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Abstract Recent research has suggested that words pre-
sented with a slightly increased interletter spacing are iden-
tified faster than words presented with the default spacing
settings (i.e., is faster to identify than ; see
Perea, Moret-Tatay, & Gomez, 2011). To examine the nature
of the effect of interletter spacing in visual-word recognition
(i.e., affecting encoding processes vs. quality of informa-
tion), we fitted Ratcliff’s (1978) diffusion model to a lexical
decision experiment in which we manipulated a range of
five interletter spacings (from condensed [–0.5] to expanded
[1.5]). The results showed an effect of interletter spacing on
latencies to word stimuli, which reflected a linear decreasing
trend: Words presented with a more expanded interletter
spacing were identified more rapidly than those with a
narrower spacing. Fits from the diffusion model revealed
that interletter spacing produces small changes in the encod-
ing process rather than changes in the quality of lexical
information. This finding opens a new window of opportu-
nities to examine the role of interletter spacing in more
applied settings.
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Introduction

Although studies on the role of typographical and perceptual
factors during visual-word recognition and reading have a
long tradition (see Huey, 1908; Tinker, 1963), this area of
research has been relatively neglected in the past decades,
despite its obvious practical implications (Legge, Mansfield,
& Chung, 2001; see also Moret-Tatay & Perea, 2011;
Slattery & Rayner, 2010). In the present study, we focus
on how variations of interletter spacing affect the recogni-
tion of visually presented words. Changes in interletter
spacing can have either a beneficial or a deleterious effect
in visual-word recognition, depending on its magnitude
(see, e.g., Chung, 2002; Perea, Moret-Tatay, & Gómez,
2011). On the one hand, very large interletter spacings
hinder the perceptual integrity of the whole word (e.g., as in

) and (unsurprisingly) produce longer word iden-
tification times—indeed, this manipulation has been employed
as a way to degrade words (e.g., see Cohen, Dehaene, Vinckier,
Jobert, &Montavont, 2008). But on the other hand—and more
importantly for the present purposes—small increases in
interletter spacing (relative to the default settings; compare

vs. ) do not destroy the integrity of the written
word but do produce two potential benefits: fewer “crowding”
effects (i.e., less interference from the neighboring letters; see
Bouma, 1970; O’Brien, Mansfield, & Legge, 2005) and a
more accurate process of letter position coding (see Davis,
2010; Gomez, Ratcliff, & Perea, 2008).

In a recent study based on the lexical decision task, Perea
et al. (2011) found faster identification times for words
presented with a slightly wide interletter spacing (+1.2; e.g.,

) than for words presented with the default spacing
(0.0; e.g., ; see Latham&Whitaker, 1996, andMcLeish,
2007, for similar findings with other paradigms and popula-
tions). (The interletter spacing levels were taken from
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the values provided by Microsoft Word; e.g., the value +1.2
refers to an expanded intercharacter spacing of 1.2 points in
this application.) Perea et al. concluded that small increases in
interletter spacing (relative to the default settings) produced a
benefit for lexical access, but they acknowledged that “more
research is needed to examine in greater detail the optimal
interletter value using a large set of interletter spacing con-
ditions” (p. 350). The present experiment aims to fill this gap.
In the present experiment, we employed a parametric approach
with five levels of interletter spacing: condensed (–0.5), as in

; default (0.0), as in ; expanded (+0.5), as in
; expanded (+1.0), as in ; and expanded (+1.5),

as in . As in Perea et al.’s study, we used the most
common word identification laboratory task: the lexical deci-
sion task (see Balota et al., 2007); note that the effects obtained
with this task have typically been replicated in normal silent
reading (Rayner, 1998; see also Davis, Perea, & Acha, 2009;
Perea & Pollatsek, 1998). (We examine the potential implica-
tions of the present experiment for normal silent reading in the
Discussion section.)

