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Abstract. Motivated by an old paper of Wells [J. London Math. Soc. 2

(1970), 549–556] we define the space X⊗Y , where X and Y are “homogeneous”
Banach spaces of analytic functions on the unit disk D, by the requirement

that f can be represented as f =
∑∞

j=0 gn ∗ hn, with gn ∈ X, hn ∈ Y and∑∞
n=1 ‖gn‖X‖hn‖Y < ∞. We show that this construction is closely related

to coefficient multipliers. For example, we prove the formula ((X ⊗ Y ), Z) =

(X, (Y, Z)), where (U, V ) denotes the space of multipliers from U to V , and

as a special case (X ⊗ Y )∗ = (X, Y ∗), where U∗ = (U, H∞). We determine
H1 ⊗ X for a class of spaces that contains Hp and `p (1 ≤ p ≤ 2), and use

this together with the above formulas to give quick proofs of some important

results on multipliers due to Hardy and Littlewood, Zygmund and Stein, and
others.

1. Introduction

Let S denote the space of all (formal) power series f =
∑∞
j=0 f̂(j)zj = {f̂(j)}∞j=0

with complex-valued coefficients. We introduce the locally convex vector topology
on X by means of the seminorms pj(f) = f̂(j), j ≥ 0. Thus fn → f (n → ∞) in
S if and only if f̂n(j) → f̂(j) for each j. Then S is metrizable and complete and
therefore it is an F -space. The Hadamard product of f and g is defined as

f ∗ g =
∞∑
j=0

f̂(j)ĝ(j)zj .

A Banach space X will be called S-admissible if P, the set off all polynomials,
is contained in X, and X ⊂ S with continuous inclusion.

Let XP denote the closure of P in X, ej(z) = zj and γj(f) = f̂(j) for j ≥
0. Of course if X is S-admissible so it is XP . On the other hand for an S-
admissible Banach space X one has that ej ∈ X and γj ∈ X ′, where X ′ stands
for the topological dual space. Hence (XP)′ is also an S-admissible Banach space,
identifying φ ∈ X ′ with the power series φ(z) =

∑
j φ(ej)zj .

Note that `p, 1 ≤ p ≤ ∞, the space of all complex sequences a = {â(j)}∞0
such that ‖a‖`p :=

(∑∞
j=0 |â(j)|p

)1/p

< ∞, can be regarded as a subspace of

S, denoted A(T) for p = 1, by putting a =
∑∞
j=0 â(j)zj . Further examples of
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S-admissible spaces are c0 = (`∞)P , H∞, i.e. the space of bounded analytic func-
tions, A(D) = (H∞)P , and A, the space of Abel summable series (i.e. there exists
limr→1

∑∞
n=0 f̂(n)rn with the norm given by ‖f‖A = supn≥0 |

∑n
j=0 f̂(j)| <∞).

Given two S-admissible Banach spaces X,Y we denote

(X,Y ) = {λ ∈ S : λ ∗ f ∈ Y for all f ∈ X}.

Then (X,Y ) becomes an S-admissible Banach space with its natural norm (see
Theorem 2.1).

We keep the notation X ′ for the topological dual and denote XK = (X,A(T))
(the Köthe dual), X∗ = (X,H∞), X# = (X,A(D)) and Xa = (X,A) (the Abel
dual).

Since H∞, A(T), A(D) and A are S-admissible Banach spaces then XK , X∗, X#

and Xa are also S-admissible Banach spaces.
Following Wells [34] (see also [11] and [33, Sections V.4, VI.3]), given X and

Y S-admissible Banach spaces we define X ⊗ Y as the space of series h ∈ S such
that h =

∑∞
n=0 fn ∗ gn, where the series converges in S, fn ∈ X, gn ∈ Y and∑∞

n=0 ‖fn‖X‖gn‖Y <∞. It is not difficult to see that X ⊗ Y, normed in a natural
way, is also S-admissible (see Theorem 2.2).

We shall show in the paper a quite useful formula connecting multipliers and
tensors of S-admissible Banach spaces (see Theorem 2.3)

(X ⊗ Y,Z) = (X, (Y,Z)). (1.1)

We are mainly interested in the case whereX and Y are Banach spaces of analytic

functions on the unit disk D ⊂ C, i.e., f =
∑
f̂(j)zj with lim supj

j

√
|f̂(j)| ≤ 1. Let

DR ⊂ C denote the open disk of radius R centered at zero (we put D1 = D) and let
E be a complex Banach space. We write H(DR) (respect. H(DR, E)) for the vector
space of all functions analytic in DR (respect. with values in E), which endowed
with “H-topology”, i.e., the topology of uniform convergence on compact subsets
of DR, becomes a locally convex F -space. This topology can be described by the
family of the norms Nρ(f) = sup|z|<ρ ‖f(z)‖E , 0 < ρ < R. Since H(DR) ⊂ S, we
see that, formally, there are two topologies on H(DR): H-topology and S-topology.
However, it is well known and easy to see that they coincide on H(DR).

Several authors have formulated some natural conditions (which hold in most of
classical spaces such as Hardy, Bergman, Besov, etc.) to develop a general theory
of spaces of analytic functions. Two basic ones first appeared in the work by A.E.
Taylor (see [29]) are the following:

(P1) There exists A1 > 0 such that |f̂(j)| ≤ A1‖f‖, j ∈ {0, 1, . . .}.
(P2) There exists A2 > 0 such that ‖ej‖ ≤ A2, j ∈ {0, 1, . . .}.
This perfectly fitted with Hardy spaces (see [30]) but, unfortunately these con-

ditions are too restrictive to include many of the interesting spaces appearing in
the literature. We shall propose in this paper some weaker ones.

A Banach space X ⊂ S will be called H-admissible if X ⊂ H(D) with continuous
inclusion, H(DR) ⊂ X for all R > 1, and the map f 7→ f |D is continuous from
H(DR) to X.

Clearly H-admissible spaces are also S-admissible. Denote, as usual, C(z) = 1
1−z

the Cauchy kernel and fw(z) = f(wz) for w ∈ D̄. In particular fr = Cr ∗ f .
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We shall show that in the setting of H-admissible Banach spaces, the map w →
fw defines an X-valued analytic function, i.e. F (w) = fw ∈ H(D, X). In particular

MX(r, f) = sup
|w|=r

‖fw‖X

becomes an increasing function (where, as usual, we denote Mp(r, f) for the Hardy
spaces X = Hp). We shall pay special attention to the subspace of functions such
that F ∈ H∞(D, X) and denote

X̃ = {f ∈ H(D) : sup
0<r<1

MX(r, f) <∞}.

Of course if X and Y are H-admissible then (X,Y ) and X ⊗ Y are also H-
admissible (see Theorem 3.1).

Inspired by the Besov-type spaces we denote, for 1 ≤ q ≤ ∞, by BX,q the
space of functions in H(D) such that (1 − r2)MX(r,Df) ∈ Lq((0, 1), rdr

1−r2 ) where
Df(z) =

∑∞
n=0(n+ 1)f̂(n)zn.

It is clear that X̃ and BX,q are also H-admissible Banach spaces. It fact they
automatically have better properties.

In the original paper A.E. Taylor also considered some particular properties (see
[29]):

(P3) If f ∈ X then feiθ ∈ X and ‖feiθ‖X = ‖f‖X , θ ∈ [0, 2π].
(P4) If f ∈ X then fr ∈ X with ‖fr‖X ≤ A4‖f‖X , 0 ≤ r < 1, for some A4 > 0.
In this paper we propose a general class ofH-admissible Banach spaces of analytic

functions, which cover many of the classical function spaces, and is well-adapted to
the study of multipliers.

We shall say that an H-admissible Banach space X is homogeneous if (P3) and
(P4) holds, that is, it satisfies ‖fξ‖X = ‖f‖X for all |ξ| = 1 and f ∈ X, and
MX(r, f) ≤ K‖f‖X for all 0 ≤ r < 1 and f ∈ X.

That is to say, for homogeneous spaces, w → fw defines a function in H∞(D, X).
In particular X ⊂ X̃.

Note that the spaces X̃ and BX,q become automatically homogeneous for any
H-admissible Banach space X. Of course if X and Y are homogeneous so are (X,Y )
and X ⊗ Y .

We shall also show in this setting that (see Theorem 7.1)

BX,1 ⊂ H1 ⊗X ⊂ XP (1.2)

or that (see Theorem 4.1)

(BX,1, Y ) = B(X,Y ),∞. (1.3)

Many more properties are relevant according to the problem in study. For in-
stance, the class of spaces invariant under Moebious transformations or G-invariant
spaces, i.e. X ⊂ H(D) such that there exists K > 0 such that ‖f ◦ φ‖X ≤ K‖f‖X
whenever f ∈ X and φ belongs to the group of Moebious transformation of D, have
been considered by several authors (see [3, 12, 31]). Among the G-invariant spaces
there are maximal and minimal spaces in the scale, namely the Bloch space and
the Besov class (see [6, 26, 32]). Similarly, in our setting of homogeneous Banach
spaces of analytic functions one has (see Proposition 4.3) that

BX,1 ⊂ XP ⊂ X̃ ⊂ BX,∞.

