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Abstract 

Scatter search is a population-based method that has recently been shown to yield promising outcomes for 
solving combinatorial and nonlinear optimization problems.  Based on formulations originally proposed 
in the 1960s for combining decision rules and problem constraints such as the surrogate constraint 
method, scatter search uses strategies for combining solution vectors that have proved effective in a 
variety of problem settings.  In this paper, we develop a general purpose heuristic for a class of nonlinear 
optimization problems.  The procedure is based on the scatter search methodology and treats the objective 
function evaluation as a black box, making the search algorithm context-independent. 
 
Most optimization problems in the chemical and bio-chemical industries are highly nonlinear in either the 
objective function or the constraints.  Moreover, they usually present differential-algebraic systems of 
constraints.  In this type of problem, the evaluation of a solution or even the feasibility test of a set of 
values for the decision variables is a time-consuming operation.  In this context, the solution method is 
limited to a reduced number of solution examinations.  We have implemented a scatter search procedure 
in Matlab for this special class of difficult optimization problems.  Our development goes beyond a 
simple exercise of applying scatter search to this class of problem, but presents innovative mechanisms to 
obtain a good balance between intensification and diversification in a short-term search horizon. 
Computational comparisons with other recent methods over a set of benchmark problems favor the 
proposed procedure. 
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1. Introduction 
Mathematical modeling, optimization and control have become fundamental tools for optimally designing 
and operating production facilities in most industrial sectors such as the chemical and biotechnological 
process industries (e.g., see Shimizu, 1996; Bailey, 1998; Banga et al., 2003a,b; Biegler and Grossmann, 
2004; Floudas et al, 2005). Since many of these processes are operated in batch or semi-continuous 
modes, especially in the case of the bio-industries, they have an inherently dynamic nature. In this 
context, there are at least three relevant types of optimization problems: optimal operation (dynamic 
optimization), integrated process design and control, and parameter estimation. These problems can be 
stated as, or transformed into, nonlinear programming problems subject to dynamic (usually differential 
algebraic) constraints. Their highly constrained, non-linear and sometimes non-smooth nature often 
causes non-convexity, and therefore global optimization methods are needed in order to find suitable 
solutions (Floudas et al, 2005). 
 
In this paper we address the optimization of this important class of problem i.e. the nonlinear 
programming problem with both differential and algebraic constraints, as given in the following 
formulation: 
 

x
Min φ(y,x) (1)  

Subject to: 
( , , ) 0f y y x =&  (2)  

0 0( )y t x=  (3)  

( , ) 0h y x =  (4)  

( , ) 0g y x ≤  (5)  

L Ux x x≤ ≤  (6)  

 
In this model φ(y,x) is the objective function; x is the vector of the nvar decision variables; y is the set of 
state system variables (ỷ is the time derivative of y), f is the set of differential equations describing the 
system dynamics, and h and g are, respectively, the equality and inequality constraints. Finally, xL and xU 
are the lower and upper bounds, respectively, for the decision variables. 
 
Many real world optimization problems in chemical engineering (and also in business or economics) are 
too complex to be given tractable mathematical formulations. Although we have used mathematical 
notation in the formulation above, we are considering the general case in which there is no explicit 
expression of the objective function φ(y,x) since it contains multiple nonlinearities, combinatorial 
relationships and uncertainties inaccessible to modeling except by resorting to more comprehensive tools 
like computer simulation.  In the context of optimizing simulations, a “complex evaluation” refers to the 
execution of a simulation model (which can be extremely time-consuming). 
 
Theoretically, the issue of identifying best values for a set of decision variables x falls within the realm of 
optimization. Until quite recently, however, the methods available for finding optimal decisions have 
been unable to cope with the complexities and uncertainties posed by many real world problems of the 
form treated by simulation. The area of stochastic optimization has attempted to deal with some of these 
practical problems, but the modeling framework limits the range of problems that can be tackled with 
such technology. The complexities and uncertainties in these systems are the primary reason that 
simulation is often chosen as a basis for handling the decision problems associated with them.  Advances 
in the field of metaheuristics have led to the creation of optimization engines that successfully guide a 
series of complex evaluations with the goal of finding optimal values for the decision variables. 
 
The resolution of the differential-algebraic constraints ( , , ) 0f y y x =&  is usually a hard problem.  Thus, an 
approximate method (typically a Runge-Kutta, BDF method, or a similar numerical process) is applied to 
obtain the y-values corresponding to a set of decision values x.  Therefore, this kind of complex problem 
is solved with a black-box sequential method in which the optimization takes place in the set of the 
decision variables x.  Therefore, given a set of values for the x-variables, the approximate solver of the 
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differential-algebraic constraints computes the associated y-values.  We then test the feasibility of the 
(x,y) solution with the h and g functions. To sum it up, a remarkable computational effort is associated 
with the evaluation and the feasibility test of one solution. 
 