The second goal of the present experiment was to exam-
ine the nature of the effect of interletter spacing. To do that,
we employed Ratcliff’s (1978) diffusion model for speeded
two-choice decisions. This model has been quite successful
at accounting for lexical decision data (e.g., Ratcliff, Gomez,
& McKoon 2004; see also Gomez, Ratcliff, & Perea, 2007;
Ratcliff, Perea, Colangelo, & Buchanan 2004; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008). According to the diffu-
sion model account of the lexical decision task, the visual
stimulus is encoded so that the relevant stimulus features (e.g.,
lexical features) are utilized to accumulate evidence toward a
“word” or “nonword” response. The accumulation of evidence
is assumed to occur in a noisy manner. The two aforemen-
tioned processes (encoding and accumulation of evidence) are
represented by two separate parameters in the model: (Ter and
drift rate, respectively). Importantly, in a diffusion model,
changes in these two parameters produce different effects in
qualitative aspects of the data. If the Ter parameter changes,
there should be shifts in the response time (RT) distributions
with no change in their shape (see Gomez et al., 2007), and in
addition, there should not be any effect on error rates. On the
other hand, changes in the drift rate produce greater effects in
the tail than in the leading edge of the RT distributions (i.e., the
.1 quantile) and also affect error rates.1 Therefore, if the effect
of interletter spacing takes place in the early encoding, non-
decisional stage, its effect should be a shift of the RT

distribution with no effect on accuracy. Alternatively, if the
impact of interletter spacing occurs in the word system, the
one would expect some changes in the drift rate—and conse-
quent changes in the RT distributions and error rates. We
should note here that Perea et al. (2011) briefly discussed the
RT distributions—with no fits of the diffusion model—and
the effect of interletter spacing on words grew very slightly as
a function of RT quantiles, while the changes in error rates
were minimal. However, explicit fits are necessary to corrob-
orate that observation—in particular, by using a wider range
of interletter spacing conditions. To obtain stable estimations
for the diffusion model, we employed a large number of items
per condition (60) in the experiment.

Method

Participants

A group of 25 students at the University of Valencia took part
in the experiment voluntarily. They were native speakers of
Spanish, and all had either normal or corrected-to-normal
vision.

Materials

We selected a set of 300 Spanish words from the B-Pal
lexical database (Davis & Perea, 2005). The mean written
frequency of these words was 89 occurrences per million
words (range: 24–690); the mean length was 5.6 (range: 5–6);
and the mean number of substitution-letter neighbors was 1.53
(range: 1–4). For the purposes of the lexical decision task, 300
orthographically legal nonwords were also created (mean
length: 5.6 letters; range: 5–6). These nonwords had been
created by changing two letters from Spanish words that did
not form part of the word list. The stimuli were presented in
Times New Roman 14-pt font (i.e., the same font as in the
Perea et al., 2011, experiments). Five lists of stimuli were
created to counterbalance the materials across letter spacings,
so that each target appeared only once in each list, but in a
different condition. The list of stimuli is available at www.uv.
es/mperea/paramspacing.pdf. The participants were randomly
assigned to each list.

Procedure

Participants were tested individually in a quiet room. Pre-
sentation of the stimuli and recording of latencies were
controlled by a computer using DMDX (Forster & Forster,
2003). On each trial, a fixation point (+) was presented for
500 ms in the center of the monitor. Then, the stimulus item
(in lowercase) was presented until the participant’s response.
The letter strings were presented centered, in black, on a

1 It is important to note here that two influential factors in visual-word
recognition experiments, word frequency and repetition, are related to
the quality of information (e.g., RT distributions corresponding to
high-frequency words [or repeated words] have a less pronounced
asymmetry than do those corresponding to low-frequency words [or
nonrepeated words])
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white background. The participants were instructed to push
a button labeled sí “yes” if the letter string formed an
existing Spanish word and a button labeled no if the letter
string was not a word. Each participant received a different
order of trials, and the whole experimental session lasted
about 25 min.

Results

Incorrect responses (3.9% of the data) and RTs less than
250 ms or greater than 1,500 ms (less than 1.5% of the data)
were excluded from the RT analyses. The mean correct RTs
and error percentages from the participant analysis are pre-
sented in Table 1. ANOVAs based on the participant and
item mean correct RTs were conducted according to a 5
(interletter spacing: condensed [–0.5], default [0.0], expanded
[+0.5], expanded [+1.0], or expanded [+1.5]) × 5 (list: 1–5)
design. List was included as a dummy factor in the statistical
analyses to remove the error variance due to the counterbal-
ancing lists.