Let us finally recall some extra properties also considered by Taylor:
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(P5) If f ∈ X then fr ∈ X and ‖f‖X = limr→1 ‖fr‖X .
(P6) If f ∈ X then fr ∈ X and limr→1 ‖fr − f‖X = 0.
Of course these two conditions are connected to the density of polynomial in the

space X. In fact if X is H-admissible then XP satisfies (P6) (and therefore (P5)).
Another one which appears naturally is the following:
(P7) If f ∈ H(D) satisfies that fr ∈ X and supr→1 ‖fr‖X <∞ then f ∈ X and

‖f‖X = limr→1 ‖fr‖X .
This is satisfied by X̃ and BX,q. Clearly c0 or A(D) fail this property. We shall

consider a variation of (P7) useful for our purposes. An homogeneous space X is
said to have (F )-property (Fatou property) if there exists A > 0 such that for any
sequence (fn) ∈ X with supn ‖fn‖X ≤ 1 and fn → f in H(D) one has that f ∈ X
and ‖f‖X ≤ A. (F )-property will be shown to be equivalent to the fact that X = X̃
or X = X∗∗ with equivalent norms (see Proposition 5.1).

One of our main goals is to characterize H1 ⊗X. In order to do that we shall
consider a new property, namely, we say that X has the (HLP )-property if X ⊂
BX,2. For instance `q fails to have (HLP ) for q > 2, because B`q,2 = `(q, 2) (see
Proposition 3.6), and Hp has (HLP ) for 1 ≤ p ≤ 2 due to the Hardy and Littlewood
result (see [10, 15]) states that, for 1 ≤ p ≤ 2,∫ 1

0

(1− r2)M2
p (r, f ′)rdr ≤ C‖f‖2p, f ∈ Hp.

The vector-valued version of the Hardy-Littlewood theorem was considered in
[5]. A Banach space E was said to have the (HL)-property if∫ 1

0

(1− r2)M2
1 (r, F ′)rdr ≤ C‖F‖2H1(D,X), F ∈ H1(D, E).

Since F (w) = fw ∈ H∞(D, X) and ‖F‖H1(D,X) = ‖f‖X for any f ∈ X and
any homogeneous space X, one concludes that any homogeneous Banach space
X having the (HL)-property satisfies (HLP ). The reader is referred to [5] for
examples of such spaces and connections with other properties in Banach space
theory. In particular it was shown ([5, Prop. 4.4]) that Lp(µ) has (HL) if and only
if 1 ≤ p ≤ 2. Therefore, besides Hardy spaces, also Bergman spaces X = Ap or
X = `p for 1 ≤ p ≤ 2 and many other obtained via interpolation satisfy (HLP ).

We shall show that if X has (HLP ) property then (see Theorem 7.2)

H1 ⊗X = BX,1. (1.4)

A combination of our main results (1.4), (1.1) and (1.3) allow us to recover a
number of know results about multipliers. Namely, for spaces with (HLP ) one has

(H1, X∗) = (X,BMOA) = BX∗,∞.

From this one can recapture many known results on multipliers and to obtain new
ones selecting other spaces with (HLP ).

The paper is organized as follows: Sections 2 is devoted to introduce and prove
the basic properties about the S-admissibility showing there the basic formula (1.1).
Section 3 deals with the notion ofH-admissibility . We also introduce in that section
the spaces X̃ and BX,q. We deal with the notion of homogeneous Banach spaces in
Section 4, showing there the basic result of multipliers (1.3). The Fatou property
is studied in Section 5. In Section 6 we present some new facts on “solid” spaces
(introduced and studied by Anderson and Shields [2]). We use Section 7 to study
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the space H1 ⊗ X and to show (1.2) and (1.4). Finally Section 8 is devoted to
applications.

2. S-admissible Banach spaces: Multipliers and tensors

Definition 2.1. A Banach space X will be called S-admissible if P ⊂ X and
X ⊂ S with continuous inclusion, i.e. for each j ≥ 0 there exists Cj such that
|f̂(j)| ≤ Cj‖f‖X .

Definition 2.2. Let X and Y be S-admissible Banach spaces. A series λ ∈ S is
said to be a (coefficient) multiplier from X to Y if λ ∗ f ∈ Y for each f ∈ X.

We denote the set of all multipliers from X to Y by (X,Y ) and define

‖λ‖(X,Y ) = sup{ ‖λ ∗ f‖Y : ‖f‖X ≤ 1 }.

Theorem 2.1. If X and Y are S-admissible then (X,Y ) is an S-admissible Banach
space.

Proof. An application of the closed graph theorem shows that the functional ‖·‖(X,Y )

is finite. That ‖λ‖(X,Y ) = 0 implies λ = 0 follows the condition P ⊂ X. The other
properties of the norm are immediate consequences of the definition. Also, it is
clear that P ⊂ (X,Y ). That the inclusion (X,Y ) ⊂ S is continuous follows from
the inequality

|λ̂(j)| = | ̂(λ ∗ ej)(j)| ≤ Cj ‖λ ∗ ej‖Y ≤ Cj ‖ej‖X ‖λ‖(X,Y ) .

Finally, to prove that (X,Y ) is complete, assume that

‖λm − λn‖(X,Y ) → 0 as m,n→∞. (+)

This implies that there is a bounded linear operator T : X 7→ Y such that
‖T − Tn‖ → 0 as n→∞, where the linear operator Tn is defined by Tnf = λn ∗ f.
Hence ‖Tf − λn ∗ f‖Y → 0 as n → ∞, for each f ∈ X. Since the inclusion Y ⊂ S
is continuous, we see that

λn ∗ f → Tf in S. (∗)
On the other hand, from (+) and the continuity of the inclusion (X,Y ) ⊂ S it
follows that λm − λn → 0 (m,n → ∞) in S, which implies that there is a λ ∈ S
such that λn ∗ f → λ ∗ f in S. This and (∗) show that Tf = λ ∗ f, which completes
the proof. �

We have another procedure of generate S-admissible Banach spaces.

Definition 2.3. We define the space X ⊗ Y, to be the set of all h ∈ S that can
be represented in the form h =

∑∞
n=0 fn ∗ gn, fn ∈ X, gn ∈ Y so that the series

converges in S and
∞∑
n=0

‖fn‖X ‖gn‖Y <∞ (2.1)

The norm in X ⊗ Y is given by

‖h‖X⊗Y = inf
∞∑
n=0

‖fn‖X ‖gn‖Y ,

where the infimum is taken over all the above representations.
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It follows from the definition that if (2.1) holds, then
∑∞
n=0 fn ∗gn ∈ X⊗Y, and∥∥∥ ∞∑

n=0

fn ∗ gn
∥∥∥
X⊗Y

≤
∞∑
n=0

‖fn‖X ‖gn‖Y .

The norm in X ⊗ Y is based on Schatten’s definition of greatest crossnorm.

Theorem 2.2. If X and Y are S-admissible space then X ⊗ Y is an S-admissible
Banach space.

Proof. Let us first show that the functional ‖·‖X⊗Y is actually a norm.
Only the implication ‖h‖ = 0 =⇒ h = 0 requires a proof. Let ‖h‖X⊗Y = 0. Let

ε > 0. Then h =
∑∞
n=0 fn ∗ gn, where

∑∞
n=0 ‖fn‖X ‖gn‖Y < ε. Since X and Y are

continuously embedded in S, we have |f̂n(j)| ≤ Cj ‖fn‖X and |ĝn(j)| ≤ Dj ‖gn‖Y ,
where Cj and Dj are constant depending only on j. Hence

|ĥ(j)| =
∣∣∣ ∞∑
n=0

f̂n(j)ĝn(j)
∣∣∣ ≤ ∞∑

n=0

CjDj ‖fn‖X ‖gn‖Y ≤ CjDjε.

Thus ĥ(j) = 0 because ε was arbitrary.
Incidentally, this shows also that X ⊗ Y ⊂ S with continuity. The fact that

P ⊂ X ⊗ Y is immediate. It remains to show that the space X ⊗ Y is complete.
Let hn ∈ X ⊗ Y (n ≥ 0) be such that

∑∞
n=0 ‖hn‖X⊗Y < ∞. We have hn =∑∞

k=0 fk,n ∗ gk,n, where
∑∞
k=0 ‖fk,n‖X ‖gk,n‖Y ≤ 2 ‖hn‖ . It is easily verified that

h :=
∑∞
n=0 hn converges in S and therefore h ∈ X ⊗ Y. It remains to prove that∥∥∥ ∞∑

n=m

hn

∥∥∥
X⊗Y

→ 0, m→∞.

