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In a diffusion model, performance as measured by latency and accuracy in two-choice tasks is decom-
posed into different parameters that can be linked to underlying cognitive processes. Although the dif-
fusion model has been utilized to account for lexical decision data, the effects of stimulus manipulations
in previous experiments originated from just one parameter: the quality of the evidence. Here we exam-
ined whether the diffusion model can be used to effectively decompose the underlying processes during
visual-word recognition. We explore this issue in an experiment that features a lexical manipulation
(word frequency) that we expected to affect mostly the quality of the evidence (the drift rate parameter),
and a perceptual manipulation (stimulus orientation) that presumably affects the nondecisional time
(the Ter parameter, time of encoding and response) more than it affects the drift rate. Results
showed that although the manipulations do not affect only one parameter, word frequency and stimulus
orientation had differential effects on the model’s parameters. Thus, the diffusion model is a useful tool
to decompose the effects of stimulus manipulations in visual-word recognition.
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The processes underlying visual-word identifi-
cation involve a large set of components that
range from the extraction of the relevant sensory
information in the visual system to the access of
semantic information. In word-identification tasks
(e.g., lexical decision), cognitive psychologists
collect latency and accuracy data, and through
these dependent variables they make inferences
about the different components in visual-word rec-
ognition. Although achieving the goal of decom-
posing the contributions of these components is
not trivial, a number of models attempt to do so
by accounting for accuracy and reaction time
(RT) simultaneously (e.g., the diffusion model,

Ratcliff, 1978; the multiple readout model,
Grainger & Jacobs, 1996; the Bayesian reader,
Norris & Kinoshita, 2008; the leaky competing
accumulator, Usher & McClelland, 2001; and the
linear ballistic accumulator, Brown & Heathcote,
2008). In the present research, we utilize Ratcliff’s
(1978) diffusion model; this model has allowed
researchers to advance in their understanding of
the structure of various two-choice tasks in differ-
ent domains.

A comprehensive introduction to the diffusion
model account of the lexical decision task can be
found elsewhere (Gómez, 2012; Ratcliff, Gomez,
& McKoon, 2004; Wagenmakers, 2009, for a
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general review of the model); here, we only discuss
the conceptual issues around modelling the lexical
decision task with the diffusion model. An impor-
tant feature of the diffusion model is that it is a
process-account (as opposed to a data-account,
like structural equation models). When applied to
the lexical decision task, the main assumption is
that there is noisy accumulation of evidence trig-
gered by the target stimulus. This evidence is accu-
mulated until either a “word” or a “nonword”
response is made. Given that the diffusion model
is a process-account, its parameters can be linked
to underlying psychological processes: The drift
rate parameter relates to the rate of information
extraction, akin to the lexical activation of an
item; the a parameter (i.e., boundary separation)
relates to response caution, or how much evidence
in favour of the word or nonword alternative is
needed to make a response; the z parameter (i.e.,
starting point of the diffusion process) relates to
the a priori response biases (i.e., the expectation
by the participant of the likelihood of a word vs. a
nonword stimulus being presented); and the Ter

parameter (i.e., time of encoding and response)
relates to the time taken by the encoding of the
sensory information and the motor execution of
the response.

Within the domain of visual-word recognition,
the diffusion model has proved to be a highly
useful tool at dealing simultaneously with latency
and accuracy data from lexical decision exper-
iments. Ratcliff, Gomez, and McKoon (2004)
indicated that, in lexical decision, “the sources of
information are combined to provide a single quan-
tity, the degree of wordness, which maps into drift
rate in the diffusion model” (p. 175). The effects
of word frequency, type of nonword, and repetition
in the Ratcliff et al. experiments were successfully
accommodated by changes in drift rates.
However, if all manipulations in the lexical decision
task produce changes only in the drift rate, one
could think that the whole exercise of diffusion
model fitting does not provide researchers with
much more information than the traditional ana-
lyses on the mean latencies. Nonetheless, further
analyses by Donkin, Heathcote, Brown, and
Andrews (2009) on the Ratcliff, Gomez, and

McKoon (2004) data revealed a small but systema-
tic underestimation of the word-frequency effect in
the .1 quantiles (i.e., the leading edge of the RT
distributions) in the experiments with pseudowords
as foils. Donkin et al. argued that a model in which
Ter was allowed to vary across word-frequency con-
ditions produced a more appropriate account of the
Ratcliff, Gomez, and McKoon (2004) data.
Indeed, if we consider the “encoding” part of Ter

as “the time taken for the initial perceptual, encod-
ing and lexical access processes” (Donkin et al.,
2009, 2902–2903) then it is not surprising that
“lexical access” is modulated by word frequency.