Word data

The ANOVA on the latency data showed an effect of inter-
letter spacing, F1(4, 80) 0 3.94, MSE 0 934, p < .007, η2 0
.16; F2(4, 1180) 0 7.81, MSE 0 5,391, p < .001, η2 0 .03.
This effect reflected a decreasing linear trend (see Table 1),
F1(1, 80) 0 6.59,MSE 0 2,147, p < .02, η2 0 .25; F2(1, 295) 0
29.50, MSE 0 5,869, p < .001, η2 0 .09, while the quadratic/
cubic/quartic components were not significant (all Fs < 1).

The ANOVA on the error data showed did not reveal any
significant effects (both ps > .25).

Nonword data

The ANOVAs on the latency/error data failed to show any
significant effects (all Fs < 1).

Diffusion model analysis

Within the diffusion model framework, different data patterns
correspond to distinct parameter behavior. The behavior of the
parameters can then be interpreted in terms of psychological
processes. To this end, we present the fits to the grouped data

that we obtained using the fitting routines described by
Ratcliff and Tuerlinckx (2002). We calculated the accuracy
and latency (i.e., the RTs at the .1, .3, .6, .7, and .9 quantiles)
for “word” and “nonword” responses for all conditions and for
all participants, and we obtained the group-level performance
by averaging across subjects (i.e., vincentizing; Ratcliff, 1978;
Vincent, 1912). Fitting averaged data is an appropriate proce-
dure for fitting the diffusion model. In previous research (e.g.,
Ratcliff, Gomez & McKoon 2004; Ratcliff, Thapar, &
McKoon, 2001), fits to averaged data provided parameter
values similar to the values obtained by averaging across fits
to individual participants. The averaged quantile RTs were
used for the diffusion model fits as follows: The model gen-
erated for each response the predicted cumulative probability
within the time frames bounded by the five empirical quan-
tiles. Subtracting the cumulative probabilities for each succes-
sive quantile from those of the next higher quantile yields the
proportions of responses between each pair of quantiles,
which are the expected values for the chi-square computation.
The observed values are the empirical proportions of
responses that fall within a bin bounded by the 0, .1, .3, .5,
.7, .9, and 1.0 quantiles, multiplied by the proportion of
responses for that choice (e.g., if there is a .965 response
proportion for the word alternative, the proportions would be
.965*.1, .965*.2, .965*.2, .965*.2, .965*.2 and .965*.1).

In this article, we used the model as a tool to test specific
hypotheses in the most principled way possible. Simply put,
interletter spacing could affect the encoding time, the rate of
accumulation of evidence, or a combination of these two
parameters. Hence, we implemented three parameterizations
of the diffusion model (see Ratcliff & McKoon, 2008, for a
full description of the model and its parameters, and Table 2
for the parameter values here); the first parameterization is a
fairly unconstrained implementation of the model in which
the Ter parameter (i.e., encoding/response process) was
allowed to vary for each interletter space (same Ter for words
and nonwords, so five values of Ter), and the drift rates (i.e.,
quality of information) were allowed to vary for each inter-
letter spacing and also for words and nonwords (creating ten
values of drift rate). For the next two parameterizations, we
removed free parameters and obtained the loss in the quality of
the fits in terms of chi-square (in the second parameterization,
we allowed Ter to vary, and in the third we allowed the drift
rate to vary). These chi-squares are based on group data, so
they cannot properly be used as absolute measures of fit;

Table 1 Mean response times
(in milliseconds) and percen-
tages of errors (in parentheses)
for words and pseudowords in
our experiment

Interletter Spacing

Condensed –0.5 Default 0.0 Expanded 0.5 Expanded 1.0 Expanded 1.5

Words 680 (2.8) 668 (2.7) 665 (3.3) 652 (2.5) 650 (2.2)

Nonwords 764 (4.6) 760 (5.5) 752 (4.7) 758 (5.0) 759 (5.6)
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however, they provide us with an estimate of the loss or gain
in the quality of the fit relative to each of the other parameter-
izations of the model.