The disadvantage of “black-box” approaches is that the optimization procedure is generic and has no 
knowledge of the process employed to perform evaluations inside the box and therefore does not use any 
problem-specific information.  The main advantage, on the other hand, is that the same optimizer can be 
applied to complex systems in many different settings.  Therefore, although we have designed and tested 
our method in the process systems engineering environment, it can be directly applied to solve any kind 
of black-box optimization problems in other settings. 
 
Advances in the field of metaheuristics — the domain of optimization that incorporates artificial 
intelligence and analogs to physical, biological or evolutionary processes — have led to the creation of 
new approaches that successfully integrate simulation and optimization.  We have identified the following 
five methods as the best available to handle black-box problems.  We will use them in our computational 
comparison in Section 4. 
 
Csendes (1988) proposed Global, a hybrid global optimization algorithm which is essentially an 
improvement of the algorithm by Boender et al. (1982). It uses a random search followed by a local 
search routine. Initially, it carries out a clustering phase. Next, two different local search procedures can 
be selected for a second step. The first one is a quasi-Newton type algorithm. The second, more 
appropriate for problems with discontinuous objective functions or derivatives, is a robust random search 
method. 
 
Differential Evolution (DE) is a heuristic algorithm for the global optimisation of nonlinear and (possibly) 
non-differentiable continuous functions presented by Storn and Price (1997). This population-based 
method handles stochastic variables by means of a direct search method which outperforms other popular 
global optimization algorithms such as simulated annealing or genetic algorithms, and it is widely used by 
the evolutionary computation community. 
 
Stochastic Ranking Evolution Strategy (SRES), developed by Runarsson and Yao (2000, 2005), consists 
of an (µ,λ) evolution strategy combined with an approach to balancing objective and penalty functions 
stochastically.  In the (µ,λ)-ES algorithm, the evaluated objective and the penalty functions for each 
individual are used to rank the individuals in a population, and the best (highest ranked) µ individuals out 
of λ are selected for the next generation.  This feature makes it especially appealing for the case of 
constrained problems, like those considered here. 
 
Jones (2001) proposed Direct (DIviding RECTangles), a deterministic global optimization algorithm 
based on a modification of the Lipschitzian optimization scheme to solve difficult global optimization 
problems. The search is performed by dividing the space into hyper-rectangles and is specifically 
designed for those cases in which the objective function is non-smooth, no derivative information is 
available, or its evaluation requires several different simulations to be performed.  The algorithm operates 
by systematically dividing the optimization domain into hyper-rectangles, and evaluating the objective 
function in their centers. There are two phases to an iteration of Direct: first, hyper-rectangles are 
identified as potentially optimal (i.e. it is expected that they contain a global solution); the second phase 
consists of dividing potentially optimal hyper-rectangles into smaller ones. The objective function is 
evaluated in the centers of new hyper-rectangles and the search is directed towards unexplored regions of 
the domain.  We use the Matlab implementation of Finkel and Kelley (2004) in our computational testing. 
 
OptQuest is the optimization engine released by OptTek Systems, Inc.. As described in Laguna and Martí 
(2002), this is a generic optimizer that overcomes the deficiency of black box systems and successfully 
embodies the principle of separating the method from the model.  In such a context, the optimization 
problem is defined outside the complex system.  Therefore, the evaluator can change and evolve to 
incorporate additional elements of the complex system, while the optimization routines remain the same.  
Hence, there is a complete separation between the model used to represent the system and the procedure 
that solves optimization problems formulated around the model.  The optimization technology embedded 
in OCL is the metaheuristic known as scatter search. The method is organized to (1) capture information 
not contained separately in the original points, (2) take advantage of auxiliary heuristic solution methods 
(to evaluate the combinations produced and to actively generate new points), and (3) make dedicated use 
of strategy instead of randomization to carry out component steps.  In our testing we use the 
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implementation known as OQNLP (Ugray et al. 2003) which uses OptQuest to provide starting points for 
any gradient-based local NLP solver.  This procedure combines the superior accuracy and feasibility-
seeking behavior of gradient-based local NLP solvers with the global optimization abilities of scatter 
search. 
 
