	hinkfe	
EMPLOY	emlpoy	emkgoy	SIMPDE	sipmde	sigrde	
INFLICT	inlfict	inkdict	STRORPY	stropry	strogmy	
DESTROY	desrtoy	desvkoy	NISTRIL	nisrtil	nisvbil	
COMPRESS	comrpess	comvjess	TWIFTER	twitfer	twilber	
CONCLUDE	conlcude	conhxude	BUFGLAR	buflgar	bufhpar	
UMBRELLA	umrbella	umnkella	VORTRAIT	vorrtait	vomsfait	
SPECTRUM	specrtum	speclnum	COVTRACT	covrtact	covzdact	
SPINSTER	spisnter	spirvter	INSTMUCT	intsmuct	inkrmuct	
INTRIGUE	inrtigue	insfigue	RESTRIWT	resrtiwt	resnliwt	
ASTROLOGY	asrtology	asvbology	LONCLUSION	lonlcusion	lontzusion	
INTRODUCE	inrtoduce	incdoduce	IMPREWSION	imrpewsion	imngewsion	
EMBLEM	emlbem	emfdem	AXPLE	axlpe	axkge	
EMBRYO	emrbyo	emnhyo	ASGLE	aslge	asbje	
RAMBLE	rabmle	rahvle	OLSCURE	olcsure	olnwure	
GAMBLE	gamlbe	gamdte	STURGED	stugred	stujced	
PILGRIM	pilrgim	pilsqim	WRIZGLE	wrizlge	wriztje	
PUMPKIN	pumpkin	pumfgin	COWPRISE	cowrpise	cowngise	
MEMBRANE	memrbane	memsfane	ECSTAPIC	ectsapic	ecfxapic	
INTREPID	inrtepid	incbepid	EKECTRON	eketcron	ekedmron	
CONGRESS	conrgess	conzpess	TRAVSLATE	travlsate	travbcate	
ALTRUISM	alrtuism	alcbuism	TRAGSCEND	trasgcend	trazpcend	
EXCREMENT	exrcement	exsnement	INFLEGTION	inlfegtion	intkegtion	
IMPROVISE	imrpovise	imwqovise	CONCLUWIVE	conlcuwive	condsuwive	
HUNGRY	hunrgy	hunspy	HUKDRED	hukrded	hukmfed	
JUNGLE	jugnle	juntqe	GAMBWER	gabmwer	gatxwer	
ENTROPY	enrtopy	enmdopy	EMBRYCE	emrbyce	emsfyce	
OSTRICH	osrtich	osnfich	APSTAIN	aptsain	apkrain	
IMPLICIT	imlpicit	imtqicit	CONFLACK	conlfack	conhtack	
DOCTRINE	docrtine	doczfine	MONSTANT	montsant	monlrant	
COMPLAIN	comlpain	comdjain	JICTION	jitcion	jihvion	
RESTRAIN	resrtain	resmďain	SANCTIOK	santciok	sandriok	
EXCLUSIVE	exlcusive	exfrusive	ACTRESH	acrtesh	acwlesh	
IMPLEMENT	imlpement	imhgement	AMPLISSY	amlpissy	amlqissy	
PRESCRIBE	presrcibe	presvnibe	ASTROCOMER	asrtocomer	asmbocomer	
CONSTRUCT	consrtuct	conscbuct	ELEMTRONIC	elemrtonic	elemskonic	

 ${\it Note.} \quad {\rm TL} = {\rm transposed\text{-}letter}; \ {\rm RL} = {\rm replacement\text{-}letter}.$

