
Are my data normal?

Comino Cortijo, C.*; Garrido Pampliega, N.**; Zucchet, E. ***

Introduction

What is normality?

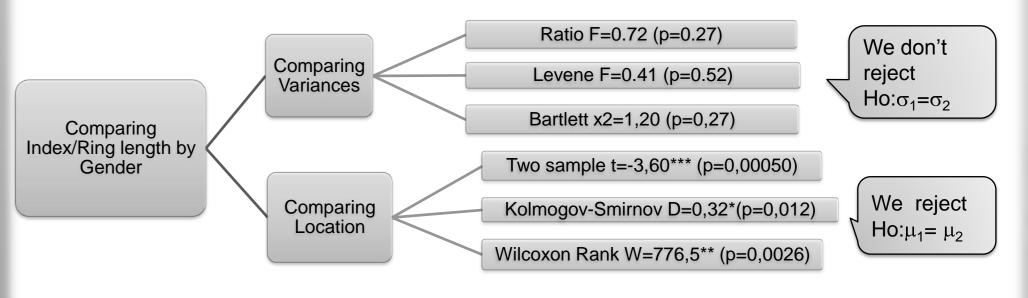
It's a kind of statistic distribution, used with continuous variables, that depend only on the mean (μ) and standard deviation (σ). It's symmetric and bell-shaped. When representing it, we obtain what is know as a Normal curve or Gaussian distribution.

Is the Normal very normal in Biology?

Lots of biologic variables are the result of the sum of several independents features. As it explains the Central Limit Theorem, sums of that large number of variables will be distributed following the Normal law.

Why testing normality?

Normality is one of the more common assumptions made in the development and use of statistic procedures. Geary (1947) shows that probabilities derived from the well-known analyses of variance and other "small sample" tests, which postulate universal normality, may differ seriously from the true probabilities when the universes are non-normal.


ormal Distribution: Mean:

- We Run tests of normality, but, be cautious, highly influenced by sample size!
- Thode (2002) presents more than 40 normality test. But our software available for tests were:
- Lilliefors (Kolmogorov-Smirnov K-S) Correction of the famous K-S test that studies the maximal absolute difference between empirical and hypothetical cumulative distribution function.
- Shapiro-Willk's (**S-W**): It compares the estimated variance using moments and the one obtained from the slope of the Q-Q plot.
- Shapiro-Francia (**S-F**): Squared correlation between the ordered sample values and the (approximated) expected ordered quantiles from the standard normal.
- D'Agostino (D'A) This test has the null hypothesis of skewness should be equal to zero.
- **Let** Cramer-von Mises (C-M): EDF goodness of fit: $n \int_{-\infty}^{\infty} (F_n(x) \Phi(x))^2 \psi(\Phi(x)) d\Phi(x)$ with $\psi(\Phi(x))=1$.
- Anderson-Darling (A-D): Like Cramer-von Mises with $\Psi(p) = (p \cdot (1-p))^{-1}$

There are no test rejecting the null hypothesis of normality for α =0,05, so we proceed to the gender comparison assuming normality in each group.

	K-S	S-W	S-F	D'A	C-M	A-D	J-B	P-Chi
Male	D=0,11	W=0,97	W'=0,97	X ² =0,25	W"=0,09	A=0.49	Jb=0.44	P=4,5
n=48	<i>p=0.13</i>	<i>p=0.42</i>	<i>p</i> =0.47	<i>p</i> =0.88	<i>p=0.14</i>	<i>p</i> =0.21	<i>p=0.80</i>	<i>p=0.7</i> 2
Female	D=0,11	W=0,96	W'=0,96	X ² =2.96	W"=0,09	A=0.57	Jb=2.51	P=12.8
n=50	<i>p</i> =0.07	<i>p=0.13</i>	<i>p</i> =0.12	<i>p</i> =0.22	<i>p=0.11</i>	<i>p=0.13</i>	<i>p</i> =0.28	<i>p=0.07</i>

Wow, we present the results of comparing the ratio Index/Ring by gender:

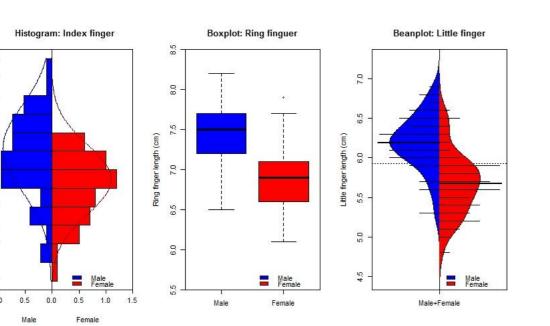
Simulated data

In this poster, we want to show you successive steps in the analysis of normality, exemplified with our own data, studying the effect of testosterone on the length of the fingers.