In this article we examine whether the diffusion
model can be used to effectively decompose the
different underlying processes during visual-word
recognition. To do so, we manipulated two
factors that have (presumably) a different locus—
one lexical and the other perceptual. The first
factor is word frequency (high vs. low). As indi-
cated above, Ratcliff, Gomez, and McKoon
(2004) found that drift rates alone accounted for
this lexical effect, although Donkin et al. (2009)
claimed that encoding time (Ter) can also be
affected (although to a lesser degree) by word fre-
quency. The second factor is stimulus orientation
(0°, 45°, 90°). Previous research has demonstrated
that there is a large reading cost in rotated words
(see Koriat & Norman, 1984, 1985; see also Yu,
Park, Gerold, & Legge, 2010). It has been
suggested that stimulus orientation affects the per-
ceptual encoding of the words so that participants
mentally rotate the string to the canonical horizon-
tal orientation, and then they would process the
letter string as usual (see Whitney, 2002)—in par-
ticular, when the rotation does not fundamentally
alter the process of visual-word recognition (e.g.,
a 45° rotation as opposed to a more extreme 90°
rotation). In a diffusion model, this would mean
that stimulus orientation would affect the encoding
process (Ter) to a larger extent than the accumu-
lation of evidence (drift rate). We also explored
the behaviour of the a parameter as a function of
the rotation manipulation. The reason is that
prior research in psychophysics has revealed that,
in the early stage of visual processing, orientation
detection of stimuli occurs simultaneously to the
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detection of the presence of the stimulus (e.g., see
Lee, Koch, & Braun, 1997; Smith & Ratcliff,
2009; Thomas & Gille, 1979). Hence, participants
could adjust the decision criteria based on the string
rotation as soon as they detect that the letter string
is presented and before the encoding of graphemic
information begins. Note, however, that we have
not allowed the a parameter to vary as a function
of word frequency because a core assumption in
the diffusion model is that participants cannot
adjust the decision boundaries once the encoding
of the relevant information has started.

In sum, we manipulated two factors in a lexical
decision experiment: (a) word frequency, which is
a factor that in the diffusion model should affect
the drift rate parameter rather than Ter (Ratcliff,
Gomez, & McKoon, 2004); and (b) stimulus
orientation, which is a factor that presumably
affects the encoding process—and possibly the
decision boundaries—to a greater degree than the
drift rates. If word frequency and stimulus orien-
tation differentially affect the parameters of the dif-
fusion model, this would indicate that the model is
a powerful tool to test the loci of stimulus manipu-
lations in visual-word recognition—and presum-
ably in other cognitive domains.

Our analyses of behaviour of the diffusion
model parameters and of the empirical data
utilize the unified framework of Bayes factors
instead of the traditional null hypothesis statisti-
cal testing (NHST). The shortcomings of NHST
have been extensively discussed over the years and
have been forcefully pointed out in recent years
(e.g., Cohen, 1994; McCloskey & Ziliak, 2012;
Wagenmakers, 2007). It is not the objective of
the present article to proselytize in favour of a
specific method of statistical inference; however,
recent developments of toolbox in Bayesian infer-
ence are accessible to researchers, and hence we
are taking advantage of such tools in this article.
Specifically, we present the Bayes factors for
three reasons: (a) Bayesian inference overcomes
some basic shortcomings of NHST; (b) Bayes
factors allow us to measure the support in
favour of the null hypothesis, which is particularly
relevant in our experiment as the lack of inter-
actions between word frequency and orientation

is an important issue for our modelling efforts;
and (c) Bayes factors allow us to have a unified
framework to analyse both the empirical data
(see Appendix A) and the diffusion model
parameters.

EXPERIMENTAL STUDY

Method

Participants
Twenty-seven undergraduate/graduate students
from the University of Valencia participated volun-
tarily in the experiment. They had normal or cor-
rected-to-normal vision and were native speakers
of Castilian Spanish.