Table A3
Stimuli in Experiment 3

CH words (One grapheme)			CH nonwords (One grapheme)		
Target	TL prime	RL prime	Target	TL prime	RL prime
SALCHICHA	salhcicha	salbnicha	LACHERO	lahcero	latnero
HECHICERO	hehcicero	hedsicero	FACHIZO	fahcizo	fabsizo
PERCHERO	perhcero	perbnero	GOCHERO	gohcero	gobnero
CORCHETES	corhcetes	corbsetes	LOCHINAR	lohcinar	lobsinar
DICHOSO	dihcoso	didsoso	COCHAZAR	cohcazar	codsazar
TECHUMBRE	tehcumbre	tednumbre	FOCHERO	fohcero	fodrero
MECHONES	mehcones	mebnones	SUCHILO	suhcilo	sutsilo
BOCHORNO	bohcorno	bodsorno	PORCHONES	porhcones	potncones
COCHERO	cohcero	codnero	SECHETES	sehcetes	sefsetes
PECHUGA	pehcuga	pebsuga	LOCHINERO	lohcinero	lotninero
HACHAZO	hahcazo	hadsazo	JACHIFRIL	jahcifril	jatsifril
CACHETES	cahcetes	cabnetes	SUCHILA	suhcila	sutrila
MACHACAR	mahcacar	madnacar	JECHADO	jehcado	jefsado
PINCHAZO	pinhcazo	pintsazo	TRENCHADO	trenhcado	trenfnado
PANCHITO	panhcito	panfnito	JOCHARSE	johcarse	jobnarse
FICHAJE	fihcaje	fitsaje	CECHILLER	cehciller	cebsiller
MOCHILA	mohcila	mobsila	SOCHADOR	sohcador	sobnador
FLECHAZO	flehcazo	fletnazo	DECHERO	dehcero	dednero
FACHADA	fahcada	fabsada	SECHAMAR	sehcamar	sedsamar
BICHITO	bihcito	bitnito	POCHORCHO	pohcorcho	podnorcho
RECHAZAR	rehcazar	refnazar	VELCHILLA	velhcilla	veltnilla
FECHADO	fehcado	febsado	POCHARRO	pohcarro	potsarro
LECHUGA	lehcuga	ledsuga	SOCHISTAR	sohcistar	sotvistar
FICHADO	fihcado	fitsado	ROCHISTA	rohcista	rofsista
HECHIZO	hehcizo	hebnizo	RUCHINO	ruhcino	rufnino
RECHONCHO	rehconcho	retnoncho	SOCHACHO	sohcacho	sotracho
CUCHARA	cuhcara	cutsara	PACHERO	pahcero	pabsero
ENCHUFE	enhcufe	enbnufe	CANCHATA	canhcata	canbnata
ARCHIVO	arhcivo	arfsiyo	LOCHAZO	lohcazo	lotnazo

Table A3 (continued)

CH words (One grapheme)		CH nonwords (One grapheme)			
Target	TL prime	RL prime	Target	TL prime	RL prime
BROCHAZO	brohcazo	brotnazo	BERCHILLO	berhcillo	betscillo
RECHINAR	reheinar	refsinar	SONCHOSO	sonhcoso	sonfsoso
MICHELÍN	mihcelín	mifnelín	VECHETE	vehcete	vetnete
MOCHUELO	mohcuelo	mofnuelo	CRACHAZO	crahcazo	crafnazo
ECHADO	ehcado	ebrado	SUCHONDEO	suhcondeo	subsonded
DUCHARSE	duhcarse	dubsarse	GACHELÍN	gahcelín	gabselín
PUCHERO	puhcero	pubnero	CECHORNO	cehcorno	cedsorno
MECHERO	mehcero	mebvero	NACHUELO	nahcuelo	nadruelo
MANCHEGO	manhcego	manfnego	JOCHADA	johcada	jodnada
TRINCHERAS	trinhceras	trinfseras	TOCHUGA	tohcuga	tobnuga
MACHETE	mahcete	matnete	BACHUZA	bahcuza	batsuza
OCHENTA	ohcenta	otrenta	LOCHADO	lohcado	lotmado
HORCHATA	horhcata	hortsata	LICHUMBRE	lihcumbre	lifsumbre
TACHADO	tahcado	tafsado	CECHORRO	cehcorro	cefrorro
LUCHADOR	luhcador	lufsador	MONCHERO	monhcero	monfnero
LECHERO	lehcero	lefnero	ASCHUFE	ashcufe	astnufe
FICHERO	fihcero	fibnero	GACHULA	gahcula	gabnula
MUCHACHO	muhcacho	mubsacho	NURCHELES	nurhceles	nurbreles
MANCHADO	manhcado	mandrado	ACHESTA	ahcesta	adresta
TRINCHERA	trinhcera	trindnera	DACHILLO	dahcillo	dadnillo
CACHARRO	cahcarro	cadsarro	GUCHORÍA	guhcoría	gudsoría
LECHUZA	lehcuza	letsuza	CECHARA	cehcara	cedsara
CUCHITRIL	cuhcitril	cutnitril	LENCHADO	lenhcado	lentsado
COCHINO	cohcino	cofrino	PRECHAZO	prehcazo	prefrazo
RECHISTAR	reheistar	refsistar	OCHABO	ohcabo	obnabo
FECHORÍA	fehcoría	fefnoría	FORCHADO	forhcado	fortnado
CACHONDEO	cahcondeo	cadnondeo	GOCHOSO	gohcoso	gobnoso
GANCHILLO	ganhcillo	gandsillo	LARCHERA	larhcera	larbsera
MARCHOSO	marhcoso	mardsoso	NOCHADO	nohcado	nobrado
CUCHILLO	cuhcillo	cudmillo	PISCHEGO	pishcego	pisdnego
PLANCHADO	planhcado	planbsado	SIRCHAZO	sirhcazo	sirdnazo
MACHETES	mahcetes	mabsetes	JENCHERAS	jenhceras ishcivo	jendreras istrivo
COLCHONES	colhcones bahciller	colbnones batmiller	ISCHIVO		
BACHILLER MACHISTA	mahcista	marnista	LACHAJE SUCHONES	lahcaje suhcones	ladvaje sudmones
Non-C	CH words (Two graphemes	s)	Non-CH	nonwords (Two graphem	nes)
Target	TL prime	RL prime	Target	TL prime	RL prime
SECRETARIA	sercetaria	senvetaria	REBRADA	rerbada	rendada
TÉTRICO	tértico	tésfico	LEBLETA	lelbeta	letdeta
INSCRIBIR	insrcibir	insnsibir	ISBROLLO	isrbollo	issdollo
LACRADO	larcado	lamrado	SUCRETO	surceto	sunveto
SUBLEVAR	sulbevar	suftevar	URFLADO	urlfado	urtdado
RECLUTAR	relcutar	refnutar	LUFLETES	lulfetes	ludbetes
MEMBRANA	memrbana	memndana	PEBLAJE	pelbaje	petfaje
ESTRIBO	esrtibo	essfibo	PEBLERO	pelbero	pefdero
MALTRATO	malrtato	malnfato	TOCLISMO	tolcismo	tofsismo
BÍBLICO	bílbico	bífdico	CUNTRITO	cunrtito	cunsfito
ESCLAVO	eslcavo	esfnavo	SORTRADO	sorrtado	sornlado
MICROBIO	mircobio	minsobio	RUSCRIDIR	rusrcidir	russnidir
SECRETO	serceto	senseto	MUCRETO	murceto	munseto
DECRETO	derceto	denveto	LUNCRITO	lunrcito	lunvsito
REFRESCAR	rerfescar	remtescar	IRCLAMAR	irlcamar	irtnamar
LETRERO	lertero	lenfero	JECRADO ECRÓDATA	jercado	jesvado
ATRASO	artaso	anfaso	ECRÓDATA	ercódata	ensódata