But this follows from∥∥∥ ∞∑
n=m

hn

∥∥∥
X⊗Y

≤
∞∑
k=0

∞∑
n=m

‖fk,n‖X ‖gk,n‖Y ≤
∞∑
n=m

2 ‖hn‖ ,

concluding the proof. �

Proposition 2.1. If P is dense in X or Y , then P is a dense subset of X ⊗Y. In
particular (XP ⊗ Y )P = XP ⊗ Y .

Proof. By symmetry of the definition, let assume that P is dense in X. Let h ∈
X⊗Y, and ε > 0. Then, by the definition, there are a positive integer n and fk ∈ X,
gk ∈ Y (0 ≤ k ≤ n) such that∥∥∥h− n∑

k=0

fk ∗ gk
∥∥∥
X⊗Y

< ε/2.

Choose polynomials Pk so that ‖fk − Pk‖X < ε‖gk‖Y /2n. Then we have∥∥∥h− n∑
k=0

Pk ∗ gk
∥∥∥
X⊗Y

≤
∥∥∥h− n∑

k=0

fk ∗ gk
∥∥∥
X⊗Y

+
∥∥∥ n∑
k=0

(fk − Pk) ∗ gk
∥∥∥
X⊗Y

≤ ε/2 +
n∑
k=0

‖fk − Pk‖X ‖gk‖Y ≤ ε

This concludes the proof because
∑n
k=0 Pk ∗ gk is a polynomial. �
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The following fact can help in determining X ⊗ Y in simple situations. Recall
that a quasinorm on a (complex) vector space A is a functional ‖ · ‖ on A satisfying
the following conditions:

(i) ‖f‖ ≥ 0; ‖f‖ = 0 iff f = 0.
(ii) ‖tf‖ = |t| ‖f‖, for all t ∈ C, f ∈ A.
(iii) ‖f + g‖ ≤ K(‖f‖+ ‖g‖) for all f, g ∈ A, where K ≥ 1 is a constant.

The couple (A, ‖ · ‖) is called a quasi-normed space. A complete quasinormed space
is called a quasi-Banach space. “Complete” means that if {fk} ⊂ A is a sequence
such that limm,k ‖fm − fk‖ = 0, then there is f ∈ A such that limk ‖fk − f‖ = 0.
If A′, the space of all bounded linear functionals on A, separates points in A, then
there is the smallest Banach space, [A], such that A′ = [A]′. More precisely, let

‖f‖1 = sup{|Λf | : Λ ∈ A′, ‖Λ‖ ≤ 1}.
Then ‖ · ‖1 is a norm on A, and we define [A] to be the completion of (A, ‖ · ‖1).

If A ⊂ S with continuous inclusion, then the dual A′ separates points in A

because f 7→ f̂(j), for each j, is in A′. Then we can realize [A] as the subset of S
consisting of those f that can be represented in the form

f =
∞∑
n=1

fn with
∞∑
n=1

‖fn‖A <∞. (‡)

Moreover we have

‖f‖[A] = inf
∞∑
n=1

‖fn‖A,

where the infimum is taken over all representations of the form (‡). It follows from
the condition

∑
n ‖fn‖A <∞ that the series

∑
n fn converges in S.

Proposition 2.2. Let X and Y be S-admissible Banach spaces.
(i) If there exists a Banach space Z such that

X ∗ Y = {f ∗ g : f ∈ X, g ∈ Y } ⊂ Z,
then X ⊗ Y ⊂ Z.

(ii) If X ∗ Y = A is a quasi-Banach space then X ⊗ Y = [A ].

Proof. (i) An application of the closed graph theorem to the operators f 7→ f ∗ g
shows that

sup
‖f‖X≤1

‖f ∗ g‖Z <∞.

Hence, by the Banach-Steinhauss theorem,

sup
‖f‖X≤1, ‖g‖Y ≤1

‖f ∗ g‖Z <∞. (†)

Now, assuming that X ∗ Y ⊂ Z, let
∞∑
j=1

‖fn‖X‖gn‖Y <∞,

where fn ∈ X, gn ∈ Y. From this and (†) we obtain
∞∑
n=1

‖fn ∗ gn‖Z <∞,

whence
∑
n fn ∗ gn converges in Z. The result follows.
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(ii) Let X ∗ Y = A. Since A ⊂ [A ], we have X ⊗ Y ⊂ [A ], by (i).
In the other direction, let f ∈ [A ]. Choose {fn}∞1 ⊂ X ∗ Y = A so that

f =
∞∑
n=0

fn and ‖f‖[A] ≤ 2
∞∑
n=1

‖fn‖A.

Choose gn ∈ X and hn ∈ Y so that fn = gn ∗ hn. Then, as above, ‖gn ∗ hn‖A ≤
C‖gn‖X‖hn‖Y , where C is independent of n. The result now follows. �

Corollary 2.1. Let 1 ≤ p, q ≤ ∞ and p ∗ q = max
{

pq
p+q , 1

}
where pq/(p+ q) =∞

if p =∞ or q =∞. Then `p ⊗ `q = `p∗q.

Proof. It is easily seen that, for p, q > 0,

`p ∗ `q = `s, where
1
s

=
1
p

+
1
q
. (2.2)

The result now follows from Proposition 2.2. �

Here there is a basic formula connecting tensors and multipliers.

Theorem 2.3. Let X, Y, Z be S-admissible Banach spaces. Then

(X ⊗ Y,Z) = (X, (Y,Z)).

Proof. Let λ ∈ (X ⊗ Y,Z). We have to prove that λ ∗ f ∈ (Y,Z), for all f ∈ X,
i.e., that λ ∗ f ∗ g ∈ Z, for all f ∈ X, g ∈ Y. But, since f ∗ g ∈ X ⊗ Y, the
hypothesis λ ∈ (X ⊗ Y,Z) implies λ ∗ (f ∗ g) ∈ Z. Hence we have proved that
(X ⊗ Y,Z) ⊂ (X, (Y,Z)).

In the other direction, assume that λ ∈ (X, (Y,Z)), and let h ∈ X ⊗ Y. Then

h =
∞∑
n=1

fn ∗ gn, fn ∈ X, gn ∈ Y,

and
∞∑
n=1

‖fn‖X‖gn‖Y ≤ 2‖h‖X⊗Y .

Hence λ ∗ h =
∑∞
n=1 λ ∗ fn ∗ gn (convergence in S). Since λ ∗ fn ∈ (Y, Z), we have

λ ∗ fn ∗ gn ∈ Z, whence∥∥∥ ∞∑
n=1

λ ∗ fn ∗ gn
∥∥∥
Z
≤ ‖λ ∗ fn‖(Y,Z)‖gn‖Y ≤ ‖λ‖(X,(Y,Z))‖fn‖X‖gn‖Y <∞.

Since Z is complete we have that

λ ∗
∞∑
n=1

fn ∗ gn =
∞∑
n=1

λ ∗ fn ∗ gn ∈ Z,

i.e., λ ∈ (X ⊗ Y, Z). This completes the proof of the theorem. �

Corollary 2.2. Let X and Y be S-admissible Banach spaces. Then

(X ⊗ Y )K = (X,Y K), (X ⊗ Y )∗ = (X,Y ∗), (X ⊗ Y )a = (X,Y a).
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3. H-admissible Banach spaces

Definition 3.1. A Banach space X ⊂ S is said to be H-admissible if
(i) X ⊂ H(D) with continuous inclusion, and

(ii) H(DR) ⊂ X for each R > 1 and f 7→ f |D is continuous from H(DR) to X.

Proposition 3.1. Let X be H-admissible. Then
(i) CX(z) =

∑∞
n=0 enz

n ∈ H(D, X).
(ii) CX′(z) =

∑∞
n=0 γnz

n ∈ H(D, X ′).
(iii) The mapping f → F where F (w) = fw defines a continuous inclusion

X ⊂ H(D, XP).

Proof. (i) Observe first if X is H-admissible then for any 0 < r < 1 there is a
constant Ar <∞, depending only on r, such that

M∞(r, f) ≤ Ar‖f‖X , f ∈ X.
In particular, rn ≤ Ar‖en‖ for all n ∈ N. On the other hand, for each R > 1 and
f ∈ H(DR) then f ∈ X and there exists CR > 0 such that

‖f‖X ≤ CR sup
|z|<R

|f(z)|,

equivalently if f ∈ H(D) then fr ∈ X, for every r ∈ (0, 1), and there holds the
inequality

‖fr‖X ≤ Br‖f‖∞ (0 < r < 1).
In particular, r−n‖en‖X ≤ Br for all n ∈ N.

From these estimates one easily deduces that

lim
n→∞

n
√
‖en‖X = 1,

Therefore (i) follows.
(ii) On the other hand

‖γn‖X′ = sup
‖f‖X≤1

|f̂(n)| ≤ r−nAr

and 1 ≤ ‖γn‖X′‖en‖X . This gives

lim
n→∞

n
√
‖γn‖X′ = 1,

which implies (ii).
(iii) It follows from (i) that if f ∈ X then

fw =
∞∑
n=0

γn(f)enwn

is absolutely convergent in X. Hence fw ∈ XP for any w ∈ D and w → fw is an
XP -valued analytic function on the unit disk D. �

Proposition 3.2. Let X is H-admissible and, for 0 < r < 1, write

MX(r, f) = sup
|w|=r

‖fw‖X .