In this paper we propose a scatter search (SS) implementation to solve the optimization-simulation 
problem that arises in chemical processes.  This study goes beyond a simple exercise of implementing a 
known method to solve a problem, and we propose innovative mechanisms and new strategies to 
overcome the limitations of the previous methods described above.  The remainder of the paper is 
organized as follows. Section 2 is devoted to the generic SS methodology as it is usually applied.  In 
Section 3 we show our adaptation of this methodology to solve the optimization problem described 
above, in which we propose new mechanisms for search intensification and diversification. The 
computational comparison in Section 4 reports the solution of the five methods above and our proposal 
when solving a set of well-known problems in the context of chemical process optimization.  The paper 
finishes with the associated conclusions. 
 
 
2. Scatter Search Methodology 
Scatter search (SS) was first introduced in Glover (1977) as a heuristic for integer programming. SS 
orients its explorations systematically, relative to a set of reference points that typically consist of good 
solutions obtained by prior problem solving efforts.  The scatter search template (Glover 1998) has 
served as the main reference for most of the SS implementations to date.  SS methodology is very 
flexible, since each of its elements can be implemented in a variety of ways and degrees of sophistication.  
In this section we give a basic design to implement SS based on the well-known “five-method template” 
(Laguna and Martí, 2003).  The advanced features of SS are related to the way these five methods are 
implemented.  That is, the sophistication comes from the implementation of the SS methods instead of the 
decision to include or exclude certain elements (as in the case of tabu search or other metaheuristics). 
 
The fact that the mechanisms within SS are not restricted to a single uniform design allows the 
exploration of strategic possibilities that may prove effective in a particular implementation.  These 
observations and principles lead to the following “five-method template” for implementing SS: 
 
1. A Diversification Generation Method to generate a collection of diverse trial solutions, using an 

arbitrary trial solution (or seed solution) as an input. 
2. An Improvement Method to transform a trial solution into one or more enhanced trial solutions.  

Neither the input nor the output solutions are required to be feasible, though the output solutions will 
more usually be expected to be so.  If no improvement of the input trial solution results, the 
“enhanced” solution is considered to be the same as the input solution. 

3. A Reference Set Update Method to build and maintain a reference set consisting of the b “best” 
solutions found (where the value of b is typically small e.g. no more than 20), organized to provide 
efficient accessing by other parts of the method.  Solutions gain membership to the reference set 
according to their quality or their diversity. 

4. A Subset Generation Method to operate on the reference set, to produce several subsets of its 
solutions as a basis for creating combined solutions. 

5. A Solution Combination Method to transform a given subset of solutions produced by the Subset 
Generation Method into one or more combined solution vectors. 

 
Figure 1 shows the interaction among these five methods and highlights the central role of the reference 
set.  This basic design starts with the creation of an initial set of solutions P, and then extracts from it the 
reference set (RefSet) of solutions.  The darker circles represent improved solutions resulting from the 
application of the Improvement Method. 
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Figure 1: Schematic representation of a basic SS design 
 
The Diversification Generation Method is used to build a large set P of diverse solutions.  The size of P 
(PSize) is typically at least 10 times the size of RefSet.  The initial reference set is built according to the 
Reference Set Update Method, which can take the b better solutions (as regards their quality in the 
problem solving) from P to compose the RefSet.  However, diversity can be considered instead of or in 
addition to quality for the updating.  For example, the Reference Set Update Method could consist of 
selecting b distinct and maximally diverse solutions from P.  Regardless of the rules used to select the 
reference solutions, the solutions in RefSet are ordered according to quality, where the best solution is the 
first one in the list.  The search is then initiated by applying the Subset Generation Method which, in its 
simplest form, involves generating all pairs of reference solutions. The pairs of solutions in RefSet are 
selected one at a time and the Solution Combination Method is applied to generate one or more trial 
solutions.  These trial solutions are subjected to the Improvement Method.  The Reference Set Update 
Method is applied once again to build the new RefSet with the best solutions, according to the objective 
function value, from the current RefSet and the set of trial solutions.  The basic procedure terminates after 
all the generated subsets are subjected to the Combination Method and none of the improved trial 
solutions are admitted to RefSet under the rules of the Reference Set Update Method.  However, in 
advanced SS designs, the RefSet rebuilding is applied at this point and the best b/2 solutions are kept in 
the RefSet and the other b/2 are selected from P, replacing the worst b/2 solutions. 

 
The reference set, RefSet, is a collection of both high quality solutions and diverse solutions that are used 
to generate new solutions by way of applying the Combination Method.  We can use a simple mechanism 
to construct an initial reference set and then update it during the search.  The size of the reference set is 
denoted by b = b1 + b2 = |RefSet|.  The construction of the initial reference set starts with the selection of 
the best b1 solutions from P.  These solutions are added to RefSet and deleted from P.  For each solution 
in P-RefSet, the minimum of the distances to the solutions in RefSet is computed.  Then, the solution with 
the maximum of these minimum distances is selected.  This solution is added to RefSet and deleted from 
P, and the minimum distances are updated.  The process is repeated b2 times, where b2 = b – b1.  The 
resulting reference set has b1 high quality solutions and b2 diverse solutions. 
 