Finally, we'll use simulated data in order to study the effectiveness of some tests of normality.

Material and Methods

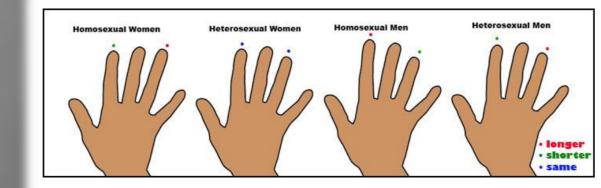
Our study


Measurement of the four fingers (index, middle, ring and little) of the dominant hand in 98 adult people, randomly selected (48 $\stackrel{?}{\circ}$, 50 $\stackrel{?}{\circ}$).

As a measuring device we manufactured a *finger-meter*.

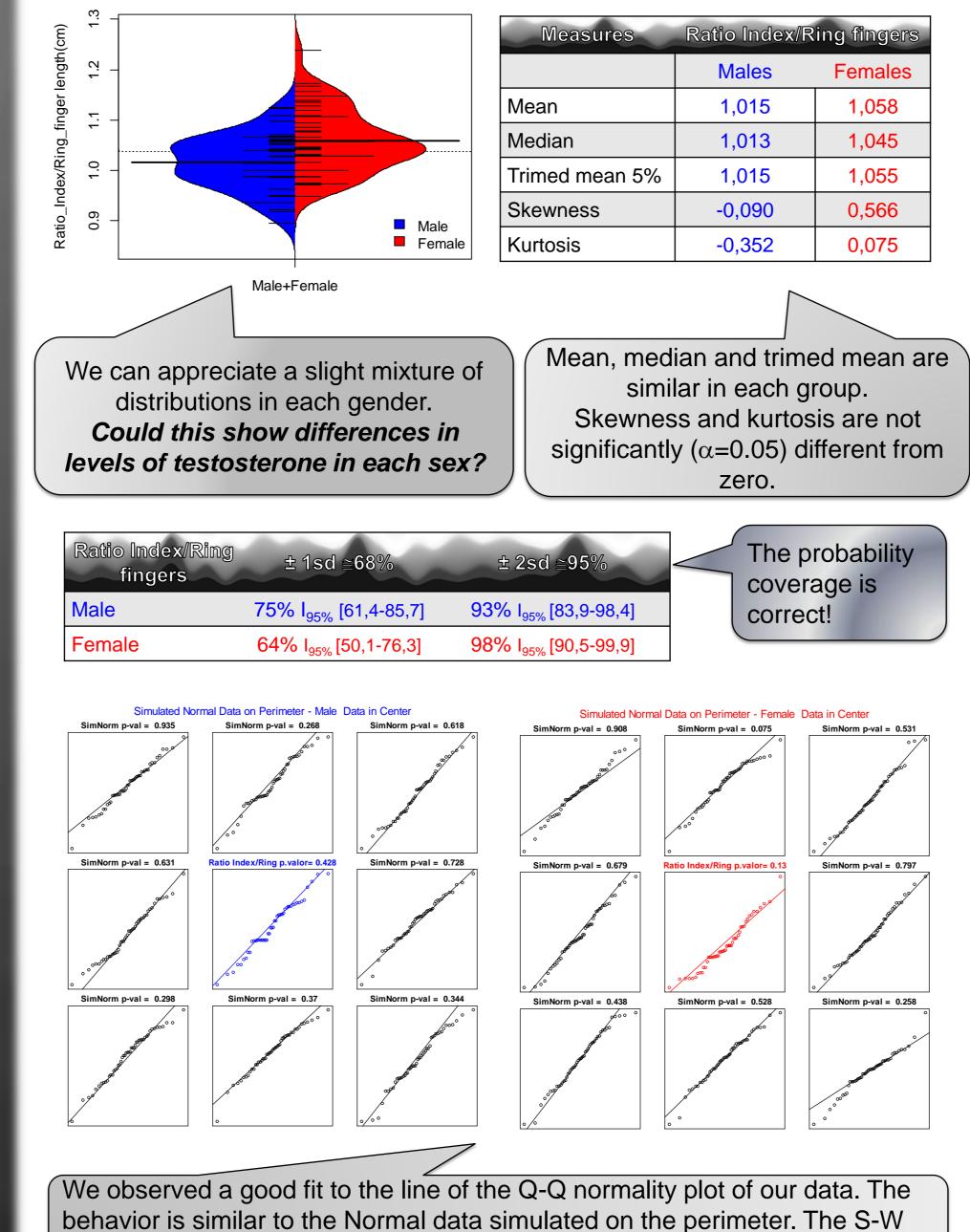
Methods for studying normality

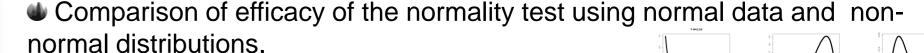
Look at the distribution! Does it appear bell shaped?