Materials
We selected a set of 258 five-letter words in
Spanish from the B-Pal database (Davis &
Perea, 2005). Half of these words were of higher
frequency [average: 77 occurrences per million;
range 16–493; mean number of orthographic
neighbours (Coltheart’s N ): 1.0, range: 0–2;
mean token frequency of the initial syllable:
405], and the other half were of lower frequency
(average: 4.9 occurrences per million; range 1–
11; mean Coltheart’s N: 0.8, range: 0–2; mean
token frequency of the initial syllable: 396). A
set of 258 orthographically legal pseudowords
(mean Coltheart’s N: 1.3, range: 0–2) was
created for the purposes of the lexical decision
task. The nonwords were created by replacing
one or two random letters from a word not in
the word set and checking that all the bigrams/tri-
grams were orthographically legal (see Appendix B
for the materials). An analysis of our items based
on the LD1NN algorithm (Keuleers & Brysbaert,
2011) indicates little-to-no-bias in our materials
(odds for word= 1.179, p= .22). We created
three counterbalancing lists so that each word/
nonword was presented to all participants, but in
one list it would be horizontal (0°), in the other
list it would be diagonal (45°), and in the third list
it would be vertical (90°).
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Procedure
Subjects were tested individually in a silent room.
Presentation of the stimuli and recording of data
were controlled by DMDX software (Forster &
Forster, 2003). On each trial, a fixation point (+)
was presented for 500 ms in the centre of the com-
puter screen. Then, the target stimulus was pre-
sented until the participant’s response or until
2500 ms had elapsed. Target stimuli were pre-
sented in upper case, 24-pt Arial—note that both
the fixation point and the target stimuli were pre-
sented on the centre of the screen so that the fix-
ation point always corresponded to the midpoint
of the stimulus regardless of its orientation.
Participants were told that words and nonwords
would be displayed on the computer monitor in
front of them, and that they should press the
“yes” (“sí”) button if the letter string was an existing
Spanish word and press the “no” button if the letter
string was not a word. Participants were instructed
to respond as rapidly as possible while keeping a
reasonable level of precision. The order of stimuli
was randomized for each subject. Each subject
received a total of 16 practice trials prior to the
experimental phase. The session lasted approxi-
mately 25 min.

Results

Although the main focus of the experiment was to
examine the fits of the diffusion model, we also
conducted the statistical analyses on the mean
RTs and error data—the null hypothesis signifi-
cance testing and a Bayes factor analysis (Morey
& Rouder, 2013; Rouder, Morey, Speckman, &
Province, 2012) is presented in the supplementary
materials—these analyses revealed additive effects
of word frequency and stimulus orientation. The
mean latencies for correct responses and accuracy
are presented in Table 1.

To obtain the fits to the diffusion model, we
employed the routines described by Ratcliff and
Tuerlinckx (2002) to minimize the chi-square [Σ
(O − E)2/E] for the difference between the empiri-
cal data and the model’s predictions (see
Supplemental material for an example in R code).
The observed values (O) are the empirical proportions

of correct responses that fall within a bin bounded by
the 0, .1, .3, .5, .7, .9, and 1.0 quantiles, multiplied
by the proportion of responses for that choice (e.g.,
if there is a .95 response proportion for the “word”
alternative among say, higher frequency words pre-
sented in the nonrotated condition (HF0R), the
proportions would be .95 × [.1, .2, .2, .2, .2, .1].
The expected values (E) are the model-generated
proportions of responses bounded by the empirical
RTs at the 0, .1, .3, .5, .7, .9, and 1.0 quantiles.
For example, the model could predict a .93 response
proportion for the HF0R condition, then the pro-
portion of responses that the model predicts would
fall within the empirical RTs at the relevant quan-
tiles would be, for example, .93 × [.084, .095,
.187, .339, .224, .07]. Note that given the high accu-
racy in the experiment, we fitted the error response
proportion (and not the error RTs) in those con-
ditions in which the number of error responses was
fewer than five (we had 27 subjects and 9 types of
items per subject, and from these 243 combinations,
only in 22 cases did we have 5 or more error
responses).

We conducted the fits on a subject-by-subject
basis (e.g., see Perea & Gomez, 2012). Figure 1
displays the model fits across all conditions and
all subjects. The latency fits are quite good;
however, the model misses some of the accuracy
data; specifically, the model tends to underestimate
the accuracy, and these misses can be large (the
model underestimates the accuracy by more than
.3 for about 3% of the data points, by more than
.2 for about 8% of the data points, and by more
than .1 for 35% of the data points). A visual exam-
ination of the top left panel of Figure 1 shows that

Table 1. Mean lexical decision times and accuracy for words and

nonwords in the experiment

Orientation

Words 0° 45° 90°

Higher frequency 602 (0.99) 622 (0.99) 728 (0.97)

Lower frequency 664 (0.94) 710 (0.93) 808 (0.91)

Nonwords 751 (0.96) 779 (0.96) 938 (0.96)

Note: Accuracies in parentheses.
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the misses occur mostly in the higher frequency/90°
condition (represented by plus signs in the figure).