Of the five methods in SS methodology, only four are strictly required.  The Improvement Method is 
usually needed if high quality outcomes are desired, but a SS procedure can be implemented without it.  
On the other hand, hybrid SS designs could incorporate a short-term tabu search or other complex 
metaheuristic such as the improvement method (usually demanding more running time). 
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It is interesting to observe similarities and contrasts between SS and the original GA proposals.  Both are 
instances of what are sometimes called “population based” or “evolutionary” approaches.  Both 
incorporate the idea that a key aspect of producing new elements is to generate some form of combination 
of existing elements.  However, GA approaches are predicated on the idea of choosing parents randomly 
to produce offspring, and further on introducing randomization to determine which components of the 
parents should be combined.  By contrast, the SS approach does not emphasize randomization, 
particularly in the sense of being indifferent to choices among alternatives.  Instead, the approach is 
designed to incorporate strategic responses, both deterministic and probabilistic, that take account of 
evaluations and history.  SS focuses on generating relevant outcomes without losing the ability to produce 
diverse solutions, due to the way the generation process is implemented. 
 
 
3. Scatter Search for the Optimization-Simulation Problem 
In this section we describe the adaptation of the SS methodology to solve the optimization problem 
introduced in Section 1, in which the objective function is given by a simulation process and some 
constraints are differential equations describing the system dynamics. 
 
In unconstrained problems, the evaluation of a solution is directly given by the objective function, or the 
output of the simulation process that defines it.  In constrained problems, to make the search flexible, we 
allow the method to generate and combine unfeasible solutions.  In particular, we add a penalty term to 
the objective function value defined by a weight multiplied by the maximum percentage of the violation 
of the constraints.  We consider relative violations instead of absolute ones to take into account the 
different orders of magnitude among constraints.  This weight, wpen, can be modified by the user to vary 
the degree of unfeasibility permitted in the search. 
 
3.1 Diversification Generation Method 
Our SS method implemented in Matlab begins by generating an initial set P of diverse points.  This is 
usually accomplished by dividing the range of each variable into n sub-ranges of equal size. Then, a 
solution is constructed in two steps.  First, a sub-range is randomly selected.  The probability of selecting 
a sub-range is inversely proportional to its frequency count (which keeps track of the number of times the 
sub-range has been selected).  Second, a value is randomly chosen from the selected sub-range.  The 
starting set of points also includes the following three solutions: the first one in which all variables are set 
to the lower bound, the second one in which all variables are set to the upper bound, and the third one in 
which all variables are set to the midpoint between both bounds.  This is the standard SS implementation 
of the Diversification Generation Method for non-linear problems.  It is implemented in the commercial 
software OQNLP described in the introduction.  However, we have found that in some instances in which 
variables may have values in a huge range that does not contain the zero, a logarithmic distribution 
usually provides better results. 
 
In the context of chemical and bio-process optimization, the selection of the lower bounds for the decision 
variables is usually quite straightforward because of their physical meaning (e.g. a temperature can never 
have a value lower than 0 Kelvin). However, the selection of an upper bound is not so easy and they are 
often chosen as an arbitrarily large value to contain all the potential values for each variable.  Therefore, it 
is expected that the optimal and good solutions may lie much closer to the lower bounds than to the upper 
bounds.  In this context, a uniform distribution for selecting diverse solutions within the bounds will not 
generate many trial points with good values.  In contrast, a logarithmic distribution will generate more 
trial vectors very close to the lower bound, thus allowing the algorithm to be initialized with high quality 
members in the initial population, ensuring a faster convergence.  Moreover, a logarithmic distribution is 
also helpful in the case of variables that can intrinsically have values in "different orders of magnitude" 
(say, for instance, around 10-3, 10-2 or 102 as is the case of pre-exponential factors in kinetic equations) or 
with variables without physical meaning, for which selecting bounds is a difficult task. In order to obtain 
good initial values for these cases, an option for selecting variables in different orders of magnitude has 
been added in our implementation under the name log_var. 
 
Figure 2 illustrates this situation in one of the instances presented in Section 4.  Consider a variable that 
takes values between 10-12 and 104. If we generate a starting set of points (say 100) between those bounds 
using a uniform distribution, we will approximately obtain the same number of values in every interval 
shown in Figure 2a. Alternatively, if we select the log_var option for this variable, its values will be 
randomly selected with equal probability across the sub-ranges depicted in Figure 2b.  In this option, the 
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number of subintervals is automatically adjusted so that there are a maximum of two orders of magnitude 
between the limits of each interval (e.g. for a variable between 10-12 and 104, the number of subintervals 
would be 8), thus generating more solutions close to zero. 