The unconstrained parameterization yielded a chi-square
value of 77.37. Interestingly, the value of the Ter parameter
decreased as a function of interletter spacing, from .492 in
the condensed condition to .473 in the +1.5 condition. The
value of the drift rates for words increased very slightly
from the condensed condition (.264) to the +1.5 condition
(.278).

Ter parameterization Pure distributional shifts (i.e., changes
in the locations of distributions) are naturally accounted for
by allowing the Ter parameter to vary (i.e., there were five
values of Ter, one for each level of spacing, and two drift
rates, one for words and one for nonwords). This model
yielded a chi-square value of 104.55, which was 14% greater
than the value from the unconstrained model (see Ratcliff &
Smith, 2010, for a similar result in a perceptual task).

Drift rate parameterization Across a large variety of manip-
ulations, the mean RT and the variance are correlated; this is
so because effects tend to be larger in the tail of the RT
distribution than in the faster responses (e.g., the word-
frequency effect affects both the mean and the variance of
the RTs). These effects are naturally accounted for by allow-
ing the drift rate to vary (i.e., one value of Ter and 10 values
of drift rate: one for words and one for nonwords for each
level of spacing); this model yielded a chi-square value of

126.63, which was 38% worse than the value for the uncon-
strained model.

To summarize, the Ter parameterization provides the best
balance of parsimony and quality of fits. It has eight fewer
parameters than the unconstrained model and three fewer
parameters than the drift rate model. Furthermore, it nicely
fits the empirical patterns, with a shift in the RT distributions
and also a null effect on error rates as a function of spacing
(see Fig. 1). One feature of the data, however, does not seem
to be accounted for by any of the parameterizations: Inter-
letter spacing affected only the responses to words, not to
nonwords, thus suggesting an interaction between lexicality
and the encoding process. One can speculate on the reasons
for this pattern of results. In previous applications of the
diffusion model to the lexical decision task, the encoding
time has been assumed to be unaffected by lexical status.
Nonetheless, in Ratcliff, Gomez and McKoon (2004) Table 3,
it can be seen that the diffusion model consistently under-
estimates the empirical .1 quantile for pseudowords by 5–
15ms. Clearly, more work is needed to understand the specific
nature of word-versus-nonword decisions in lexical decision
(see Davis, 2010, for a discussion).

Discussion

The findings from the present experiment are clear. First,
small increases of interletter spacing (relative to the default
settings) lead to faster word identification times, extending

Table 2 Parameters of the diffusion model for the different scenarios in the experiment

Interletter Spacing a z sz Drift (Words) Drift (Nonwords) η Ter st p0 χ2

Ter and Drift Rate Free

–0.5 .150 .088 .001 .294 –.290 .011 .473 .193 .002 77.372

0.0 .288 –.281 .460

+0.5 .292 –.288 .457

+1.0 .304 –.270 .453

+1.5 .307 –.272 .454

Ter Free

–0.5 .150 .089 .001 .295 –.280 .010 .473 .192 .000 91.105

0.0 .462

+0.5 .458

+1.0 .452

+1.5 .452

Drift Rate Free

–0.5 .150 .089 .002 .274 –.277 .010 .460 .196 .001 111.839

0.0 .287 –.281

+1.5 .294 –.290

+1.0 .313 –.279

+1.5 .314 –.279
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the findings of Perea et al. (2011) to a wider range of
interletter spacing conditions. Second, the effect of interletter
spacing shows a decreasing linear trend (see Table 1). Third,
the effect of interletter spacing occurs at the encoding level
rather than at a decisional level, as deduced from the fits of the
diffusion model (see Fig. 1).