We fitted the diffusion model to each subject’s
data; the values of Ter and drift rate were allowed
to vary as a function of both orientation and word
frequency/lexicality (i.e., there are nine possible
values per each participant), and the values of the
a parameter were allowed to vary only as a function
of orientation. Note that the a parameter is not
usually allowed to vary in diffusion model
implementations because the model assumes that
participants cannot adjust the decisional boundaries
while processing the stimulus; however, because

the discrimination of orientation can occur
simultaneously to detection of the presentation of
the stimulus (Lee et al., 1997) we decided to
allow this parameter to vary. All other parameters
were allowed to vary across subjects but not across
conditions within one participant. Table 2 presents
the average parameter values, and Figure 1 displays
the quality of the fits of the diffusion model.

After we obtained the point estimates for each
parameter for each subject, we used Bayes factors
to assess which of the hypotheses (models) that
ascribe an effect or no-effect of conditions on diffu-
sion model parameters should be preferred. The

Figure 1. The figure shows scatterplots for the observed versus model-predicted values for logit of the proportion of correct responses and five

quantiles in the reaction time (RT) distributions. The different symbols represent the different stimulus categories: The black points represent the

higher frequency words, the dark grey points represent the lower frequency words, and the light grey points represent the nonwords. The solid

circles represent the 0° rotation, the open circles represent the 45° rotation, and the plus signs the 90° rotation. The numbers printed as

watermarks show the correlation between the model and the data.
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logic of testing by Bayes factors is provided in
Rouder, Speckman, Sun, Morey, and Iverson
(2009; see also Rouder et al., 2012) and Morey
and Rouder (2011, 2013). Bayes factors describe
the probability of the data given a position (e.g.,
H0) relative to the probability of the data given a
different position (e.g., H1; Rouder et al., 2012).

Following Rouder et al.’s (2012) notation, we
refer to the Bayes factor as BF10, where the sub-
scripts refer to the models being compared, with
the first and second subscripts referring to the
model in the numerator (e.g., 1= alternative) and
denominator (0= null), respectively; for example,
a BF10= 100 means that there is a 100:1 evidence
in favour of the alternative hypothesis, and a
BF01= 7.8 means that there is a 7.8:1 evidence in
favour of the null hypothesis. In this context, evi-
dence means that the data are more probable given
one model relative to the data given another
model1. In the following analyses we refer to the
different models (hypotheses) as:

. Model 0 is the null hypothesis model (i.e., there
are no differences across conditions).

. Model 1 is the full alternative model (i.e., there
are main effects and interactions).

. Model m is the main effects only model (i.e.,
there are main effects but no interactions).
When we are testing one-factor manipulations,
and hence no interaction is possible, Model
m=Model 1.

For all the computations of Bayes factors below,
we used Morey and Rouder’s (2013) R package, in

which we employed the default settings for the spe-
cification of the alternative hypothesis.

Decision boundary (a)
We allowed the a parameter to vary as a function of
one factor: orientation. According to the Bayes
factor analysis, there is evidence for the alternative
hypothesis (BF10= 3.8e+ 06); this means that
the data given the alternative model (i.e., there is
an effect of orientation on a) are almost 4 million
times more probable than the data given the null
model (i.e., there is no effect of orientation on a).
In order to assess the effect size, Morey and
Rouder’s (2013) BF package provides the option
of sampling the posterior distribution for each
level of each factor. Panel A of Figure 2 shows
the posterior distribution of values for the a par-
ameter for the three orientations. In all the panels
of Figure 2 the solid line represents the 0° rotation,
the dotted line represents the 45° rotation, and the
dashed line represents the 90° rotation. The orien-
tation manipulation does not seem to produce a
difference in the a parameter between the 0 and
45° conditions (means= 0.110 and 0.108),
whereas the effect is quite robust for the 90° con-
dition (mean= 0.132).

Time of encoding (Ter)
We performed two separate Bayes factor analyses,
one for responses to word stimuli, in which the Ter

parameter was allowed to vary as a function of two
factors (word frequency and orientation), and the
other for responses to nonword stimuli, in which

Table 2. Average parameters of the diffusion model across subjects

Condition a Ter HF word Ter LF word Ter nonword Drift HF word Drift LF word Drift nonword

0° 0.110 0.464 0.473 0.515 0.378 0.190 −0.238
45° 0.108 0.477 0.500 0.535 0.327 0.136 −0.216
90° 0.132 0.470 0.505 0.610 0.220 0.171 −0.168

Note: Other average parameter values: z/a= 0.583; sz= 0.001; η= 0.024; st= 0.142. χ2= 277.4. Ter = time of encoding and response;

HF = higher frequency; LF = lower frequency.