 
Figure 2: Intervals within a variable range 

a) Values uniformly distributed within the bounds 
b) Values distributed within the different orders of magnitude  

 
 
3.2 Reference Set Update Method 
As described in Section 2, the RefSet Update Method is applied in two different steps of the algorithm: 
when building the initial RefSet from the set P of diverse solutions and when updating it with the 
combined solutions. 
 
3.2.1 Building the RefSet 

After generating the set P of diverse solutions, two strategies may be chosen to select the first members of 
the RefSet. In the first strategy (used by default), a subset of good and diverse points is selected as the 
reference set.  The initial RefSet is built selecting the best b/2 solutions from P as given by the evaluation-
simulation process and then making more b/2 selections in order to maximize the minimum distance 
between the candidate solution and the solutions currently in RefSet.  That is, for each candidate solution 
x in P-RefSet and each solution z in RefSet, we calculate the Euclidean distance d(x,z) and then select the 
candidate solution that maximizes dmin(x), where  
 

{ }),(min)(min zxdxd
z RefSet∈

= . 

 
This strategy requires |P| simulations to identify the best b/2 solutions in terms of the objective function 
value. Unless we choose a low value for |P|, this can cause a waste of computational effort, especially in 
the case of the time-consuming problems we are facing in this study.  We therefore propose an alternative 
strategy in which the initial RefSet is formed with three solutions: one solution with all the variables in 
their lower bound, another one having all the variables in their upper bounds and the third one given by 
the midpoint between the first two. The RefSet is completed using the same procedure of maximizing the 
minimum Euclidean distance between the candidate solutions in P and the current members of the RefSet. 
This second strategy does not involve any simulation prior to the optimization stage.  We therefore have 
no information about the quality of these solutions, so we expect the algorithm to converge more slowly.  
We may say that the first strategy combines quality and diversity in the initial RefSet, whereas the second 
focuses only on diversity (and saves computational effort). 
 
3.2.2 Updating the RefSet 

In its original design, the Reference Set Update Method indicates that the RefSet is updated by selecting 
the best b solutions from the union of the reference set and the new combined solutions.  However, we 
have empirically found that this standard mechanism would result in intermediate reference sets with very 
similar solutions which are unlikely to produce new good solutions by combination.  We have then added 
a distance filter to prevent similar solutions from becoming part of the RefSet.  Specifically, we compare 
each newly created solution (y,x) with the worst solution in the current RefSet (yb,xb); if it improves its 
value (φ(y,x)<φ (yb,xb)) instead of directly replacing it, as in the original SS implementation, we compute 
the distance between the new solution and the RefSet without the worst solution d(x,RefSet-xb) as: 
 

d(x,RefSet-xb)  
{ }

{ }),(min zxd
z bx-RefSet∈

=  
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If this distance is larger than a threshold value dth, the new solution x replaces the old one xb in the 
RefSet.  On the other hand, if φ(y,x)<φ (yb,xb) and d(x,RefSet-xb)<dth we scan the RefSet from xb-1 to x1 in 
search of a solution xj satisfying φ(y,x)<φ (yj,xj) and d(x, RefSet- xj)<dth in order to replace xj with x.  If no 
xj verifies it, the solution x does not enter the RefSet. 
 
Figure 3 shows a schematic representation of four solutions in the RefSet (white circles) and a candidate 
solution to be included (black circle).  Numbers inside each circle represent the objective function value 
for each solution and the distance between circles represents the Euclidean distance. In a minimization 
problem, in the original design of the update method, the solution with value 3 would replace the solution 
with value 7.  In our design, with a threshold value dth=2, it replaces the solution with value 4. 
 

 
 

Figure 3: Four solutions in RefSet and a new solution to enter it. 
 
We have implemented an aspiration criteria (according to tabu search terminology) for this distance filter.  
If a solution has the best value found so far but it does not verify the distance filter, we ignore this filter 
and add it to the RefSet replacing its closest solution.  The parameter dth is initially set to the minimum 
distance between the solutions in the initial RefSet.  The distance filter avoids the inclusion in the RefSet 
of solutions that would lead to a reduction of this minimum distance.  If after k consecutive iterations 
(where one iteration is a complete combination and update of the RefSet) the best solution has been 
improved, dth is increased by 10%; otherwise, it is reduced by 10% of its value.  Note that in the last 
iterations the dth-value is always reduced, permitting the final refinement of the solutions. 
 