Then
(i) MX(r, f) is increasing.
(ii) M∞(r, f) ≤ AX(r)‖f‖X , f ∈ X, where AX(r) = ‖(CX′)r‖C(T,X′).

(iii) MX(r, f) ≤ BX(r)‖f‖∞, f ∈ A(D), where BX(r) = ‖(CX)r‖L1(T,X).
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Proof. (i) Since F (w) = fw ∈ H(D, X) then w → ‖F (w)‖X is subharmonic. There-
fore MX(r, f) = sup|w|=r ‖fw‖X is increasing in r.

(ii) Note that CX′(z) =
∑∞
n=0 γnz

n ∈ H(D, X ′) and, for each 0 < r < 1, the
series (CX′)r(z) =

∑∞
n=0 γnz

nrn is absolutely convergent in C(T, X ′). Hence

fr(z) =
∞∑
n=0

γn(f)rnen = (CX′)r(z)(f),

which implies that M∞(r, f) ≤ AX(r)‖f‖X .
(iii) We write, for f ∈ A(D),

fw =
∫ 2π

0

f(e−iθ)Cweiθ
dθ

2π
.

Now, for |w| = r, applying Minkowski’s inequality

‖fw‖X ≤
∫ 2π

0

|f(e−iθ)|‖Cweiθ‖X
dθ

2π
≤ ‖f‖∞

∫ 2π

0

‖(CX)r(eiθ)‖X
dθ

2π
.

This gives the result. �

Given v : D→ [0,∞) a continuous weight, let H∞v denote the space of f ∈ H(D)
such that supz∈D v(z)|f(z)| <∞. Hence (ii) in Proposition 3.2 shows the following
fact.

Corollary 3.1. Let X be H-admissible and define v−1
1 (z) = AX(|z|) = ‖(CX′)|z|‖C(T,X′).

Then X ⊂ H∞v1 with continuous inclusion.

Let us now show that also taking multipliers and tensors preserveH-admissiblity.

Theorem 3.1. Let X and Y be H-admissible. Then (X,Y ) and X ⊗ Y are H-
admissible Banach spaces.

Proof. Let us take λ ∈ (X,Y ) and observe that, using Proposition 3.2,

M∞(r, λ) ≤ AY (r)‖λ ∗ Cr‖Y ≤ AY (r)‖λ‖(X,Y )‖Cr‖X .

This gives that (X,Y ) ⊂ H(D) with continuity.
Also note that if λ ∈ H(D) then

‖λr2‖(X,Y ) = sup
‖f‖X≤1

‖(λ ∗ fr)r‖Y

≤ BY (r) sup
‖f‖X≤1

M∞(r, λ ∗ f)

≤ BY (r)‖λ‖∞ sup
‖f‖X≤1

M∞(r, f)

≤ BY (r)AX(r)‖λ‖∞.

This is equivalent to H(DR) ⊂ (X,Y ) for any R > 1.
To show that X ⊗ Y is H-admissible Let h =

∑∞
n=0 fn ∗ gn where the series

converges in S and
∑∞
n=0 ‖fn‖X‖gn‖Y <∞. Observe that for each 0 < r < 1

hr2 =
∞∑
n=0

(fn)r ∗ (gn)r.
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Hence

M∞(r2, h) ≤
∞∑
n=0

M∞(r, fn)M∞(r, gn)

≤ AX(r)AY (r)
∞∑
n=0

‖fn‖X‖gn‖Y .

Hence, taking the infimum over all representations, M∞(r2, h) ≤ AX(r)AY (r)‖h‖X⊗Y .
This shows that X ⊗ Y ⊂ H(D) with continuity.

Let us now take h ∈ H(DR) and fix 1 < S < R. Hence
∑∞
n=0 |ĥ(n)|Sn < ∞.

Using that limn→∞
n
√
‖en‖X‖en‖Y = 1, we can write h =

∑∞
n=0 ĥ(n)en ∗ en, with

convergence in H(D) and
∞∑
n=0

‖ĥ(n)en‖X‖en‖Y ≤ K
∞∑
n=0

S−n‖en‖X‖en‖Y <∞.

�

Definition 3.2. If X is an H-admissible Banach space we define X̃ as the space
of functions in H(D) such that w → fw ∈ H∞(D, X). We write

‖f‖X̃ = sup
0<r<1

MX(r, f).

For instance H̃p = Hp or Ã(D) = H∞.
Let us collect some properties of X̃ in the next proposition.

Proposition 3.3. Let X ⊂ H(D) be H-admissible. Then

(i) X̃ is H-admissible.
(ii) X̃P ⊂ XP and X̃ = (̃XP) = ˜̃X.

(iii) X# ⊂ X∗ ⊂ (XP)# ⊂ (X̃)∗ with continuous inclusions. In particular
(XP)∗ = (XP)#.

Proof. (i) The fact that ‖ · ‖X̃ is a norm and complete is standard. Due to (i) in
Proposition 3.2 one has that for 0 < r < 1

MX̃(r, f) = ‖fr‖X̃ = MX(r, f).

From this one easily shows that X̃ is also H-admissible.
(ii) Note that

‖fr‖X̃ = MXP (r, f) = MX̃(r, f),

which gives that X̃ = X̃P . On the other hand if f ∈ P then

‖f‖X = lim
r→1
‖fr‖X ≤ sup

0<r<1
MX(r, f) = ‖f‖X̃ .

(iii) The first inclusion is immediate. For the second one note that (H∞)P =
A(D) and that (X,Y ) ⊂ (XP , YP).

Let g ∈ (XP)#. Since fr ∈ XP one has

‖(g ∗ f)r‖A(D) ≤ C‖fr‖X ≤ C‖f‖X̃ .

This shows that g ∈ (X̃)∗. �

Let us now present some useful lemmas to be used in the sequel.
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Lemma 3.1. Let X ⊂ H(D) be an H-admissible Banach space. If f, g ∈ H(D)
then

MX(rs, f ∗ g) ≤M1(r, f)MX(s, g),

Proof. Let 0 ≤ r, s < 1, |w| = r and |w′| = s

(f ∗ g)ww′ =
∞∑
n=0

γn(fw)γn(gw)en

where the series is absolutely convergent in X. Hence one concludes

(f ∗ g)ww′ =
∫ 2π

0

f(we−iθ)gw′eiθ
dθ

2π
,

where the integral is understood in the vector valued sense. Using Minkowski’s
inequality

‖(f ∗ g)ww′‖X ≤
∫ 2π

0

|f(we−iθ)|‖gw′eiθ‖X
dθ

2π
≤M1(r, f)MX(s, g).

This implies the result. �

Lemma 3.2. Let X ⊂ H(D) be an H-admissible Banach space and f ∈ H(D).
Then

MX(rs,Df) ≤ 1
1− r2

MX(s, f), (3.1)

MX(r, f)dr ≤
∫ 1

0

MX(rs,Df)ds, (3.2)

where Df(z) =
∑∞
n=1(n+ 1)f̂(n)zn.

Proof. Recall that Den = (n + 1)en and Df = K ∗ f where K(z) = 1
(1−z)2 . Use

Lemma 3.1 to obtain (3.1).
To see (3.2) simply use that, for each 0 ≤ r < 1 and |ξ| = 1, one has

rfrξ =
∫ r

0

(Df)sξds

as X-valued function. Hence, by Minkowski’s inequality,

rMX(r, f)dr ≤
∫ r

0

MX(s,Df)ds = r

∫ 1

0

MX(rs,Df)ds.

�

Definition 3.3. If X is an H-admissible Banach space and 1 ≤ q < ∞ we write
BX,q for the spaces of holomorphic functions such that

‖f‖BX,q = (
∫ 1

0

(1− r2)q−1Mq
X(r,Df)rdr)1/q <∞.

The case q =∞ corresponds to

‖f‖BX,∞ = sup
0<r<1

(1− r2)MX(r,Df).
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Clearly BHp,q coincides with Bp,q, 1 ≤ p, q ≤ ∞, consisting of those f ∈ H(D)
for which

‖f‖Bp,q :=
(
|f(0)|q +

∫ 1

0

Mq
p (r, f ′)(1− r)q−1r dr

)1/q

<∞.

(These spaces are called in [14] Hardy-Bloch spaces.) In the case q =∞, this should
be interpreted as

|f(0)|+ sup
0<r<1

Mp(r, f ′)(1− r) <∞.

Clearly B∞,∞ coincides with the Bloch space B.
It is easy to see that also B`q,q = `q.