1Jeffreys (1961) provided a scale for the interpretation of Bayes factors; for example, a BF of 1:1 to 3:1, is “barely worth mentioning”

while a BF of 100:1 is “decisive”. We prefer to not use arbitrary cut-offs that could be construed as a critical value; however, we do use

Jeffreys’ wording as we present the outcomes of our analyses.
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the Ter parameter was allowed to vary as a function of
orientation. The Bayes factor analyses for word
stimuli yielded a preference for the complete model
(i.e., there were main effects of word frequency and
orientation and an interaction on Ter): BF10=
2.3e+ 07. For the main effect of word frequency,
the evidence is 2.2e+ 05:1; averaged across orien-
tation, the Ter for higher frequency words is 0.468,
and for lower frequency words it is 0.488. For the
main effect of orientation, the evidence is 114:1;
averaged across frequency, the Ters for 0°, 45°, and
90° are 468, 488, and 488, respectively.

We also compared the full alternative Model 1
to the main effects only Model m; in this case,
there is some ambiguity regarding the interaction
as the data are only slightly more likely given the

complete model than given the main effects
model (BF1 m= 1.9)—note that this does not
imply that there is evidence in favour of Model m
either. For the nonword stimuli, BF10= 1.9e+
08:1, which indicates that orientation affects the
Ter parameter for nonwords (0.515, 0.5135, and
0.610 for 0°, 45°, and 90°, respectively). We
discuss the samples from the posterior distributions
together with the drift rate parameters in a later
section.

Drift rates
The analyses were parallel to those on the Ter par-
ameter. For the drift rate parameter for word
stimuli, there is decisive evidence for the full
alternative model (BF10= 4.8e+ 11). The

Figure 2. Panels A to C show the posterior distributions for the a parameter, the Ter parameter (time of encoding and response) for words, and

the drift rates for words, respectively. The grey lines represent the effect of frequency (with the thin lines representing higher frequency words, and

the thick lines representing lower frequency words). The type of lines represents the effect of orientation (solid lines for 0°, dotted lines for 45°, and

dashed lines for 90°). Panel D show the posterior distributions for both the drift rate (thin lines) and the Ter (thick lines) parameters for

nonwords as a function of orientation: 0° solid lines, 45° dotted lines, and 90° dashed lines.
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evidence in favour of a main effect of orientation is
not as decisive but still substantial (4.7:1). Averaged
across word frequency, the drift rates for 0°, 45°,
and 90° are 0.284, 0.231, and 0.196, respectively.
The evidence in favour of a main effect of word fre-
quency is quite large (about 1.3e+ 9:1). Averaged
across orientation, the drift rates for high- and
lower frequency words are 0.308 and 0.166,
respectively. Furthermore, there is strong evidence
for the full model (i.e., with an interaction) over
the main effects only model (BF1 m= 15:1).

The BF for nonword stimuli examined the effect
of orientation on the drift rate parameter for non-
words. The odds in favour of the alternative
model are 219:1. It is worth noting that there is
an unusual, and most likely spurious, pattern in
the drift rate parameters for lower frequency
words in the 90° orientation, which is higher than
the drift rate for the lower frequency words for
the 45° orientation. This might be a consequence
of the fact that the a parameter is free to vary,
and it trades off with the drift rate.

Effect sizes on the parameter values
The goal of the current research was to decompose
the effect of a perceptual manipulation (orientation)
and a lexical manipulation (word frequency) using
the diffusion model. A superficial assessment
might lead to the conclusion that both manipula-
tions affect the same parameters; however, the
two manipulations have quite different effect sizes
on the parameters. The orientation manipulation
yields two distinct a values: a higher one for 90°
rotations, and a lower one for 0° and 45° orien-
tations; for the Ter parameter there are also two dis-
tinct values, but in this case both the 90° and the
45° orientation produce the higher value, while
the 0° orientation yields the lower value; for the
drift rates, on the other hand, each orientation pro-
duces its own value.

A comparison of the effects of word frequency
versus orientation reveals that the effects on Ter

are large for both variables (see Panel B of
Figure 2), with word frequency and orientation
yielding similar effect sizes. However, the effects
on drift rate are qualitatively different from those
for Ter: The effects of word frequency are larger

than the effects of orientation (see Panel C of
Figure 2).

Summary

The effects of our experimental manipulations
spread across all parameters of interest in the diffu-
sion model: (a) Subjects adjust their decision bound-
aries for the 90° orientation relative to the items
presented with the 0° and 45° orientations; (b) the
encoding time is affected by both orientation and
word frequency to a similar degree, although it is
ambiguous as to whether these two factors interact
or not; and (c) drift rates are affected by the two
factors, and there is strong evidence in favour of
an interaction; importantly, the effects on Ter are
about the same size for orientation and word fre-
quency; on the other hand, the effects on drift
rate are much larger for word frequency than for
orientation.