We have included a second filter to prevent the method from being trapped in a region for a large number 
of iterations.  In particular, if two solutions are relatively far apart but present very similar objective 
values, as can happen in functions with flat landscapes, we do not replace the worst one with the slightly 
better one.  The value filter indicates that a solution (yj,xj) in the RefSet can be replaced with a new 
solution (y,x) if φ(y,x)< vth φ( yj,xj), where the threshold value, vth, is set in the range [0.75 , 1]. 
 
Figure 4 illustrates this situation in a minimization problem of a real function.  Consider a solution XR in 
the RefSet and a candidate solution XC to enter it.  Suppose that they verify the distance filter according 
to dth and XC has a slightly better value (say around 0.1% lower) than XR.  Then, instead of directly 
replacing XR with XC, the quality filter considers that they may lie in the same flat area of the function, 
as shown in Figure 4, and forbids the replacement in order to "wait" for a better solution (thus performing 
a more aggressive search). 
 

XR XC  
 

Figure 4: Two solutions in a flat zone of the objective function.  

6 

1 
4 3 

7

dth = 2 

d = 0.8

d = 3.6
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Note that both filters act in a coordinated way since the assumption of flat landscapes is related with value 
and distance.  Consider, for example, a new solution in Figure 4 close to the origin and with the same 
value of XC.  The situation would be completely different, since it does not belong to the same flat area 
of XR, as indicated by its distance.  On the other hand, SS design specifies that when no new solution is 
added to the RefSet, it is rebuilt with new and diverse solutions.  Therefore, if we restrict the incorporation 
of solutions that contribute only slight quality and diversity to the current RefSet, the SS design by itself 
will make the search more efficient over a long term horizon. 
 
In accordance with the problem’s characteristics the user adjusts this filter value, vth, for an optimal 
algorithm performance. The default value for this filter is relatively conservative, but it should be changed 
in problems in which we want to enhance diversity (for example when there are multiple local minima 
and the global optimum has a small basin of attraction). When relying on local search, the search may be 
more aggressive, whereas if no Improvement Method is present, it is recommended that the default 
conservative value is used. In future versions, this filter could be dynamic, being more relaxed at the 
beginning of the search in order to quickly locate the basin of attraction of the global minimum, and 
tighter at the end of the search to allow a specified tolerance in the solution. The evolution of this filter is 
not obvious and it is part of our current research.  As is shown in the next section, the algorithm performs 
very well with the suggested constant value. 
 
3.3 Subset Generation and Solution Combination Methods 
The Subset Generation Method consists of selecting each pair of solutions in RefSet and then applying the 
Solution Combination Method to them. If the RefSet changes after the application of the reference set 
update method described above, indicating that at least one new solution has been inserted in the 
reference set, we again apply the combination method to all the pairs in RefSet containing at least one new 
element. Otherwise, as in advanced SS designs, we resort to the Rebuilding mechanism as described in 
Section 2. 
 
The combination method is a key element in SS implementations.  This method is typically adapted to the 
problem context.  Linear combinations of two solutions were suggested by Glover (1994) in the context 
of nonlinear optimization and are a generalization of the linear or arithmetical crossover also used in 
continuous and convex spaces (Michalewicz and Logan 1994).  We consider a similar implementation to 
that introduced in OQNLP (Ugray et al. 2005) of a generalized linear combination in which instead of 
producing solutions in the same segment of the reference solutions, it produces solutions in the rectangles 
defined over this segment.  Specifically, we consider the three rectangles defined by the points 1: (x'-d, 
x'); 2: (x', x'+d) and 3: (x'', x''+d) as shown in Figure 5, where 
 

2
xxd
′−′′

=  

 
and we assume that the reference solutions are x′  and x ′′ ( x’ being superior in quality to x'').  We then 
randomly generate solutions within the rectangles, thus obtaining the combined solutions from x' and x''. 
 

 
Figure 5.  Generalized combination method 
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As described in Laguna and Martí (2005), depending on the relative positions of x’ and x’’ in the RefSet, 
different types of solutions will be generated.  We adapt their description to our implementation based on 
rectangles. 
 

• If both x’ and x’’ are in the first b/2 elements of the (sorted) RefSet, then we generate solutions in 
rectangles 1 and 3 once and two solutions in rectangle 2, for a total number of four solutions. 

• If only  x’ is in the first half of the RefSet, then one solution in each rectangle is generated, for a 
total number of three solutions. 

• If neither x’ nor x’’ are in the first half of the RefSet, then one solution in rectangle 2 is generated 
and another one in rectangles 1 or 3 (randomly chosen), for a total number of two solutions. 