What about the locus of the effect of interletter spacing
for word stimuli? The locus of this effect is at an encoding
level (rather than at the decision level), as deduced from the
fits of the diffusion model: The fits of the model were very
good when the encoding parameter (Ter) was allowed to vary
freely across the spacing conditions, while they were rather
poorwhen the drift rate (i.e., the quality of lexical information)
was allowed to vary across conditions (see Fig. 1). To our
knowledge, this is the first time in which a manipulation at the
stimulus level has produced an effect on the encoding time
rather than on the quality of information (i.e., drift rates)—
note that this finding undermines a common criticism of the
diffusion model approach, that “everything goes to drift
rate.”2 This encoding advantage for words with a slightly wide
interletter spacing was presumably due to less “crowding” or a
more accurate “letter position coding” process; the present
experiment was not designed to disentangle these two
accounts, however. Thus, increased letter spacing could be

thought to enhance the perceptual normalization phase, which
would affect Ter but not drift rates. This pattern of data is
consistent with the experimental findings of Yap and Balota
(2007), who found that degrading the lexical string led to a
shift of the RT distribution, with little or no effect on the error
data. Although Yap and Balota did not conduct any explicit
modeling, this finding would be consistent with the view that
stimulus degradation affects the encoding process (i.e., Ter in
the diffusion model)—namely, that the decision process
would not begin until the appropriate information had been
extracted from the stimulus.

Importantly, the presence of faster identification times for
words presented with a slightly wider interletter spacing
than the default one (i.e., faster than ) has
obvious practical implications. The “default” interletter set-
tings in word-processing packages (and publishing companies)
may not be optimal—keep in mind that this “default” setting
was established on the basis of no empirical evidence (see
McLeish, 2007). One fair question to ask is whether or not
the present findings can be generalized from the recognition of
single, isolated words (e.g., when reading the names of prod-
ucts, stores, or bus/subway stations) to the context of text
reading. The vast majority of the effects obtained in visual-
word recognition tasks have been generalized to normal read-
ing experiments—with the advantage that word-identification
tasks can be easily modeled in terms of the components of
word processing. Nonetheless, the potential advantages of
interletter spacing in the fovea during word identification
(e.g., less crowding, more accurate letter position coding)

Fig. 1 Group response time
(RT) distributions in the five
interletter spacing conditions
for word (left panel) and
nonword (right panel) stimuli.
Each column of points
represents the five RT quantiles
(.1, .3, .5, .7, and .9) in each
letter spacing condition. These
values were obtained by
computing the quantiles for
individual participants and
subsequently averaging the
obtained values for each
quantile over the participants
(see Vincent, 1912). The
proportions shown at the
bottom of the figure are the
accuracy rates for each
condition. The plus signs joined
by dotted lines represent the fits
of the Ter parameterizations of
the diffusion model. The offset
in the horizontal dimension
represents the size of the
model miss

2 This is certainly the case for word stimuli. Nonetheless, we should
note here that, in letter discrimination and brightness discrimination
tasks, Ratcliff and Smith (2010) found that adding static or dynamic
noise produced changes in the Ter parameter
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may be canceled out by the fact that the N+1 or N+2 words in
a sentence would be presented slightly farther away from
fixation (i.e., with a decrease in acuity; compare the sentences
“ ” vs. “the cat is on the couch”).
In this respect, in an unpublished study, Tai, Sheedy, andHayes
(2009) used nine conditions, from condensed interletter spac-
ing (–1.75; e.g., ) through expanded interletter spacing
(2.00; e.g., ) in a reading task in which participants had
to read a novel while their eye movements were monitored. Tai
et al. reported that fixation durations decreased with interletter
spacing in a linear way—as occurred in the present experiment
with lexical decision times. However, the number of fixations
and the regression rate in the Tai et al. experiment also in-
creased with interletter spacing, and the overall reading rate
was not affected by interletter spacing. More research will be
necessary to assess the role of interletter spacing in a normal
reading scenario, not only with adult skilled readers, but also
with other populations (e.g., low-vision individuals, young
readers, or dyslexic readers).

In sum, the present experiment with adult skilled readers
has revealed that small increases in interletter spacing (relative
to the default settings) have a positive impact on lexical
access, and that the locus of the effect is at an early encoding
(nondecisional) stage. This finding opens a new window of
opportunities to examine the role of interletter spacing not
only in other well-known word identification paradigms, but
also in more applied settings (i.e., normal silent reading).
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