Definition 3.4. Let 0 < p, q ≤ ∞. The space `(p, q) introduced by Kellogg [18],
consists of complex sequences {â(k)}∞0 such that{(∑

j∈Ik

|â(j)|p
)1/p}∞

k=0
∈ `q,

where Ik = {j : 2k−1 ≤ j < 2k}, for k ≥ 1, and I0 = {0}. The quasinorm in `(p, q)
is given by

‖{â(j)}‖`(p,q) =
∥∥∥{(∑

j∈Ik

|â(j)|p
)1/p}∞

k=0

∥∥∥
`q
.

It follows that `(p, p) is identical with `p. It is not difficult to show that, for
q <∞, the dual of `(p, q) is (isometrically) isomorphic to `(p′, q′), with the duality
pairing given by

(a, b) 7→
∞∑
j=0

â(j)b̂(j)

(the series being absolutely convergent and p′ = ∞ for p ≤ 1. Hence, the norm in
`(p, q), where 1 ≤ p ≤ ∞ and 1 ≤ q <∞, by means of the formula

‖a‖`(p,q) = sup
{∣∣∣ ∞∑

j=0

â(j)b̂(j)
∣∣∣ : ‖b‖`(p′,q′) ≤ 1

}
.

This can be used to derive the following formula for the Banach envelope of `(p, q) :

[`(p, q)] =


`1, if p, q ≤ 1,
`(p, 1), if 1 < p ≤ ∞, q < 1,
`(1, q), if p < 1, 1 < q ≤ ∞.

(3.3)

Given 0 < u, v <∞ let us denote

u	 v =


uv

u− v
, if v < u <∞,

v, if u =∞,
∞ if u ≤ v.

(The notation u	 v was introduced in [7].) Kellogg proved the following extension
of Hölder duality result.

Proposition 3.4. Let 1 ≤ p1, p2, q1, q2 ≤ ∞. Then

(`(p1, q1), `(p2, q2)) = `(p1 	 p2, q1 	 q2)

with equal norms.
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It is not hard to generalize the formula (2.2) to the setting of the Kellogg spaces.

`(p1, q1) ∗ `(p2, q2) = `(s1, s2),

where
1
sj

=
1
pj

+
1
qj
.

Then, using Proposition 2.2 and formula (3.3), one proves the following result.

Proposition 3.5. Let 1 ≤ pj , qj ≤ ∞. Then

`(p1, q1)⊗ `(p2, q2) = `(p1 ∗ p2, q1 ∗ q2).

Proposition 3.6. Let 1 ≤ p, q ≤ ∞. Then B`p,q = `(p, q).

Proof. The case q = ∞ follows from the observation that f ∈ `(p,∞) can be
rewritten by the condition

∞∑
n=0

|(n+ 1)f̂(n)|prnp ≤ C

(1− r)p
.

The case q < ∞ follows from the inequalities, for p, α > 0 and ak ≥ 0, (see [20]
or also [4, Lemma 2.1])

Ap,α

∞∑
n=0

2−nα(
∑
k∈In

ak)p ≤
∫ 1

0

(1− r)pα−1(
∞∑
k=0

akr
k)pdr

≤ Bp,α
∞∑
n=0

2−nα(
∑
k∈In

ak)p.

�

4. Homogeneous spaces of analytic functions

Definition 4.1. Let X be an H-admissible Banach space. It is said to be homo-
geneous if it satisfies:

(i) If f ∈ X and |ξ| = 1, then fξ ∈ X and ‖fξ‖X = ‖f‖X .
(ii) If f ∈ X and 0 < r < 1 then MX(r, f) ≤ K‖f‖X , where K is a constant

independent of f and r.

Observe that for homogeneous spaces Cξ ∈ (X,X) with ‖Cξ‖(X,X) = 1 if |ξ| =
1 and Cr ∈ (X,X) with sup0<r<1 ‖Cr‖(X,X) ≤ K. Note also that in this case
‖fw‖X = ‖f|w|‖X and ‖fr‖ = MX(r, f) and X ⊂ X̃ with continuity.

We denote by H∞(D, X) the space of X-valued bounded analytic functions and
A(D, X) those with continuous extension to the boundary, i.e. the closure of X-
valued polynomials.

Proposition 4.1. Let X be homogeneous Banach space.
(i) If f ∈ X then w → fw ∈ H∞(D, XP).
(ii) If f ∈ XP then w → fw ∈ A(D, XP).

Proof. (i) Note that the H-admissibility guarantees that F (w) = fw ∈ H(D, XP).
For homogeneous spaces

MX(r, f) = sup
|ξ|=1

‖frξ‖X = ‖Fr‖H∞(D,X).
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Hence F ∈ H∞(D, X).
(ii) It is clear that if f ∈ XP then limr→1 ‖fr − f‖ = 0. Now use that ‖F −

Fr‖H∞(D,X) = ‖f − fr‖ to conclude the result, because Fr ∈ A(D, X) for each
0 < r < 1. �

Proposition 4.2. Let X and Y be H-admissible Banach spaces. Then
(i) X̃ is homogeneous.
(ii) If Y is homogeneous then (X,Y ) is homogeneous.

(iii) If X and Y are homogeneous then X ⊗ Y is homogeneous.

Proof. The H-admissibility of (X,Y ), X ⊗ Y and X̃ was proved in Theorems 3.1
and 3.3 respectively.

(i) To show that X̃ is homogeneous use that MX(r, f) is increasing and the facts,
for |ξ| = 1 and 0 < r, s < 1,

MX(r, fξ) = MX(r, f) and MX(s, fr) = MX(sr, f).

(ii) Given λ ∈ (X,Y ) and f ∈ X one has that

λw ∗ f = (λ ∗ f)w
what trivially gives the result using the properties of Y .

(iii) Now given h ∈ X ⊗ Y with h =
∑∞
n=0 fn ∗ gn with

∑∞
n=0 ‖fn‖‖gn‖ < ∞

one has

MX⊗Y (r2, h) ≤
∞∑
n=1

MX(r, fn)MY (r, gn) ≤ K2
∞∑
n=1

‖fn‖X‖gn‖Y .

Therefore MX⊗Y (r2, h) ≤ ‖h‖X⊗Y for all 0 < r < 1.
Taking into account that

hξ =
∞∑
n=0

(fn)ξ ∗ gn, |ξ| = 1

one concludes that ‖hξ‖X⊗Y ≤ ‖h‖X⊗Y for |ξ| = 1. Therefore ‖hξ‖X⊗Y =
‖h‖X⊗Y . �

Proposition 4.3. Let X be H-admissible and 1 ≤ q ≤ ∞. Then
(i) BX,q is homogeneous.

(ii) (BX,q)P = BX,q for 1 ≤ q <∞.
(iii) (BX,∞)P = {f ∈ H(D) : limr→1(1− r2)MX(r,Df) = 0}.
(iv) BX,1 ⊂ XP and X̃ ⊂ BX,∞.

Proof. (i) The facts that ‖ · ‖BX,q is a norm and the completeness follow from stan-
dard arguments which are left to the reader. The H-admissibility and homogeneity
follow from the facts ‖fs‖BX,q = MBX,q (s, f) and Lemmas 3.1 and 3.2.

(ii) Note that lims→1MX(s, fr − f) = 0 for each 0 < r < 1. Hence, using the
Lebesgue dominated convergence theorem, one sees that, for q < ∞, if f ∈ BX,q

then ‖fr − f‖BX,q → 0 as r → 1. Since fr ∈ (BX,q)P the result follows.
(iii) Since any polynomial d ∈ P satisfies that limr→1(1 − r2)MX(r,Df) = 0

then (BX,∞)P ⊂ {f ∈ H(D) : limr→1(1− r2)MX(r,Df) = 0}. Let f ∈ H(D) such
that limr→1(1 − r2)MX(r,Df) = 0. For each ε > 0 one there exists r0 < 1 such
that

(1− s2) sup
r>s

MX(r,Df) < ε, r0 ≤ s < 1.
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Now observe that

‖f−fs‖BX,∞ ≤MX(r0, D(fs−f))+2(1−s2) sup
r>r0

MX(r,Df) ≤MX(r0, D(fs−f))+ε.

Therefore fs ∈ (BX,∞)P approaches f .
(iv) It follows from Lemma 3.2 and (ii). �

Proposition 4.4. Let X and Y be homogeneous Banach spaces. Then

(BX,1, Y ) = B(X,Y ),∞.

Proof. Let f be a polynomial and g ∈ B(X,Y ),∞. Observe that

f ∗ g(z) =
1
2

∫ 1

0

(1− r2)r2n+1
∞∑
n=0

(n+ 1)nf̂(n)ĝ(n)zn

=
1
2

∫ 1

0

(1− r2)(Df)r ∗ ((Dg)r − gr)(z)rdr.

Using that M(X,Y )(r, g) ≤M(X,Y )(r,Dg) (see (3.2)) one concludes that

‖f ∗ g‖Y ≤
∫ 1

0

(1− r2)‖(Df)r ∗ ((Dg)r − gr)‖Y rdr

≤
∫ 1

0

(1− r2)M(X,Y )(r, (Dg)− g)MX(r,Df)rdr

≤ 2
∫ 1

0

MX(r, (Df))(1− r2)M(X,Y )(r,Dg)rdr

≤ 2‖f‖BX,1‖g‖B(X,Y ),∞ .