 
3.4 Improvement Method 
The improvement method consists of a local search with the appropriate algorithm, using a carefully 
selected solution as the starting point.  One of the advantages of implementing our optimization method in 
the Matlab environment is that we can easily apply any improvement method available in one of the many 
existing libraries.  We have considered the following seven methods: 
 

fmincon:  a local gradient-based method, implemented as part of the Matlab Optimization 
Toolbox®, this solver finds a local minimum of a constrained multivariable function 
by means of a SQP (Sequential Quadratic Programming) algorithm. The method uses 
numerical or, if available, analytical gradients. 

 
solnp:  the SQP method by Ye (1987) 
 
npsol:  developed by the Stanford Systems Optimization Laboratory (see Gill et al., 1998) , 

this is usually considered a state of the art solver for dense nonlinear programming 
problems. 

 
snopt:  developed by the Stanford Systems Optimization Laboratory (see Gill et al., 2002), 

this is a state of the art solver for sparse active-set nonlinear programming problems. 
 
Nomadm: Nonlinear Optimization for Mixed variables And Derivatives-Matlab, abbreviated as 

NOMADm (see Abramson, 2002), is a Matlab code that runs various Generalized 
Pattern Search (GPS) algorithms to solve nonlinear and mixed variable optimization 
problems. This solver is suitable when local gradient-based solvers do not perform 
well. 

 
n2fb:  this algorithm was specially designed for non-linear least squares problems by 

Dennis, Gay and Welsch (1981). The method is based on a combined approximation 
of a Gauss-Newton and quasi-Newton algorithm. 

 
clsSolve:  as a part of the Tomlab optimization environment (Holmström, 2004), this algorithm 

solves sparse or dense nonlinear least squares optimization problems with explicit 
handling of linear inequality and equality constraints and simple bounds on the 
variables. 

 
In a classical implementation of SS, the improvement method is applied to a large number of solutions 
(all the initial solutions in P and all the combined solutions from the RefSet). However, in applications 
related to chemical and bio-process engineering, we often face time-consuming evaluation problems (i.e. 
every function evaluation can consume several minutes).  This implies that the application of the 
improvement method should be restricted to a low number of promising solutions.  It is expected that in 
the first iterations of the search process the solutions generated will be of a relatively poor quality.  
Therefore, we have implemented a threshold value, Init_imp that determines the iteration number in 
which the improvement method is applied for the first time (i.e. defining a number of previous function 
evaluations before calling the improvement method).  Then, once this threshold is satisfied, a quality and 
a diversity filter are applied.  These filters were successfully applied in Ugray et al. (2005) and they do 
not allow the Improvement Method to be applied from a solution of a low quality (quality filter), or from 
a solution close to a solution from which the Improvement Method was applied in previous iterations 
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(diversity filter).  As documented by these authors, they significantly reduce the computational time with 
good results. 
 
Since the Improvement Method is selectively applied, when the SS algorithm is over (i.e. the method 
reaches the specified number of function evaluations or computational time), before abandoning the 
search, we apply the Improvement Method to the best solution found so far, just to be sure that it is not 
skipped, or simply to refine the best solution. 
 
3.5 RefSet Rebuilding 
Rebuilding is a key operation associated with the reference set.  It implements a mechanism to partially 
rebuild the RefSet when none of the new trial solutions generated with the Combination Method qualifies 
for addition to the reference set.  In advanced SS designs, the method is usually the same as that used to 
create the initial RefSet, in the sense that it uses the max-min distance criterion for selecting diverse 
solutions.  Typically, it keeps the best b/2 solutions in the RefSet and selects the other b/2 from the same 
or a new set P with the distance criterion. 
 
We have modified the standard implementation of the rebuilding mechanism to incorporate the notion of 
ortogonality.  Over a long-term horizon, the purpose of adding diverse solutions to the RefSet is to 
generate new search directions.  It is therefore interesting not only to get scattered solutions in the search 
space, but also solutions that are able to create new search directions.  Then, instead of selecting the 
solutions in P with the max-min distance, we select those with min-max cosine with the solutions already 
in the RefSet.  Specifically, we choose the best element in RefSet as the center of gravity and in the first 
iteration apply the standard criterion to add the first diverse solution to the RefSet.  Consider now the 
vector linking this new solution with the center of gravity.  In subsequent iterations, instead of 
considering the solutions in P, we consider the vectors that they define with the center of gravity and 
select the solution associated with the vector that minimizes the maximum value of the cosine among the 
vectors of the solutions already in the RefSet. 
 
