## Can photogrammetry measure ugliness?

Vniversitat
BệVaLENCIa
Gil English, N.*; Marquez Sapiña, A.**; Ponce Ruiz, L. ***


Morphometry is the study of the covariation of shape
with underlying factors. Morphometry has achieved with underlying factors. Morphometry has achieved great development in the areas of biology and
anthropology. For example to differenciate betw anthropology. For example to differenciate between
species and to describe the structures observed like cells, shapes, dimensions or organs cells, shapes, dimensions or organ

Photogrammetry is the branch of morphometry that analyzes the covariation in photographs. We have
based our investigation in this discipline.


The objective of this poster is to investigate if there's a correlation between the ugliness and the morphometry with different statistical methods. This work is purely recreational
as it's intended to obtain universal objective relations based on subjective data.

## Material and methods

## Our study

We used facial photographs of 62 men from 18-
35 years old and different ethnic groups. These pictures were selected from a data set of differen web pages


Several women evaluated the degree of ugliness ( 0 -10,ugliness-beauty) of the pictures showed. In addition we used an entertainment com
application:
(1) We used the tps programme to place 46 landmarks following the model of Hayes et al (2011).

We analyzed our data with three methods based on: traditional morphom
outlines.

- For processing data we used the following statistical software:

SPSS v21, $\mathbb{R}$ v2.15.2 and

## Results

Scores

- Figure 1 represents the distribution of our pictures according to women's scores. Figure 2 shows that "Anaface's" scores are higher than women's


## 

Fig. 1. Women's scores

## Traditional morphometry

We calculated standardized distances as Farkas et al (1993) and angles

(1) We made a multiple linear regression with the 16 original variables and its squares trying to predict $Z$ ugliness scores corresponding to the estimated cumulative proportion.
Fta After doing a variable selection using backward-forward AIC, we arrived to the next model (described in table 1).


After transforming predictions with cumulative norma probability, we found a
correlation of 0.72 with women's scores (Fig.3) and 0.85 with Anface's scores (Fig.4).

- It's clear that Anaface program uses a model similar to ours, bu it doesn't give scores under four.


## 

## Procrustes superimposition

In the Greek myths of Theseus, Procrustes was an inn owner with a unique "one-size-fits-all bed. In order for this magical bed to work, Procrustes would chop off the legs of any
guests who were too tall and stretch, on the rack, any guests who were too short.

The Procrustes superimposition is a method to align shapes using isomorphic scaling, translation and rotation (see Klingenberg, 2010). This

## method uses formula 1 <br>  <br> $d_{F(M 1, M 2)}=\min \left\|M 2-\beta M 1 \Gamma-\mathbf{1}_{p} \boldsymbol{\alpha}^{\prime}\right\|$ <br> Formula 1. Superimposition of two configuration matrices, $M 1$ and $M 2$ minimizizin the quantity $d F(M 1$, M2), wherere $\beta$ is a scalar for the size parameter, $\Gamma$ is a square rotation matrix of $k \times k$ dimensions for the parameter, $\Gamma$ is a square rotation matrix of $k \times k$ dimensions for the orientation parameter, a is the location parameter corresponding to vector of $k$ values, and 1 p is codum vector of 1 . <br>  <br>  <br>  <br> 

In Figure 6, the first image represents the mean of all the values. The mean symbolizes the "ideal" distances. The next pictures show how the faces change with the values of the two principal components.
(1) The correlation between women's scores and the PC1 is -0.30 and with the PC2 it's 0.14.

- In Figure 7 appears the relation between women's scores and the Euclidian distances to fach a correlation of -0.47 .

Fig. 7. Relation women's scores -

We repeated the same process searching the distance between our images and the "perfect" measures.

We obtained a correlation between the mask to the distance of ours photos. This is mask isn't very realistic.

## Elliptical Fourier analysis

- The last approach presented here is due to Kuhl and Giardina et al (1982) that and $y$ coordinates of an outline projected on a plane, using R-library Momocs (Claude 2008).
- To this method equally spaced points are not required and the coefficients can be made independent of outline position and normalize for size

© This method uses the formula 2 for axis $X$
$x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{+\infty} a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)$
$a_{n}=\frac{2}{T}+\int_{0}^{T} x(t) \cos (n \omega t) d t$
$b_{n}=\frac{2}{T}+\int_{0}^{T} x(t) \sin (n \omega t) d t$
ormula 2. Fourier series for axis $x$, $\omega$-2nperimeer. ${ }^{\text {. }}$.entity for $y(t)$ with $c_{n}$ and $d_{n}$ coefficien
(1) We have 18 landmarks. We've interpolated 3 landmarks between every pair, giving us a total of 72 landmarks in each contour (Fig.8). In Fig. 9 the
contours are procrusted.


Fig.13. Harmonic contributions Fig.14. Cumulative power After estimating elliptic Fourier coefficients, we show in fig. 10 the reconstruction of contours We 0.9 harmonics. We see the numerical contribution (Fig.12), the shape and the power contribution (Fig.13-14).
(1) After eliminating the first harmonic, because it
contains very little information concerning contains very little information concerning PC of harmonic coefficients. Unfortunately it didn't show a clear relation with women's scores (cor. $=0.27$ and 0.13) (Fig.15).

## 4espryen l|y

## Conclusions



We have seen a clear relation between the ugliness scores and the measures obtained with the explored methods. Fortunately this isn't a perfect correlation, because this is a very subjective topic.

- This subject is very popular, like for example the "Uggly metter" app. has won 5 millions\$ in two years, which is only an entertainment software.
- Photogrammetry nowadays can use data in a 3D color image. With the development of new technologies the morphometry has achieved to be a useful tool to many disciplines.
Finally, we agree with Bacon's saying: "there is no excellent beauty that hath not some strangeness in the proportion" (1561-1626).


## References

Claude, J. (2008). Morphometrics with R. Springer
Farkas, L. G., Hajni, K. and Posnick, J. C. (1993). Anthropometric and anthroposcopic findings of the nasal and facial region in cleft patients before and after primary lip and palate repair. Cleft Palate Craniofac J. 30, 1-12. Hayes, S. and Milne, N. (2011). What's wrong with this picture? An experiment in quantifying accuracy in 2D portrait drawing. Visual Communications. 10, 149-174.
Klingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nature reviews genetics. 11, 623-635.
Kuhl, F.P. and Giardina, C.R. (1982). Elliptic Fourier features of a closed contour. Computer graphics and image processing. 18, 236-258
Acknowledgements
© We thank all the sponsors who have financed this meeting: IIII NO
 project.
*nagilen@alumni.uv.es; *"amarsa5@alumni.uv.es; **lopon@alumni.uv.es - Grade in Biology ${ }^{1 t} \mathrm{~B}$ B 2013

