Introduction

0Null hypothesis significance testing (NHST) is the dominant statistical approach in biology, although it has many, frequently nappreciated, problems (Jennions, 2001). Most importantly
NHST does not provide us with two crucial pieces information:
The magnitude of an effect of interest.

What do you think when you listen "effect size" ? Effect size (ES) is the magnitude of an outcome seen in a research as it would be in a population. It represents how different are the results we obtain in a survey. This ES is standardized so we can compare it across different studies

Why cant 1 just judge my result by looking at the p-value? P-value is used to determine if the means of our study are equal or different (statistical significance), but it doesn't give us the result' pore
To make this kind of decisions, we need to use the ES because it shows

I
In this poster, we want to illustrate some effect size's calculation utilities with an experience that investigates the behavior of some measurements made on human hands.

Computing and Interpreting effect size

Material and Methods

We have made measurements of the area and of 40 adult people, randomly selected ($\mathbf{2 1} \hat{\delta}, \mathbf{2 0}$)
We draw the outline of both hands that we scan later (image resolution: 96 ppp)

NOM
Analyzing the selected hands, Adobe ${ }^{\circledR}$ Photoshop ${ }^{\circledR}$ CS6 extended, calculated their perimeter and

After comparing different measures with paired, independents t-tests and linear models, we calculate useful effect size indicator using formulas in Table 3

Table 3

We calculate the confidence interval of the $E S$ with asymptotic or with bootstrap, using rat routines (Nakagawa and Cuthill, 2007).
Power analysis allow us to plan future studies using estimations from our pilot experience.
Finally, we will make hypothesis contrast with non punctual null hypothesis.

- For processing data we used the following statistical software

CPS v 21 and

Results

Unpaired comparison

We found very large effect in differences between sex in hand's area and perimeter.

Use effect size in power analysis

In our experience we have a mean of ratio Perimeter/Height of 0.61 equal fo both sexes. So if there are a small difference (say $d=0.2$) ¿ How big must b probability (Power 0.9)? Result of Gower in Figures 586.

Effect size for testing minimum-effect hypothesis

- Rather than testing the hypothesis that treatment have no effect, we might want to test the minimum-effect hypothesis that treatment effect is less than a small PV\%(say 1% or 5%).

Repeating measurements on the
same hand same hand, we have $s d=3$ for perimeter hand. What give us a negligible $P V=0.05(d=0.5)$ in the perimeters.
perimeters
OneStop F (Murphy, 2005), calculate a minimum $d=1.025$ to reject minimum-effect, see Figure We observe $d=1.63$ in our study, so we reject minimum-effect hypothesis $d=0.5$.

Conclusions

With a big sample size virtually any study can be made to show significant results. Alternatively, we can calculate ES and its confidence interval.

The fact that ES is dimensionless facilitates its comparison through different studies, specially at meta-analysis. Versus this, it complicates its interpretation.
There can be problems in the standardized ES' interpretation when a sample does not come from a Normal distribution.

- Finally, don't forget that to know the right value a study has, we mus take into account the biological importance of the effect.
"If people interpreted effect sizes (using fixed benchmarks) with the same rigidity that $\alpha=.05$ has been
being stupid in another metric"

Thompson, 2001

References

Coo, R (2002). It's the Effect Size, Stupid: What effect size is and why it is important. Education-line.
Cohen, J. (1969) .Statistical Power Analysis for the Behavioral Sciences, 1st Edition, Lawrence Erlbaum Associates, Hillsdale (2nd Edition, 1988) Cohen, J (1992). A power primer. Psychological Bulletin 112 (1): 155-159 Jennions, MD; Müler, AP. A survey of the statistical power of research in behavioral ecology and animal behavior. Behavioral ecology 14 (3): 438-445 Murphy, KR; Myors, B (2005). Statistical power analysis: A Simple and General Model for Traditional and Modern Hypothesis Tests, Ind edition, Lawrence Eralbum Associates.
Nakagawa, S; Cuthill, IC (2007). Effect size, confidence interval and statistical significance: a practical guide for biologist. Biological reviews 82: 591-605.

Acknowledgments

- We thank to the numerous classmates and trends who took part in this experience. [Fanafo@alumni.uves; *alcon2@alumni.uv.es; *wontane2@alumni.uv.es, - Grade in Biology 1 It B 2013