Using that polynomials are dense in BX,1 one easily concludes that B(X,Y ),∞ ⊂
(BX,1, Y ).

Let f ∈ (BX,1, Y ). Then

M(X,Y )(r,Df) = sup{‖Df ∗ gr‖Y : ‖g‖X ≤ 1}
= sup{‖f ∗Dgr‖Y : ‖g‖X ≤ 1}
≤ ‖f‖(BX,1,Y ) sup{‖Dgr‖BX,1 : ‖g‖X ≤ 1}

≤ ‖f‖(BX,1,Y ) sup{
∫ 1

0

MX(s,D2gr)ds : ‖g‖X ≤ 1}.

Observe now that∫ 1

0

MX(s,D2gr)sds =
∫ 1

0

MX(sr,D2g)sds

≤
∫ 1

0

MX(
√
sr,Dg)

1− sr
ds

≤ A

∫ 1

0

‖g‖X
(1− sr)2

ds

≤ A
′′ ‖g‖X

(1− r2)
.

This estimate concludes the proof. �
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Corollary 4.1. If X is homogeneous then

(BX,1)# = (BX,1)∗ = (BX,1)′ = BX∗,∞ and (BX,1)K = BXK ,∞.

Let us give some information on the dual of homogeneous Banach spaces.
Note that if X is H-admissible then Xa is continuously embedded into X ′ by

means of the map λ ∈ Xa → φλ ∈ X ′ defined by

φλ(f) = lim
r→1

∞∑
n=0

λ̂(n)f̂(n)rn.

Recall that we use the notation A# = (X,A(D)). Hence, in particular X# ⊂ X ′

by means of f → λ ∗ f(1) for λ ∈ X#.
Therefore we have the following chain of continuous inclusions betweenH-admissible

Banach spaces:
XK ⊆ X# ⊆ Xa ⊆ X ′.

Proposition 4.5. Let X be an homogeneous Banach space. Then X# ⊂ (XP)′ ⊂
(XP)# with continuity.

Proof. Let f ∈ X# and define γ(g) = f ∗ g(1). One has that γ ∈ (XP)′ and
‖γ‖ ≤ ‖f‖X# what shows X# ⊂ (XP)′.

Given γ ∈ (XP)
′

define λ(z) =
∑∞
n=0 γ(en)zn. Let f ∈ XP and observe that

from Proposition 4.1 (ii) the function w → fw belongs to A(D, X). Hence

λ ∗ f(w) =
∞∑
n=0

γ(en)f̂(n)wn = γ(fw).

The continuity of γ implies that λ ∗ f ∈ A(D). Moreover

‖λ ∗ f‖A(D) = sup
|w|<1

|λ ∗ f(w)| ≤ K‖γ‖‖f‖.

This shows that λ ∈ (XP)# and ‖λ‖(XP)# ≤ K‖γ‖. �

Corollary 4.2. If X is an homogeneous Banach space then X∗ = (XP)∗ =
(XP)# = (XP)a = (XP)′ with equivalent norms.

Proof. Since X ⊂ X̃ it follows from Proposition 3.3 that

X̃P = XP and X∗ = (XP)#.

For the other equalities use the previous proposition. �

Proposition 4.6. Let X be homogeneous. Then XP ⊂ X∗∗ and there exists A > 0
that

‖f‖X∗∗ ≤ ‖f‖X ≤ K‖f‖X∗∗ , f ∈ XP .
In particular, XP = (X∗∗)P .

Proof. The inclusion and the first inequality are straightforward.
Let now f ∈ XP . From Corollary 4.2 and Hanh-Banach theorem,

‖f‖X = sup{|γ(f)| : γ ∈ (XP)′, ‖γ‖ ≤ 1}
≤ A sup{|g ∗ f(1)| : g ∈ (XP)#, ‖g‖(XP)# ≤ 1}
≤ A sup{‖g ∗ f‖∞ : g ∈ (XP)#, ‖g‖(XP)# ≤ 1}
= A sup{‖g ∗ f‖∞ : g ∈ X∗, ‖g‖X∗ ≤ 1}
≤ A‖f‖X∗∗ .
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�

5. The Fatou property

In this section we shall now consider a property closely related to (P7).

Definition 5.1. Let X ⊂ H(D) be an homogeneous Banach space. X is said to
satisfy F -property, to be denoted (FP ), if there exists A > 0 such that for any
sequence (fn) ∈ X with supn ‖fn‖X ≤ 1 and fn → f in H(D) one has that f ∈ X
and ‖f‖X ≤ A.

Proposition 5.1. Let X and Y be H-admissible Banach spaces. Then
(i) X̃ and BX,q, 1 ≤ q ≤ ∞, have (FP ).

(ii) If Y is homogeneous with (FP ) then (X,Y ) has (FP ).

Proof. (i) Let (fn) ∈ X̃ such that ‖fn‖X̃ ≤ 1 and fn → f in H(D). Using that
limn→∞MX(r, fn) = MX(r, f) one concludes that f ∈ X̃. Similar argument works
for BX,q.

(ii) Let (fn) ∈ (X,Y ) such that ‖fn‖(X,Y ) ≤ 1 and fn → f in H(D). Hence for
a given g ∈ X with ‖g‖X = 1 we have (fn ∗ g) ∈ Y such that ‖fn ∗ g‖(X,Y ) ≤ 1 and
fn ∗g → f ∗g in H(D). Since Y has (FP ), one has that f ∗g ∈ Y and ‖f ∗g‖Y ≤ A.
Therefore f ∈ (X,Y ) with ‖f‖(X,Y ) ≤ A. �

Let us formulate some equivalent conditions of this property.

Theorem 5.1. Let X be homogeneous. The following are equivalent:
(i) X has (FP ).

(ii) If f ∈ H(D) and supw∈D ‖fw‖X <∞ then f ∈ X.
(iii) X = X̃ with equivalent norms.
(iv) X = X∗∗.

Proof. (i) =⇒ (ii) Take f ∈ H(D) with 0 < sup0≤r<1MX(r, f) = A < ∞. Select
a sequence rn converging to 1 and put fn = Anfrn where A−1

n = MX(rn, f). Of
course fn → A−1f in H(D) and ‖fn‖X ≤ 1. Applying the assumption one gets
that f ∈ X.

(ii) =⇒ (iii) Note that if X is homogeneous one has X ⊂ X̃ and ‖f‖X̃ ≤ K‖f‖X .
The assumption means that X̃ ⊂ X. The continuity follows from the open map
theorem.

(iii) =⇒ (iv) Take f ∈ X∗∗. Then fr ∈ (X∗∗)P which, according to Proposition
4.6, coincides with XP . Hence we have

MX(r, f) ≤ KM(XP)∗∗(r, f) ≤ K ′‖f‖(XP)∗∗ .

This gives f ∈ X̃ = X.
(iv) =⇒ (i) If X = X∗∗ then X has (FP ) because (X∗, H∞) has (FP ) according

to Proposition 5.1. �

This characterization allows us to give examples failing to have (FP ), for instance
X = c0 or X = A(D).

To see that it suffices to consider the Cauchy kernel C = (f̂(j))j where f̂(j) = 1
for all j. Hence C ∈ `∞ \ c0, but, however, Cw ∗ f = Cw ∈ c0 for any |w| < 1 and
supw∈X ‖Cw ∗ f‖c0 = 1. Thus c0 fails (FP ). Select f ∈ H∞ \ A(D) and observe
that supw∈X ‖Cw ∗ f‖A(D) = ‖f‖∞. Thus A(D) fails (FP ).

In fact both examples are particular cases of the following corollary.
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Corollary 5.1. If XP has (FP ), then X = XP .

Remark 5.1. There exists a notion closely related to (FP ) in Banach space theory.
Recall that a complex Banach space E is said to have the ARNP if any bounded
E-valued function has boundary limits a.e, i.e if F : D → E is holomorphic and
bounded then limr→1 F (reiθ) exists a.e. in E (see [8, 9]).

Since F (w) = fw ∈ H∞(D, X), one sees that any homogeneous Banach space X
with the ARNP satisfies (FP ) (note that feiθ ∈ X for almost all θ implies that
f ∈ X.)

Since H∞ fails ARNP but has (FP ) they are not equivalent properties.

Although the space X ⊗ Y needs not to have (FP ) if only one of the spaces has
(FP ) (take X = `∞ and Y = c0 and note that X ⊗ Y = c0) the following result
says that the result holds true if both spaces have (FP ).

Theorem 5.2. Let X and Y be homogeneous with (FP ). Then X ⊗ Y has (FP ).