DISCUSSION

In previous studies, the diffusion model has been
used to study processing differences (including
decisional vs. nondecisional components), using
the same set of stimuli, for different groups of par-
ticipants (e.g., ageing: Ratcliff, Thapar, Gomez, &
McKoon, 2004; anxiety: White, Ratcliff, Vasey,
& McKoon, 2010), across different tasks (e.g.,
yes/no vs. go/no-go tasks; Gomez, Perea, &
Ratcliff, 2013) and across different experimental
settings (e.g., masked vs. unmasked priming;
Gomez et al., 2013). The present experiment was
designed to examine whether lexical decision data
from two distinct manipulations, one perceptual
(stimulus orientation) and the other lexical (word
frequency), can be decomposed in different par-
ameters (i.e., underlying processes) of the diffusion
model. The classical inferential statistics analyses
on the empirical data replicated earlier research: a
reading cost due to rotation angle and a word-fre-
quency effect (e.g., see Koriat & Norman, 1984,
for a similar pattern of additivity). More important,
analysing the diffusion model fits using Bayes
factors provided us with the possibility of obtaining
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samples from the posterior distributions over the
effect sizes. These analyses confirmed that word
frequency affected drift rate to a higher degree
than orientation did, while stimulus orientation
and word frequency affected the Ter parameter to
a similar degree—that is, the present data support
Donkin et al.’s (2009) suggestion that encoding
time is modulated by word frequency. Notably,
the change in Ter would shift every quantile, and
indeed Donkin et al. also observed that Ratcliff,
Gomez, and McKoon (2004) overestimations
were not constrained to the .1 quantile; however,
given the smaller variability in the .1 quantile they
are easier to observe in that quantile than in the
higher quantiles. Finally, it is important to note
that although the inclusion of the rotated con-
ditions might influence the process of the nonro-
tated condition, the qualitative pattern of effects
in the RT distributions for the nonrotated con-
dition is remarkably similar to the Ratcliff,
Gomez, and McKoon (2004) data set.

Thus, the fits provide us with a coherent
description of the dissociation between an encoding
(nondecisional) component and an evidence
accumulation (decisional) component in the
lexical decision task. As we varied the orientation
of the string from 0° to 45° the encoding process
takes a longer time (about 30 ms longer), but the
decision criteria do not seem to be affected. The
90° rotation, compared to the 45° rotation,
however, barely affects the encoding time, but it
makes participants take a more cautious approach.
Rotations gradually affect the quality of the
lexical/perceptual information, although this effect
is not as large as the effect of word frequency.

Ideally, it would be best to have a coherent frame-
work for the whole process, from the parameter esti-
mation to the statistical inference to the model
selection; however, this is not practical at this time.
In this paper, we obtained the diffusion model’s par-
ameters for each participant in a frequentist way—
this is the case of all current implementations of
the diffusion model. Those parameters become the
data analyzed with the Bayesian methods. The
Bayesian aspect of our data analysis consists of
placing beliefs (see Jackman, 2009, for an introduc-
tion) on the plausibility of models (e.g., H0, H1) on

data (the model parameters) and updating our
beliefs in light of the data.

This study has important implications for
lexical processing research. We have presented
an experimental situation in which the manipula-
tions (namely, orientation and word frequency)
simultaneously affect, and to different degrees,
encoding (Ter parameter), lexical (drift rate), and
response strategy (a parameter) components.
Importantly, this dissociation is a further proof
that the diffusion model can be used to determine
the loci of stimulus manipulations in lexical
decision—and presumably other two-choice
tasks. Without a model, it would be impossible
to determine the differential contribution (or
lack thereof) of these factors on the empirical
data. We hope that the present work will have
practical implications for research. Data from a
laboratory task in cognitive psychology is a func-
tion of a combination of factors. Researchers
should try to understand what is the contribution
of those factors, and one way to do so is by lever-
aging the capabilities of process models such as the
diffusion model. In addition, although diffusion
model accounts of lexical decision are not new,
the subject-by-subject fits allow for group and
individual differences (e.g., see Andrews & Lo,
2012) to be explored within the diffusion model
framework.

Supplemental material

Supplemental material is available via the
“Supplemental” tab on the article’s online page
(http://dx.doi.org/10.1080/17470218.2014.937447).
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APPENDIX A

Empirical results

Error responses (4.4% and 4.0% for words and nonwords,

respectively) and lexical decision times less than 250 or greater

than 2000 ms (less than 1% and 2% for words and nonwords,

respectively) were excluded from the latency analyses. The

mean latencies for correct responses and accuracy are presented

in Table 1.