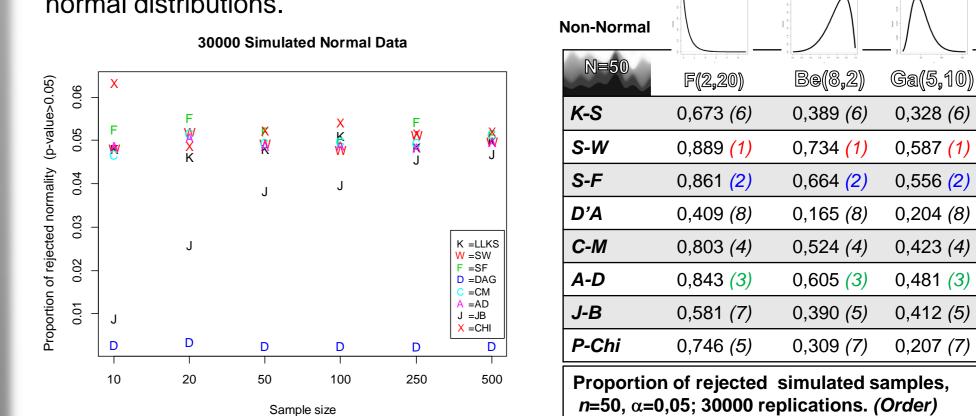


- Jarque_Bera (J-B): the test is based on a join statistic using skewness and kurtosis coefficients.
- Pearson chi-square (**P-Chi**): Chi-square goodness of fit of counted and the expected observations in class *i*. The classes are build is such a way that they are equiprobable under the hypothesis of normality
- For processing data we used the following statistical software: **\$755** v20 and **(1**) v2.15.0.

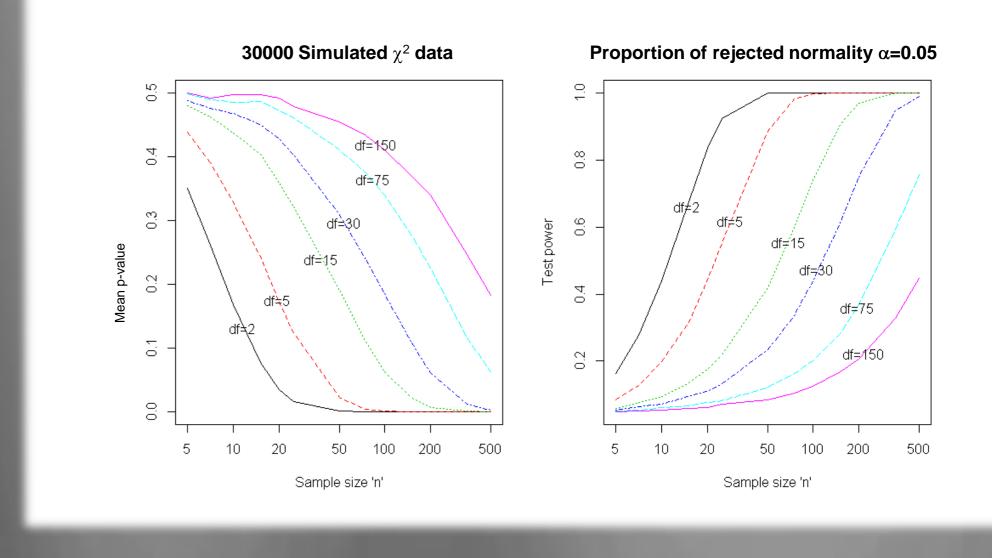
Our data


We had been studying the ratio between index finger length and the ring finger length (2F:4F), according to sex.