Table A3 (continued)

Non-CH words (Two graphemes)		Non-CH nonwords (Two graphemes)			
Target	TL prime	RL prime	Target	TL prime	RL prime
RECLUSO	relcuso	retsuso	REBLAZO	relbazo	retfazo
MEZCLADO	mezlcado	meztsado	TOCLUTAR	tolcutar	tofnutar
ENCLAVE	enlcave	enfmave	LEBLILLA	lelbilla	letdilla
REFRANES	rerfanes	remlanes	REMFLETO	remlfeto	remtbeto
INFLADO	inlfado	intdado	UBRAZO	urbazo	undazo
ACRÓBATA	arcóbata	ansóbata	ERCREPAR	errcepar	ersmepar
TABLILLA	talbilla	tafdilla	CICRODIO	circodio	cimsodio
TABLONES	talbones	tadtones	TOBLEVAR	tolbevar	tofdevar
DOBLAJE	dolbaje	doftaje	TOBLADO	tolbado	totdado
ECLIPSE	elcipse	etnipse	GÓBLICO	gólbico	góftico
RECLAMAR	relcamar	retsamar	PERTROJOS	perrtojos	perslojos
DISFRACES	disrfaces	disstaces	GATRICO	gartico	gasfico
CICLISMO	cilcismo	citnismo	PROFLADO	prolfado	protdado
PANFLETO	panlfeto	pantbeto	SURBLORES	surlbores	surdtores
CHIFLADO	chilfado	chitdado	CABRINO	carbino	candino
ENCLENQUE	enlcenque	enbsenque	SUBRONES	surbones	sustones
CICLONES	cilcones	citsones	ETRANO	ertano	enlano
ABRAZO	arbazo	antazo	TACLIVE	talcive	tafsive
NUTRIENTE	nurtiente	nunliente	CECROARDAS	cercoardas	cenvoardas
DISTRITO	disrtito	dissfito	ROSTRADO	rosrtado	rosmlado
FILTRADO	filrtado	filslado	URCLENQUE	urlcenque	urtsenque
SACRISTÁN	sarcistán	sansistán	TONFRACES	tonrfaces	tonnlaces
RASTROJOS	rasrtojos	rasnlojos	LORTRATO	lorrtato	lorslato
DESCRITO	desrcito	desnsito	PANCLADO	panlcado	pantsado
DECLIVE	delcive	defsive	ANTRIBO	anrtibo	annfibo
DECRECER	dercecer	densecer	SUTRINA	surtina	sumlina
PROCREAR	prorcear	pronsear	PECRISTÁN	percistán	pesnistán
CABRONES	carbones	camtones	DOCLABO	dolcabo	dotsabo
EXCLAMAR	exlcamar	extsamar	TUCLAMAR	tulcamar	tufnamar
MOFLETES	molfetes	motfetes	CUBLADOR	culbador	cutfador
TECLADO	telcado	tetsado	ORCLADO	orlcado	orfsado
NUBLADO	nulbado	nufdado	VICREMARIA	vircemaria	vinsemaria
HABLADOR	halbador	hatfador	DACRENER	darcener	davnener
EMBROLLO	emrbollo	emndollo	INCLAVO	inlcavo	intsavo
ANCLADO	anlcado	antnado	LEBLORES	lelbores	letdores
TEMBLORES	temlbores	temtdores	COTRERO	cortero	conlero
INCLINAR	inleinar	intminar	SECLONES	selcones	setsones
VITRINA	virtina	vislina	OCLIGSE	olcigse	otnigse
SOBRINO	sorbino	sondino	ORCLINAR	orleinar	orfminar
CENTRADO	cenrtado	censlado	MOBRETO	morbeto	mondeto
DISCRETO	disrceto	disnveto	OSCLAVE	oslcave	ostsave
SABLAZO	salbazo	satdazo	CUSBRANA	cusrbana	cusmdana
INCREPAR	inrcepar	insnepar	PERCRETO	perrceto	pernseto
POBLADO	polbado	potdado	LEBLADO	lelbado	letdado
MICROONDAS	mircoondas	minsoondas	LIFRANES	lirfanes	lintanes