Proof. Let (hn) ∈ X ⊗ Y such that ‖hn‖X⊗Y ≤ 1 for all n such that hn → h
in H(D). Let us take a decomposition such that hn =

∑∞
j=1 fn,j ∗ gn,j where

‖fn,j‖X = ‖gn,j‖Y and

‖hn‖X⊗Y ≤
∞∑
j=0

‖fn,j‖X‖gn,j‖Y ≤ ‖hn‖X⊗Y + 1/n ≤ 2.

Therefore for any sequence (aj)j ∈ `2 with ‖(aj)‖2 = 1 one has that

max{‖
∑
j

ajfn,j‖X , ‖
∑
j

ajgn,j‖Y } ≤ 2.

Denoting φn =
∑
j ajfn,j and ψn =

∑
j ajgn,j , one has that supn ‖φn‖X ≤ 2

and supn ‖ψn‖X ≤ 2. Since X ⊂ (X#)′ and Y ⊂ (Y #)′, the Banach-Alaoglu
theorem implies that there exists a subsequence k(n) such that φk(n) converges
in the weak∗-topology to φ and ψk(n) converges in the weak∗-topology to ψ. In
particular φk(n) → φ in H(D) and ψk(n) → ψ in H(D). Using the (FP ) in both
spaces X and Y one obtains that φ ∈ X and ψ ∈ Y with ‖φ‖X ≤ 2 and ‖ψ‖Y ≤ 2.

Let us now select (aj)j the canonical basis of `2 and write fj and gj the functions
φ and ψ corresponding to such cases. In particular, using a diagonal process there
exists a subsequence k′(n) such that fk′(n),j → fj and gk′(n),j → gj in H(D) for all
j ∈ N. Taking limits one gets f =

∑∞
j=1 fj∗gj in S. To show that

∑
j ‖fj‖X‖gj‖Y <

∞ we shall see that
∑
j ‖fj‖2X < ∞ and

∑
j ‖gj‖2Y < ∞. This follows using that

φ = φ((aj)) and ψ = ψ((aj)) coincide with φ =
∑
j ajfj and ψ =

∑
j ajgj and the

facts ‖
∑
j ajfj‖X ≤ 2 and ‖

∑
j ajgj‖Y ≤ 2. �

Theorem 5.3. Let X and Y be homogeneous spaces.

(i) If Y has (FP ), then (X,Y ) = (X ⊗ Y ∗)∗.
(ii) If X and Y have (FP ), then X ⊗ Y = (X,Y ∗)∗.

Proof. (i) Use that Y ∗∗ = Y and Corollary 2.2 to get (X ⊗ Y ∗)∗ = (X,Y ).
(ii) We have (X⊗Y )∗∗ = X⊗Y by Theorems 5.2 and 5.1. Again use (X⊗Y )∗ =

(X,Y ∗) to conclude the proof. �
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6. `∞ ⊗ Y and solid Banach spaces

Definition 6.1. (see [2]) A set A ⊂ S is said to be solid if for any f ∈ A and
g ∈ S with |ĝ(j)| ≤ |f̂(j)| , j ≥ 0, implies that g ∈ A.

Remark 6.1. Let X be an S-admissible Banach space. X is solid iff `∞ ⊂ (X,X).

Let us mention the following elementary facts.

Proposition 6.1. If X or Y are solid S-admissible Banach spaces, then so are
(X,Y ) and X ⊗ Y .

Proof. Let (f̂(j))j ∈ `∞ and λ ∈ (X,Y ). To show that f ∗ λ ∈ (X,Y ) take g ∈ X
and observe that (f ∗λ)∗g = λ∗ (f ∗g) = f ∗ (λ∗g). This shows that (f ∗λ)∗g ∈ Y
whenever X or Y are solid.

The case X ⊗ Y follows from Remark 6.1 together with the trivial inclusion
X ⊂ (Y,X ⊗ Y ) and Theorem 2.3. If X is solid then

`∞ ⊂ (X,X) ⊂ (X, (Y,X ⊗ Y ) = (X ⊗ Y,X ⊗ Y ).

�

Proposition 6.2. (see [2]) If X ⊂ S is an S-admissible Banach space, then there
is a largest solid S-admissible Banach space s(X) ⊂ X. Furthermore s(X) is the
largest solid subset of X and we have

s(X) = (`∞, X).

Proof. Denote s(X) = (`∞, X). It is an S-admissible Banach space, by Theorem
2.1. From Proposition 6.1 one has that s(X) is a solid subspace of X. Now let
Y ⊂ X be any other solid subset. If f ∈ Y and g ∈ `∞, then g ∗ f ∈ Y ⊂ X. Hence
f ∈ (`∞, X) and so Y ⊂ (`∞, X). �

Proposition 6.3. [2, 7] If X ⊂ S, then there is a smallest solid superset S(X) ⊃ X.
Furthermore,

S(X) = `∞ ∗X, and

S(X) = {g ∈ S : ∃f ∈ A such that |f̂(j)| ≥ |ĝ(j)| for all j}. (†)

Proof. Clearly, S(X) is the intersection of all solid sets containing X. Since the set
`∞ ∗X is solid, we have S(X) ⊂ `∞ ∗X. On the other hand,

`∞ ∗X ⊂ `∞ ∗ S(X) (because X ⊂ S(X))

and `∞ ∗ S(X) = S(X), whence `∞ ∗X ⊂ S(X), and so `∞ ∗X = S(X).
For (†), let

B = {g ∈ S : ∃f ∈ X such that |f̂(j)| ≥ |ĝ(j)| for all j}.
It is trivial to check that B is a solid superset of X. Let D be any solid superspace
of A, and let g ∈ B. Then there is f ∈ X such that |f̂(j)| ≥ |ĝ(j)| for all j. Then
f ∈ D, and since D is solid we have g ∈ D. Thus B ⊂ D, whence B = S(X). �

Denote Sb(X) = `∞ ⊗X. Of course S(X) ⊂ Sb(X).

Theorem 6.1. Let X be an S-admissible Banach space. Then Sb(X) is the smallest
solid Banach space containing X. More precisely, if Y is a solid Banach space
containing X, then Sb(X) ⊂ Y with continuity.
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Proof. Let h ∈ `∞ ⊗X. Then

h =
∞∑
n=1

bn ∗ fn, where bn ∈ `∞, fn ∈ X, and

‖bn‖`∞ = 1,
∞∑
n=1

‖fn‖X <∞.

The series
∑∞
n=1 bn ∗ fn converges in Y because

∞∑
n=1

‖bn ∗ fn‖Y ≤
∞∑
n=1

C‖fn‖Y ≤
∞∑
n=1

CC1‖fn‖X <∞.

The sum in Y of this series is equal to h because X and Y are continuously em-
bedded in S. Thus h ∈ Y, which was to be proved. �

Corollary 6.1. If S(X) is an S-admissible Banach space then S(X) = `∞ ⊗ X,
with equivalent norms.

Proof. Since S(X) ⊂ `∞ ⊗X, by definition, and `∞ ⊗X ⊂ S(X), by Theorem 6.1,
we see that S(X) and `∞⊗X are equal as sets. The norms are equivalent because
these spaces are complete and `∞ ⊗X ⊂ S(X), by Theorem 6.1. �

Theorem 6.2. If X and Y are S-admissible Banach spaces, then

(Sb(X), Y ) = (X, s(Y )) = s
(
(X,Y )

)
.

Proof. We have, by Theorem 2.3,

(`∞ ⊗X,Y ) = (`∞, (X,Y )) = s
(
(X,Y )

)
,

and

(X ⊗ `∞, Y ) = (X, (`∞, Y )) = (X, s(Y )).

�

It is not hard to see that if X is solid, then Xa = XK , but, in the general case,
we always have XK ⊂ Xa.

Theorem 6.3. If X is an S-admissible Banach space, then

(Sb(X))a = (Sb(X))K = s(Xa) = XK .

Proof. By Theorem 2.3, we have

(`∞ ⊗X,A) = (`∞, Xa) = s(Xa),

and

(X ⊗ `∞,A) = (X, (`∞,A)) = XK ,

where we have used the easily verified relation (`∞)a = `1. �
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7. Computing H1 ⊗X in some cases.

The aim of this section is to identify H1 ⊗ X for some homogeneous Banach
spaces X. According to Theorem 5.3 one can state the following general result.

Proposition 7.1. If X has (FP ) then we have that

H1 ⊗X = (H1, X∗)∗ = (X,BMOA)∗.

However this is not a direct description of the space, but relies upon the knowl-
edge of the multiplier space. The following lemma is relevant for our purposes.

Lemma 7.1. Let X be a homogeneous Banach space. Then there exist A1, A2 > 0
such that

A1r
m‖f‖X ≤MX(r, f) ≤ A2r

k‖f‖X , 0 < r < 1
whenever f(z) =

∑m
j=k ajz

j where 0 ≤ k < m.

Proof. It is well known (see Lemma 3.1 [21]) that

rm‖f‖∞ ≤M∞(r, f) ≤ rk‖f‖∞, 0 < r < 1.