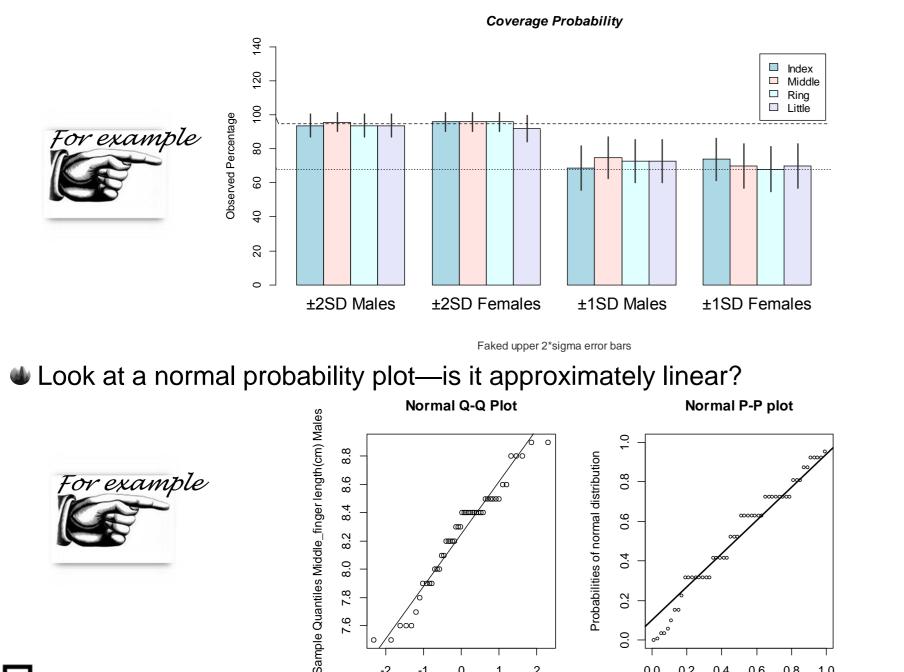



Scarbrough and Johnston (2005) tested that this ratio indicates the level of testosterone during gestation.

As a preliminary to the comparison by gender, we have analyzed the normality of the sample observed following the described methodology.


Beanplot: Ratio_Index/Ring_finger

We show the results of the test we found powerful; Shapiro-Wilks, with the results of 30000 replicates χ^2 samples, sizes *n*: from 5 to 500 and *df*: form 2 to 150.



Compute descriptive summary measures—are mean, median, trimed mean similar? – are skewness and kurtosis near zero?

	Measures for Females	Index finger	Middle finger	Ring finger	Little finger
For example	Mean	7,246	7,460	6,192	5,678
	Median	7,300	7,500	6,200	5,700
	Trimed mean 5%	7,261	7,473	6,202	5,671
	Skewness	-0,640	-0,533	0,600	0,266
	Kurtosis	0,193	0,160	-0,214	-0,064

Do 2/3 of observations lie within 1 std dev of the mean? Do 95% of observations lie within 2 std dev of the mean?

. . Conclusions

In order to investigate the normality of some data, we recommend to use both the descriptive part and the tests. As Shapiro et al (1968) conclude, our simulations established that S-W is the most powerful test we have studied.

Ga(5,10)

With **S-W** we found the **expected behavior** of the test based on sample size and the deviation from normal with the df of the χ^2 .

D'Agostino's test (1970) presents **difficulties** in calculating the p-value.

• In case of **non-normality** we can try the Box-Cox **transformation**: estimating the power (λ) to which the variable has to rise so that the data are normal: $y'=(y^{\lambda}-1)/\lambda$ if $\lambda \neq 0$; $y'=\log(y)$ if $\lambda=0$.

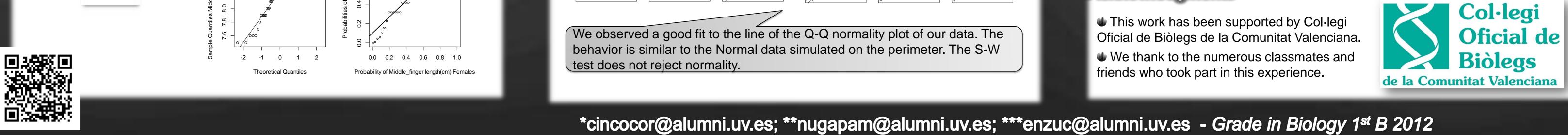
After testing normality in our experience, ratios 2F:4F, we conclude the existence of statistically significant differences (α =0,05) between gender...*Maybe for the testosterone effects!*

References

Box, G. E. P. and Cox, D. R. "An analysis of transformations". *Journal of the Royal Statisistical* Society, Series B. 26: 211-46. 1964.

D'Agostino, R.B. "Transformation to Normality of the Null Distribution of G1". Biometrika. 57: 679-681, 1970.

Geary, R.C. "Testing for Normality". Biometrika. 36: 68-97. 1947.


Scarbrough, P.S. and Johnston, V.S. "Individual differences in women's facial preference as a function of digit ratio and mental rotation ability". Evol. Hum. Behav. 26: 509–526. 2005.

Shapiro, S.S.; Wilk, M.B. and Chen, V. "A Comparative Study of Various Tests for Normality". JASA. 63: 1343-72. 1968.

Thode Jr., H.C. "Testing for Normality". New York: Marcel Dekker. 2002.

Acknowledgments

This work has been supported by Col-legi Oficial de Biòlegs de la Comunitat Valenciana. We thank to the numerous classmates and