Note. CH = target containing a CH grapheme; TL = transposed-letter; RL = replacement-letter.

Table A4
Stimuli in Experiment 4 (TL and RL Primes)

CH words (One grapheme)			CH nonwords (One grapheme)			
Target	TL prime	RL prime	Target	TL prime	RL prime	
SALCHICHA	salcihcha	salvibcha	LACHERO	lacehro	lasedro	
HECHICERO	hecihcero	heritcero	FACHIZO	facihzo	fasitzo	
PERCHERO	percehro	pernedro	GOCHERO	gocehro	govedro	
CORCHETES	corcehtes	cormebtes	LOCHINAR	locihnar	lonilnar	
DICHOSO	dicohso	disobso	COCHAZAR	cocahzar	cosabzar	
ГЕСНИМВКЕ	tecuhmbre	terudmbre	FOCHERO	focehro	fovelro	
MECHONES	mecohnes	menobnes	SUCHILO	sucihlo	suniblo	
BOCHORNO	bocohrno	bovolrno	PORCHONES	porcohnes	porsobnes	
COCHERO	cocehro	conedro	SECHETES	secehtes	sereltes	
PECHUGA	pecuhga	perutga	LOCHINERO	locihnero	lositnero	
HACHAZO	hacahzo	haradzo	JACHIFRIL	jacihfril	jasilfril	
CACHETES	cacehtes	cavebtes	SUCHILA	sucihla	suvitla	
MACHACAR	macahcar	masabcar	JECHADO	jecahdo	jesatdo	
PINCHAZO	pincahzo	pinradzo	TRENCHADO	trancahdo	tranratdo	
PANCHITO	pancihto	panmidto	JOCHARSE	jocahrse	josatrse	
FICHAJE	ficahje	fisadje	CECHILLER	cecihller	cenitller	
MOCHILA	mocihla	movidla	SOCHADOR	socahdor	sovaldor	
FLECHAZO	flecahzo	flesatzo	DECHERO	decehro	deretro	
FACHADA	facahda	fanatda	SECHAMAR	secahmar	sevalmar	
BICHITO	bicihto	birikto	POCHORCHO	pocohrcho	povodrcho	
RECHAZAR	recahzar	resadzar	VELCHILLA	velcihlla	velsiblla	
FECHADO	fecahdo	fevatdo	POCHARRO	pocahrro	poradrro	
LECHUGA	lecuhga	lenutga	SOCHISTAR	socihstar	sonilstar	
FICHADO	ficahdo	finatdo	ROCHISTA	rocihsta	rovitsta	
HECHIZO	hecihzo	henitzo	RUCHINO	rucihno	rubitno	
RECHONCHO	recohncho	resotncho	SOCHACHO	socahcho	sovalcho	
CUCHARA	cucahra	cuvalra	PACHERO	pacehro	pasebro	
ENCHUFE	encuhfe	enrutfe	CANCHATA	carcahta	carsalta	
ARCHIVO	arcihvo	arsidvo	LOCHAZO	locahzo	lorabzo	
BROCHAZO	brocahzo	brosabzo	BERCHILLO	bencihllo	bennidllo	
RECHINAR	recihnar	remidnar	SONCHOSO	soncohso	sonsolso	
MICHELÍN	micehlín	mineblín	VECHETE	vecehte	vevelte	
MOCHUELO	mocuhelo	morubelo	CRACHAZO	cracahzo	crasabzo	
ECHADO	ecahdo	evakdo	SUCHONDEO	sucohndeo	surotndeo	
DUCHARSE	ducahrse	dusalrse	GACHELÍN	gacehlín	garetlín	
PUCHERO	pucehro	pusedro	CECHORNO	cecohrno	cesotrno	
MECHERO	mecehro	menedro	NACHUELO	nacuhelo	nasulelo	
MANCHEGO	mancehgo	manretgo	JOCHADA	jocahda	josatda	
TRINCHERAS	trincehras	trinvelras	TOCHUGA	tocuhga	tonulga	
MACHETE	macehte	mavedte	BACHUZA	bacuhza	bavudza	
OCHENTA	ocehnta	omednta	LOCHADO	locahdo	losafdo	
HORCHATA	horcahta	hornabta	LICHUMBRE	licuhmbre	lisubmbre	
TACHADO	tacahdo	tanabdo	CECHORRO	cecohrro	cesolrro	
LUCHADOR	lucahdor	lusabdor	MONCHERO	moncehro	monrebro	
LECHERO	lecehro	lesetro	ASCHUFE	ascuhfe	asnudfe	
FICHERO	ficehro	fivedro	GACHULA	gacuhla	gasubla	
MUCHACHO	mucahcho	munatcho	NURCHELES	nurcehles	nurmetles	
MANCHADO	mancahdo	manratdo	ACHESTA	acehsta	anetsta	
TRINCHERA	trincehra	trinsebra	DACHILLO	dacihllo	dasibllo	
CACHARRO	cacahrro	canabrro	GUCHORÍA	gucohría	gurotría	
LECHUZA	lecuhza	levulza	CECHARA	cecahra	cenabra	
CUCHITRIL	cucihtril	cusidtril	LENCHADO	lencahdo	lenraldo	
COCHINO	cocihno	covitno	PRECHAZO	precahzo	presalzo	
RECHISTAR	recihstar	rerilstar	OCHABO	ocahbo	ovalbo	
FECHORÍA	fecohría	femobría	FORCHADO	forcahdo	fornatdo	
CACHONDEO	cacohndeo	cavolndeo	GOCHOSO	gocohso	gonotso	