Using Proposition 4.6 one has

rm‖f‖X ≈ rm‖f‖X∗∗
≈ sup{rm‖f ∗ g‖∞ : ‖g‖X∗ = 1}
≤ C sup{M∞(r, f ∗ g) : ‖g‖X∗ = 1}
≈ ‖fr‖X∗∗ ≈MX(r, f)
≤ Crn sup{‖f ∗ g‖∞ : ‖g‖X∗ = 1}
≤ Crn‖f‖X∗∗ ≤ Arn‖f‖X .

�

Lemma 7.2. Let X ⊂ H(D) be homogeneous and P (z) =
∑2n+1

k=2n−1 P̂ (k)ek. Then
there exist constants B1 and B2 such that

B12n‖P ∗ f‖X ≤ ‖P ∗Df‖X ≤ B22n‖P ∗ f‖X , f ∈ X (7.1)

Proof. We apply Lemma 7.1 to obtain

A1r
2n+1
‖P‖X ≤MX(r, P ) ≤ A2r

2n−1
‖P‖X . (7.2)

To show (7.1) apply (7.2) for rn = 1− 2−n and (3.1) to get first

‖P ∗Df‖X = ‖D(P ∗ f)‖X
≤ AMX(rn, D(P ∗ f))
≤ A2nMX(rn, P ∗ f)ds
≤ A2n‖P ∗ f‖X .

Also applying (3.2) one gets

‖P ∗ f‖X ≈ MX(rn, P ∗ f)

≤ A

∫ rn

0

MX(s, P ∗Df)ds

≤ A

∫ rn

0

s2n‖P ∗Df‖Xds

≤ A2−n‖P ∗Df‖X .
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�

Theorem 7.1. Let X be an homogeneous Banach space. Then

BX,1 ⊂ H1 ⊗X ⊂ XP .

Proof. From Proposition 2.2 it suffices to show that if f ∈ H1 and g ∈ X then
f ∗ g ∈ XP . From Lemma 3.1

MX(r2, f ∗ g) ≤M1(r, f)MX(r, g) ≤ K‖f‖1‖g‖X .
Using Proposition 2.1 the polynomials are dense in H1 ⊗X and H1 ⊗X ⊂ Xp is
shown.

Let us now show that BX,1 ⊂ H1 ⊗X.
Let {Wn}∞0 be a sequence of polynomials such that

supp(Ŵn) ⊂ [2n−1, 2n+1] (n ≥ 1), supp(Ŵ0) ⊂ [0, 1], sup
n
‖Wn‖1 <∞

f =
∞∑
n=0

Wn ∗ f, f ∈ H(D).

Such a sequence exists (see, e.g., [4, 23, 17, 25] for possible constructions). Note
that

‖(Wn ∗ f)r‖X ≤ K‖Wn‖1‖fr‖X ≤ C‖f‖X ,
Hence, since Wn ∗ f is a polynomial, ‖Wn ∗ f‖X ≤ C‖f‖X .

Denoting Qn = Wn−1 +Wn +Wn+1 we can write

f =
∞∑
n=0

Qn ∗Wn ∗ f,

for all f ∈ H(D).
Note now that Lemma 7.2 allow us to conclude

∞∑
n=0

‖Qn‖1‖Wn ∗ f‖X ≤ K

∞∑
n=0

‖Wn ∗ f‖X

≤ K

∞∑
n=0

∫ 1−2−(n+1)

1−2−n
2nr2n‖Wn ∗ f‖Xdr

≤ K

∞∑
n=0

∫ 1−2−(n+1)

1−2−n
r2n‖Wn ∗Df‖Xdr

≤ K

∞∑
n=0

∫ 1−2−(n+1)

1−2−n
MX(r,Wn ∗Df)dr

≤ K

∞∑
n=0

∫ 1−2−(n+1)

1−2−n
MX(r,Df)dr

= K

∫ 1

0

MX(r,Df)dr

= K‖f‖BX,1 .

�

A property that turns out to be crucial for our purposes is the following one
already mentioned in the introduction.
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Definition 7.1. Let X ⊂ H(D) be an homogeneous Banach space. We say that X
satisfies (HLP ) if X ⊂ BX,2, i.e. there exits a constant A > 0 such that∫ 1

0

(1− r)M2
X(r,Df)dr ≤ A‖f‖X (7.3)

Theorem 7.2. Let X be an homogeneous Banach space satisfying (HLP ). Then
H1 ⊗X = BX,1.

Proof. Due to Theorem 7.1 we only need to show that H1 ⊗X ⊂ BX,1. It suffices
to see that f ∗ g ∈ BX,1 for each f ∈ H1 and g ∈ X. Now using Lemma 3.1 we
have, ∫ 1

0

MX(r,D(f ∗ g))rdr ≤ A

∫ 1

0

(
∫ r

0

MX(s,D2(f ∗ g))ds)rdr

≤ A

∫ 1

0

(1− s)MX(s,D2(f ∗ g))ds

≤ 2A(
∫ 1

0

(1− r2)M1(r,Df)MX(r,Dg)rdr

Now from Cauchy-Schwarz (7.3) for C-valued functions and (HLP) one obtains∫ 1

0

(1− r2)M1(r,Df)MX(r,Df)rdr ≤ (
∫ 1

0

(1− r2)M2
1 (r,Df)rdr)1/2

. (
∫ 1

0

(1− r2)M2
X(r,Dg)rdr)1/2

≤ K‖f‖1‖g‖X

�

8. Applications

Our techniques allow us to describe X ⊗ Y in several cases. We only exhibit
some applications, although many others can be achieved in a similar fashion.

As a consequence of Theorem 7.2 and Proposition 3.6 one obtains the following
result.

Corollary 8.1. Let 1 ≤ p ≤ 2. Then
(i) H1 ⊗Hp = Bp,1.
(ii) H1 ⊗ `p = `p,1.

Let 1 ≤ p, q ≤ ∞ and let Hp,q,α denote the mixed norm spaces of analytic
functions in the unit disc given by the condition

‖f‖Hp,q,α = (
∫ 1

0

(1− r)αq−1Mp(r, f)dr)1/q <∞, q <∞

and
‖f‖Hp,∞,α = sup

0<r<1
(1− r)αMp(r, f) <∞, q =∞.

Recall that p 	 q stands for the value ∞ whenever q ≥ p and 1
p	q = 1

q −
1
p

whenever q < p, and that 1
p∗q = min{1, 1

p + 1
q}.
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Corollary 8.2. Let 1 ≤ q, u, v ≤ ∞. Then B1,q ⊗Bu,v = Bu,q∗v.

Proof. This follows from Theorem 5.3, applying that the spaces Bp,q have (FP )
together with the facts that

(Bp,q, H∞) = Bp′,q′ , p, q ≥ 1,

(see [1] for p = 1, 1 < q <∞; see [13] for the remaining cases) and

(B1,q,Bu′,v′) = Bu′,q	v′ , q, u, v ≥ 1. (8.1)

Relation (8.1) is only a reformulation the following result on multipliers (see [17,
Theorem 3.5]):

(H(1, q, 1), H(u′, v′, 1)) = {λ ∈ H(D) : Dλ ∈ H(u′, q 	 v′, 1)}.
�

We can now use our techniques to characterize the space of multipliers from H1

in some cases.

Theorem 8.1. Let X be a homogeneous Banach space with (HLP ). Then

(H1, X∗) = BX∗,∞.

(H1, XK) = BXK ,∞.

Proof. Apply Theorem 2.3 together with Theorem 7.2 and Proposition 4.4 to obtain

(H1, X∗) = (H1 ⊗X,H∞) = (BX,1, H∞) = BX∗,∞.

The other case is analogous. �

In particular the previous theorem yields the following results on multipliers from
H1 due, among others, to Hardy and Littlewood, Stein and Zygmund, Sledd (the
cases Hq), to Mateljević and Pavlović (the case BMOA) and to Duren (the case
`q).

Corollary 8.3. Let 2 ≤ q <∞. Then

(H1, Hq) = Bq,∞ (see [16],[28], [27]),

(H1, BMOA) = B (see [22]),
(H1, `q) = `(q,∞).

Also we can use our results to obtain spaces of multipliers into BMOA in some
cases.

Theorem 8.2. Let X be a homogeneous Banach space with (HLP ). Then

(X,BMOA) = BX∗,∞.

Proof. Combining again Theorem 2.3 together with Theorem 7.2 and Proposition
4.4 one gets

(X,BMOA) = (X, (H1, H∞)) = (X ⊗H1, H∞) = (BX,1, H∞) = BX∗,∞.

�

Corollary 8.4. Let 1 ≤ p ≤ 2. Then

(Hp, BMOA) = Bp′,∞ (see [24] and [17]),

(`p, BMOA) = `(p′,∞).
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The results allow also to recapture some of the multiplier results for Hardy-
Lorentz spaces appearing in [19] using similar approaches.
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Matematički fakultet, Studentski trg 16, 11001 Beograd, p.p. 550, Serbia

E-mail address: pavlovic@matf.bg.ac.yu