Although the main focus of the experiment was to examine

the fits of the diffusion model, we also conducted the standard

statistical analyses for the mean RTs and error data. For word

trials, analyses of variance (ANOVAs) based on the subjects’

response latencies were conducted on the basis of a 2 (word fre-

quency: high, low) × 3 (rotation: 0°, 45°, 90°) design. For

nonword trials, the ANOVAs were parallel except that only

rotation was included as a factor in the analyses. For the word

data, we present the traditional null hypothesis significance

testing (NHST) analyses and the Bayes factors (see main text

for an explanation of Bayes factors). A note about the Bayes

factors: We present the Bayes factors for the effects of frequency

and rotation for completeness, although for the word-frequency

and rotation effects, the null hypotheses are unplausible (see

Cohen, 1994). For an explanation of the notation of Bayes

factors, see the main text.

Word data
The ANOVA on the response times showed that responses to

higher frequency words were, on average, 76 ms faster than the

responses to lower frequency words, F(1, 26) = 130.19,

p , .001, BFf0 = 5e + 32. There was also a main effect of

rotation, F(2, 52) = 107.61, p , .001, BFr0 = 6.25e + 31.

Bonferroni pairwise comparisons showed that the latencies

were 33 ms faster in the 0° condition than in the 45° condition,

and 102 ms faster in the 45° condition than in the 90° condition

(all ps , .001). The interaction between the two factors was not

significant, F(2, 52) = 2.33, p . .10, BFm1 = 3.4. The Bayes

factor indicates that the null hypothesis (i.e., there is no inter-

action) is 3.4 times more likely than the alternative hypothesis

(i.e., there is substantial, although not decisive, evidence

against the interaction).

The ANOVA on the error rate data showed that participants

made fewer errors to higher frequency words than to lower fre-

quency words, F(1, 26) = 48.79, p , .001, BFf0 = 4.5e + 14.

The effect of rotation was also significant, F(2, 52) = 10.52,

p , .001, BFr0 = 1.2e + 14—there were more errors in the

90° condition than in the 45° condition (p = .007) and in the

0° condition (p = .004), while there were no trends of a differ-

ence between the 0° condition and the 45° condition (p . .34).

There were no signs of an interaction between the two factors

(F , 1), and the Bayes factor (BFm1=8.1) indicates that the

null hypothesis is 8 times more likely than the alternative

hypothesis.

Nonword data
The ANOVA on the latency data revealed an effect of orien-

tation, F(2, 52) = 64.57, p , .001, BF10 = 1.9e+12.
Bonferroni pairwise comparisons showed that RTs were 28 ms

faster in the 0° condition than in the 45° condition, and 159

ms faster in the 45° condition than in the 90° condition (all ps

, .001).

The ANOVA on the error rate data did not reveal any signs

of an effect of orientation: F , 1, and the Bayes factor supports

the null hypothesis (i.e., there is no effect of orientation on error

rates for nonwords), BF01 = 5.8.
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APPENDIX B