Table A4 (continued)

CH words (One grapheme)		CH nonwords (One grapheme)			
Target	TL prime	RL prime	Target	TL prime	RL prime
GANCHILLO	gancihllo	ganridllo	LARCHERA	larcehra	larnetra
MARCHOSO	marcohso	marnolso	NOCHADO	nocahdo	noraldo
CUCHILLO	cucihllo	cunidllo	PISCHEGO	piscehgo	pisnelgo
PLANCHADO	plancahdo	planmabdo	SIRCHAZO	sircahzo	sirsatzo
MACHETES	macehtes	mavedtes	JENCHERAS	jencehras	jensebras
COLCHONES	colcohnes	colrotnes	ISCHIVO	iscihvo	isbilvo
BACHILLER	bacihller	basidller	LACHAJE	lacahje	lasadje
MACHISTA	macihsta	masibsta	SUCHONES	sucohnes	surotnes
Non-G	CH words (Two graphemes	8)	Non-C	H nonwords (Two graphen	nes)
Target	TL prime	RL prime	Target	TL prime	RL prim
SECRETARIA	secertaria	senestaria	REBRADA	rebarda	retanda
TÉTRICO	tétirco	tébinco	LEBLETA	lebelta	letedta
INSCRIBIR	inscirbir	insnimbir	ISBROLLO	isborllo	isdonllo
LACRADO	lacardo	lasamdo	SUCRETO	sucerto	susento
SUBLEVAR	subelvar	sudetvar	URFLADO	urfaldo	urtabdo
RECLUTAR	recultar	rerudtar	LUFLETES	lufeltes	lutedtes
MEMBRANA	membarna	memdasna	PEBLAJE	pebalje	pedalje
ESTRIBO	estirbo	eslinbo	PEBLERO	pebelro	pedetro
MALTRATO	maltarto	mallasto	TOCLISMO	tocilsmo	tosifsmo
BÍBLICO	bíbilco	bíditco	CUNTRITO	cuntirto	cunfinto
ESCLAVO	escalvo	esnatvo	SORTRADO	sortardo	sorfando
MICROBIO	micorbio	misonbio	RUSCRIDIR	ruscirdir	rusnivdi
SECRETO	secerto	senesto	MUCRETO	mucerto	musento
DECRETO	decerto	desento	LUNCRITO	luncirto	lunsinto
REFRESCAR	referscar	retevscar	IRCLAMAR	ircalmar	irsatmar
LETRERO	leterro	lelesro	JECRADO	jecardo	jesando
ATRASO	atarso	alavso	ECRÓDATA	ecórdata	enósdata
RECLUSO	reculso	remudso	REBLAZO	rebalzo	refatzo
MEZCLADO	mezcaldo	meznatdo	TOCLUTAR	tocultar	tonudtar
ENCLAVE	encalve	ensadve	LEBLILLA	lebillla	leditlla
REFRANES	refarnes	refasnes	REMFLETO	renfelto	rentedto
INFLADO	infaldo	intabdo	UBRAZO	ubarzo	udanzo
ACRÓBATA	acórbata	anósbata	ERCREPAR	ercerpar	ersenpar
TABLILLA	tabillla	taditlla	CICRODIO	cicordio	cisonvio
TABLONES	tabolnes	tadotnes	TOBLEVAR	tobelvar	todetvar
DOBLAJE	dobalje	dodatje	TOBLADO	tobaldo	todafdo
ECLIPSE	ecilpse	esitpse	GÓBLICO	góbilco	góditco
TABELTA	tabelta	tadehta	SACLUSO	saculso	sanutso
RECLAMAR	recalmar	resatmar	PERTROJOS	pertorjos	perlonjo
DISFRACES	disfarces	disbances	GATRICO	gatirco	galinco
CICLISMO	cicilsmo	cisitsmo	PROFLADO	profaldo	protabdo
PANFLETO	panfelto	pantedto	SURBLORES	surbolres	surdotre
CHIFLADO	chifaldo	chibatdo	CABRINO	cabirno	cadisno
ENCLENQUE	encelnque	ensetnque	SUBRONES	subornes	sudosnes

Table A4 (continued)

CH words (One grapheme)			CH Nonwords (One grapheme)			
Target	TL prime	RL prime	Target	TL prime	RL prime	
CICLONES	cicolnes	cisotnes	ETRANO	etarno	elasno	
ABRAZO	abarzo	adanzo	TACLIVE	tacilve	tanitve	
NUTRIENTE	nutirente	nulivente	CECROARDAS	cecorardas	cesonardas	
DISTRITO	distirto	dislimto	ROSTRADO	rostardo	roslacdo	
FILTRADO	filtardo	fillando	URCLENQUE	urcelnque	urnetnque	
SACRISTÁN	sacirstán	savinstán	TONFRACES	tonfarces	tontances	
RASTROJOS	rastorjos	rasbonjos	LORTRATO	lortarto	lorbanto	
DESCRITO	descirto	desnisto	PANCLADO	pancaldo	pansatdo	
DECLIVE	decilve	desitve	ANTRIBO	antirbo	anlinbo	
DECRECER	decercer	desencer	SUTRINA _.	sutirna	sulisna	
PROCREAR	procerar	prosenar	PECRISTÁN	pecirstán	pevinstán	
CABRONES	cabornes	cadosnes	DOCLABO	docalbo	donatbo	
EXCLAMAR	excalmar	exnatmar	TUCLAMAR	tucalmar	tusatmar	
MOFLETES	mofeltes	motedtes	CUBLADOR	cubaldor	cudafdor	
TECLADO	tecaldo	tezatdo	ORCLADO	orcaldo	ornafdo	
NUBLADO	nubaldo	nudatdo	VICREMARIA	vicermaria	vinesmaria	
HABLADOR	habaldor	hadatdor	DACRENER	dacerner	davesner	
EMBROLLO	emborllo	emdonllo	INCLAVO	incalvo	innatvo	
ANCLADO	ancaldo	ansatdo	LEBLORES	lebolres	ledotres	
TABELRO	tabelro	tadetro	CLUCREAR	clucerar	cluvenar	
TEMBLORES	tembolres	temdotres	COTRERO	coterro	cobenro	
INCLINAR	incilnar	insitnar	SECLONES	secolnes	senotnes	
VITRINA	vitirna	vilimna	OCLIGSE	ocilgse	ositgse	
SOBRINO	sobirno	sodimno	ORCLINAR	orcilnar	ornifnar	
CENTRADO	centardo	cenbando	MOBRETO	moberto	modento	
DISCRETO	discerto	disnesto	OSCLAVE	oscalve	ossatve	
SABLAZO	sabalzo	sadatzo	CUSBRANA	cusbarna	cusdasna	
INCREPAR	incerpar	insenpar	PERCRETO	percerto	pernemto	
POBLADO	pobaldo	podatdo	LEBLADO	lebaldo	ledafdo	
MICROONDAS	micorondas	minovondas	LIFRANES	lifarnes	litasnes	

 $\it Note.$ CH = target containing a CH grapheme; TL = transposed-letter; RL = replacement-letter.

Table A5
Stimuli in Experiment 4 (DL and SL Primes)

CH words (One grapheme)			CH nonwords (One grapheme)		
Target	DL prime	SL prime	Target	DL prime	DL prime
Target SALCHICHA HECHICERO PERCHERO CORCHETES DICHOSO TECHUMBRE MECHONES BOCHORNO COCHERO PECHUGA HACHAZO CACHETES MACHACAR PINCHAZO PANCHITO FICHAJE MOCHILA FLECHAZO	salcicha hecicero percero corcetes dicoso tecumbre mecones bocorno cocero pecuga hacazo cacetes macacar pincazo pancito ficaje mocila flecazo	salvicha henicero persero cormetes divoso tenumbre merones bosorno comero pesuga hasazo canetes masacar pinsazo pansito fisaje monila flenazo	Target LACHERO FACHIZO GOCHERO LOCHINAR COCHAZAR FOCHERO SUCHILO PORCHONES SECHETES LOCHINERO JACHIFRIL SUCHILA JECHADO TRENCHADO JOCHARSE CECHILLER SOCHADOR DECHERO	lacero facizo gocero locinar cocazar focero sucilo porcones secetes locicero jacifril sucila jecado trencado jocarse ceciller socador decero	lasero fanizo gosero losinar conazar forero suniro porsones sesetes losicero jasifril sumila jemado trescado josarse ceriller sorador derero
FACHADA BICHITO RECHAZAR FECHADO LECHUGA FICHADO HECHIZO	facada bicito recazar fecado lecuga ficado hecizo	farada birito resazar fesado leruga fimado henizo	SECHAMAR POCHORCHO VELCHILLA POCHARRO SOCHISTAR ROCHISTA RUCHINO	secamar pocorcho velcilla pocarro socistar rocista rucino	seramar posorcho velrilla ponarro soristar ronista rusino