Materials

Lower frequency words
CISNE INDIO IDOLO CUPON BOXEO FAENA GRIPE

AYUNO FLUOR PULPO FIDEO LEGUA ANDEN

MOLDE LIMON MULTA ELITE VERBO PUÑAL

LONJA BOINA MOTEL OLIVO VIUDO RURAL

PROSA TORAX HERIR AGUJA CROMO ROBLE

MUSGO LINCE BELGA CALIZ JEQUE SESGO

DANES CUTIS TIFUS FOSIL OVEJA ROSAL HABIL

FOBIA TIGRE MIXTA VENUS DATIL DIVAN

HIMNO BUZON ESQUI ABONO LEJIA ARCEN

ASILO RIÑON ORUGA GRIFO PICOR LEPRA TILDE

SECTA PUDOR ROBOT CUTRE FREIR LAPIZ

TITAN ABETO TIBIO MONJE OBESO REVES

SOPLO VELOZ CRUDO LICOR ANCLA DOGMA

TENAZ LUCIR OZONO FIBRA CACAO MIOPE

FEMUR COFRE BUJIA REUMA ALBUM FUROR

JERGA MUSLO TRIGO PEAJE LIMBO TECLA

MATIZ SIDRA ALFIL NAIPE TUTOR ICONO

ATAUD ERIZO PANEL CRUCE DOCIL OASIS

TEBEO MOMIA FRESA TAROT SABLE REHEN

VAGON TRUFA LOGRO FUGAZ OPERA SUIZO

BLUSA MOVIL JAULA ARROZ CREMA GLOBO

Higher frequency words
NORTE NIVEL VIAJE ERROR AVION VIEJO CIFRA

COMUN ETAPA ALDEA ORDEN NOCHE HOGAR

MITAD ANUAL OTOÑO HIELO SIGNO RELOJ

SUAVE SIGLO LETRA NOVIO LUNES CULPA

FRASE PLUMA IGUAL DESEO LISTO CIVIL FINAL

PRIMO HUMOR SEÑAL IDEAL JOVEN ABRIR

PIEZA DEUDA BOLSA PARED VIRUS TORRE SERIE

HABLA LIBRE GRAVE TESIS SUCIO NEGRO

VERDE SABIO MAYOR AYUDA DIETA RIGOR

FIRMA GOLPE SEÑOR ARABE HOTEL FIRME

DULCE LEGAL BUENO AUTOR ACTOR CICLO

CONDE POEMA VIEJA TARDE NARIZ DROGA

RITMO HONOR CLIMA UNICA DOSIS UNION

SALUD EXITO CAMPO BARBA PAUSA TRAJE

ENERO EPOCA FELIZ APOYO MUJER LEJOS

VUELO HEROE ABRIL FAVOR TEXTO SELVA

BUQUE MIEDO MOTOR DEBIL PESCA DIGNO

REINO CLASE REGLA AROMA PAPEL RIVAL

PADRE TOTAL OREJA VAPOR GENIO SUDOR

CARNE VIDEO PIANO LIDER FACIL METAL

NIEVE LLAVE BAILE GRUPO ARBOL LENTO

Nonwords
TUBER MEDAO CURNE RUGIL SUADE LILME

CINSA DOTUS GOCLO VELVO TELIX PIROL

LUASA SEIZO AUNAZ PILMO OERRA CLANE

PISNO PIRED SULIT JETEL NOEVE GERSA RIEMO

PAPLO SOINA BROJO MOGNO SERUS HUMES

TIESE GELGA LISAC PUARA CURUD BREMO

DUGIO ARUAL PURVO POMED BORIX VANJA

HISEN GOITA MILVO TIBLA RUJEZ SEPAR TUNIL

NASGA ALDER CINJE CLUYA BAVES NORCE

DEPIR GELPE MARUT LUAGO FURJO LEMBO

RAZCO OTRIO HOTIN SAICE TECHI CALUR

MUALA CUMPO JARPE LENZA TAZIZ BOMPO

CEGLA LUCLA VITUS TULDO DOVAL BUNTU

LOCRA GICEL RIMEN FAROZ PURJO CABAC

OIDIR VOSOR SOSIL RUEPO FEBLO TULVA ALGIS

VENTU DUNSO GUSIA DELCE JARNE TESTU

SILDO OEDRA DACTA MAORA TINDU NAUDA

CAZIR ECTRA GAISO ROPIA CEUSA JONOA

VOPAL JONSO VAIPA TULIN ESCAR CLESE

GUNSO NORUA VIODO LUSLO ANGRO PRIFA

DOELA GASAY FIDIS LINZO CLUPO FUSNA

MURGE REMBO ALZON PUAPO BLEJO RESUA

LASIN ERIEL NAUCE LAENA VOVIR LAUPA

YERNE ROEGO PRUZA RUDIL SAGLO BUSCE

AUGER TALID FLELE FOZON YURMA JUBLO

MIERY PECHI CASNE BERNE VARBI BURSE

VAVAZ CELVO LEUDE VINUS FLUVA HAULE

MORVE UNGAR FURJA BAPTA GEION TAGLA

TALZA NUORA MAZCA PUCRA ZOTAL CIURA

FIEPO TOJER CAGLE FEGIZ PRILA CISON TAMBI

FISNO TURAL COMOL MEGIN RUSOR SETIN

MIGIS CUNSA MUIRA MIOSA BIRDA SULVO FLITO

TALGE KURDE DUGNA VUANA GEANO SOYON

FIAGA TRILO DAVED LAERO BATUN MUZAR

RASGE CRACE BREGE SIUTE MISLA FURSA

DEPAR FUSTU ESNON BISIR NOCHI JISMO SEBLE

MATIS CREJE HONJO MIDEZ GULIS HERJA SIRJE

ZARLO VUBEZ NEMIO VUTIO VULON VORON

DOSUS BUIBA GULAN FLICO ZATRE ECTAR

TIRVA LUPOS DRAPA JALVE NAGMA SOGER

SAMIR BOSEL RUNJA JAROL GAVEA SIMEL

SOGNO HOSCE NEVIA JAYAS FLOMO TEMOT

ENDAS
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