Table A5 (continued)

CH words (One grapheme)			CH nonwords (One grapheme)			
Target	TL prime	RL prime	Target	TL prime	RL prime	
RECHONCHO	reconcho	resoncho	SOCHACHO	socacho	somacho	
CUCHARA	cucara	cunara	PACHERO	pacero	pasero	
ENCHUFE	encufe	enmufe	CANCHATA	cancata	cansata	
ARCHIVO	arcivo	arnivo	LOCHAZO	locazo	losazo	
BROCHAZO	brocazo	brorazo	BERCHILLO	bercillo	bernillo	
RECHINAR	recinar	reminar	SONCHOSO	soncoso	sorcoso	
MICHELÍN	micelín	minelín	VECHETE	vecete	vesete	
MOCHUELO	mocuelo	moruelo	CRACHAZO	cracazo	crasazo	
ECHADO	ecado	enado	SUCHONDEO	sucondeo	surondeo	
DUCHARSE	ducarse	dunarse	GACHELÍN	gacelín	garelín	
PUCHERO	pucero	puvero	CECHORNO	cecorno	cesorno	
MECHERO	mecero	menero	NACHUELO	nacuelo	nanuelo	
MANCHEGO	mancego	mansego	JOCHADA	jocada	josada	
TRINCHERAS	trinceras	trinseras	TOCHUGA	tocuga	tonuga	
MACHETE	macete	masete	BACHUZA	bacuza	baruza	
OCHENTA	ocenta	osenta	LOCHADO	locado	lorado	
HORCHATA	horcata	hornata	LICHUMBRE	licumbre	linumbre	
TACHADO	tacado	tanado	CECHORRO	cecorro	cerorro	
LUCHADOR	lucador	lunador	MONCHERO	moncero	monsero	
LECHERO	lecero	lerero	ASCHUFE	ascufe	asnufe	
FICHERO	ficero	fimero	GACHULA	gacula	garula	
MUCHACHO	mucacho	munacho	NURCHELES	nurcetes	nurnetes	
MANCHADO	mancado	manrado	ACHESTA	acesta	anesta	
TRINCHERA	trincera	trinrera	DACHILLO	dacillo	darillo	
CACHARRO	cacarro	casarro	GUCHORÍA	gucoría	gusoría	
LECHUZA	lecuza	leruza	CECHARA	cecara	cemara	
CUCHITRIL	cucitril	cusitril	LENCHADO	lencado	lenrado	
COCHINO	cocino	corino	PRECHAZO	precazo	prenazo	
RECHISTAR	recistar	renistar	OCHABO	ocabo	omabo	
FECHORÍA	fecoría	fevoría	FORCHADO	forcado	fornado	
CACHONDEO	cacondeo	casondeo	GOCHOSO	gocoso	goroso	
GANCHILLO	gancillo	ganrillo	LARCHERA	larcera	larmera	
MARCHOSO	marcoso	marsoso	NOCHADO	nocado	norado	
CUCHILLO	cucillo	cumillo	PISCHEGO	piscego	pisnego	
PLANCHADO	plancado	planmado	SIRCHAZO	sircazo	sirnazo	
MACHETES	macetes	mavetes	JENCHERAS	jenceras	jenseras	
COLCHONES	colcones	colmones	ISCHIVO	iscivo	isrivo	
BACHILLER	baciller	bamiller	LACHAJE	lacaje	lasaje	
MACHISTA	macista	manista	SUCHONES	sucones	sumones	
No	Ion-CH words (Two graphemes)		Non-CH nonwords (Two graphemes)			
Target	DL prime	SL prime	Target	DL prime	SL prime	
SECRETARIA	secetaria	senetaria	REBRADA	rebada	relada	
TÉTRICO	tético	télico	LEBLETA	lebeta	ledeta	
INSCRIBIR	inscibir	insnibir	ISBROLLO	isbollo	isdollo	
LACRADO	lacado	lamado	SUCRETO	suceto	suseto	
SUBLEVAR	subevar	sudevar	URFLADO	urfado	urbado	
RECLUTAR			LUFLETES	lufetes	ludetes	
	recutar	resutar				
MEMBRANA	membana	memtana	PEBLAJE	pebaje	pedaje	
ESTRIBO	estibo	eslibo	PEBLERO	pebero	petero	
MALTRATO	maltato	malbato	TOCLISMO	tocismo	tonismo	
BÍBLICO	bíbico	bítico	CUNTRITO	cuntito	cunbito	
ESCLAVO	escavo	esravo	SORTRADO	sortado	sorfado	
MICROBIO	micobio	misobio	RUSCRIDIR	ruscidir	rusnidir	
SECRETO	seceto	seneto	MUCRETO	muceto	museto	
DECRETO	deceto	deseto	LUNCRITO	luncito	lunmito	
REFRESCAR	refescar letero	retescar lebero	IRCLAMAR JECRADO	ircamar jecado	irsamar jesado	
LETRERO						

Table A5 (continued)

CH words (One grapheme)			CH nonwords (One grapheme)		
Target	TL prime	RL prime	Target	TL prime	RL prime
ATRASO	ataso	alaso	ECRÓDATA	ecódata	esódata
RECLUSO	recuso	reruso	REBLAZO	rebazo	redazo
MEZCLADO	mezcado	meznado	TOCLUTAR	tocutar	tonutar
ENCLAVE	encave	ensave	LEBLILLA	lebilla	ledilla
REFRANES	refanes	relanes	REMFLETO	remfeto	remteto
INFLADO	infado	intado	UBRAZO	ubazo	udazo
ACRÓBATA	acóbata	amóbata	ERCREPAR	ercepar	ernepar
TABLILLA	tabilla	tadilla	CICRODIO	cicodio	cimodio
TABLONES	tabones	tadones	TOBLEVAR	tobevar	totevar
DOBLAJE	dobaje	dodaje	TOBLADO	tobado	totado
ECLIPSE	ecipse	eripse	GÓBLICO	góbico	gódico
TABETA	tabeta	tadeta	SACLUSO	sacuso	sanuso
RECLAMAR	recamar	resamar	PERTROJOS	pertojos	perlojos
DISFRACES	disfaces	distaces	GATRICO	gatico	gadico
CICLISMO	cicismo	cisismo	PROFLADO	prifado	pritado
PANFLETO	panfeto	panbeto	SURBLORES	surbores	surtores
CHIFLADO	chifado	chitado	CABRINO	cabino	catino
ENCLENQUE	encenque	ensenque	SUBRONES	subones	sudones
CICLONES	cicones	cinones	ETRANO	etano	elano
ABRAZO	abazo	atazo	TACLIVE	tacive	tanive
NUTRIENTE	nutiente	nuliente	CECROARDAS	cecoardas	cenoardas
DISTRITO	distito	dislito	ROSTRADO	rostado	roslado
FILTRADO	filtado	filbado	URCLENQUE	urcenque	urnenque
SACRISTÁN	sacistán	savistán	TONFRACES	tonfaces	tonlaces
RASTROJOS	rastojos	raslojos	LORTRATO	lortato	lorlato
DESCRITO	descito	desnito	PANCLADO	pancado	panrado
DECLIVE	decive	desive	ANTRIBO	antibo	anlibo
DECRECER	dececer	desecer	SUTRINA	sutina	sulina
PROCREAR	procear	pronear	PECRISTÁN	pecistán	penistán
CABRONES	cabones	cadones	DOCLABO	docado	dosado
EXCLAMAR	excamar	exramar	TUCLAMAR	tucamar	tunamar
MOFLETES	mofetes	mobetes	CUBLADOR	cubador	cutador
TECLADO	tecado	tesado	ORCLADO	orcado	orsado
NUBLADO	nubado	nutado	VICREMARIA	vicemaria	visemaria
HABLADOR	habador	hadador	DACRENER	dacener	damener
EMBROLLO	embollo	emdollo	INCLAVO	incavo	inravo
ANCLADO	ancado	ansado	LEBLORES	lebores	ledores
TABERO	tabero	tadero	CLUCREAR	clocear	closear
TEMBLORES	tembores	temtores	COTRERO	cotero	cobero
INCLINAR	incinar	insinar	SECLONES	secones	senones
VITRINA	vitina	vilina	OCLIGSE	ocigse	onigse
SOBRINO	sobino	sodino	ORCLINAR	orcinar	orsinar
CENTRADO	centado	cendado	MOBRETO	mobeto	moleto
DISCRETO	disceto	disneto	OSCLAVE	oscave	osmave
SABLAZO	sabazo	sadazo	CUSBRANA	cusbana	custana
INCREPAR	incepar	insepar	PERCRETO	perceto	permeto
POBLADO	pobado	pohado	LEBLADO	lebado	ledado
MICROONDAS	micoondas	misoondas	LIFRANES	lifanes	litanes

Note. CH = target containing a CH grapheme; DL = deleted-letter condition; SL = substituted-letter condition.

Received August 5, 2011
Revision received November 14, 2011
Accepted November 17, 2011