In the standard SS design, the RefSet is rebuilt only when no combined solution qualifies to enter it and 
there is therefore no new solution to be combined.  At this point the method could stop, as in basic SS 
implementations, or the RefSet can be rebuilt and the search continues.  However, in our SS design we 
also apply the rebuilding method in two other cases.  If the solutions in the RefSet are very similar it is 
unlikely that new solutions will result from the combination of these similar solutions and we can save 
time if we stop the combination method at that point and resort to the RefSet rebuilding.  Therefore, after 
each combination step, we compute for each variable the standard deviation of its values in the RefSet 
solutions. If the deviation of all the variables is below the threshold v_rebuild, we consider that the RefSet 
is too homogeneous, then stop the combination method and directly apply the rebuilding mechanism.  A 
complementary test is to measure whether the solutions in the RefSet are in the same flat region of the 
objective function.  In that case we also stop the combination method and directly apply the rebuilding 
method as before.  Specifically, if the objective values of all the solutions in the RefSet are too close (the 
Euclidean distances between the values of all the pairs of solutions being lower than f_rebuild) we 
consider that they belong to the same flat region and apply the rebuilding mechanism. 
 
3.6 Intensification 
The inclusion of the distance filter in the RefSet Update Method (Section 3.2.2) could be too restrictive 
when the parameter dth takes relatively large values, rejecting too many solutions to become part of the 
RefSet.  Instead of keeping this parameter under low values to prevent this effect, we have experimentally 
found that if we store the rejected solutions with good values in a secondary reference set, RefSet2, we 
can treat them differently from the other solutions in the RefSet.  RefSet2 stores the solutions that do not 
qualify to enter into the RefSet and present a value close to the value of the best solution found 
(specifically, better than x2, the second solution in the RefSet) with a maximum of 25 solutions.  During 
the solution combination method, we combine the best solution in the RefSet with all the solutions in 
RefSet2 and check if any of the resulting solutions improve the best solution in the RefSet.  In that case, 
the new solution replaces the best one in the RefSet; otherwise it is discarded.  The solutions in RefSet2 
are then deleted.  This intensification mechanism is performed every Inten_freq steps where one step is a 
complete application of the standard combination method in the RefSet. 
 
Figure 6 illustrates those combinations in an example with six solutions in the RefSet (black circles) and 
three solutions in RefSet2 (stars).  The square represents the global optima.  In this example this 
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intensification strategy makes the process converge faster since the combination of the starred solutions 
with the best in RefSet generates solutions which are very close to the global optimum of the function. 
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Figure 6. Intensification strategy 
 
 
4. Computational Experiments 
In order to evaluate the performance of our algorithm, we have applied it to solve three well-known and 
hard optimization problems from the chemical and bio-process engineering area. The chemical 
isomerization of alpha-pinene (Box et al. 1973, Dolan et al. 2004), the design of a waste water treatment 
plant (Moles et al. 2003a) and a parameter estimation problem in biochemical pathways (Moles et al., 
2003b).  These three problems involve dynamic systems (i.e. simulations by the integration of systems of 
differential-algebraic equations). We have compared the results of our SS method implemented in Matlab, 
SSm, with those provided by the five global optimization algorithms identified as the best and 
summarized in the introduction: DE, Global, SRES, Direct and OQNLP.  The last three can handle 
general non-linear problems, including black-box simulations for the objective function and/or equality 
constraints.  On the other hand, DE and Global were designed to handle bound-constrained nonlinear 
problems, but we have extended them for general constraints by means of penalty function approaches in 
order to report a complete comparison. 
 
All the experiments were carried out on a PC Pentium-IV 3.06 GHz using Matlab 6.5, Release 13, under 
Windows XP Pro.  We implemented SSm as described in Section 3 with the following standard parameter 
values: PSize=100, b=10, b1=b2=5, vth=0.999, tolerance=10-4, Init_imp=100nvar, f_rebuild=10-5, 
v_rebuild=10-5, Inten_freq = 20, and the weight to penalize unfeasible solutions, wpen, was set to 1000. 
 
In our first experiment we compare the six methods under consideration when solving the isomerization 
of alpha-pinene. This is a parameter estimation problem that arises from the modeling of the chemical 
phenomena of an isomerization reaction. The problem was described in Box et al. (1973) and it is part of 
the COPS benchmarking collection maintained by Dolan et al. (2004). The dynamic model is defined by 
the following system of five ordinary differential equations in which y’ represents the time derivative of 
state variable y. 
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The problem consists of finding the reaction coefficients, θi in [0,1], to minimize the differences between 
the values of the states obtained from experimental data and the values, y, predicted by the model. The 
best known solution is θ*=(5.9256·10-5, 2.9632·10-5, 2.0450·10-5, 2.7473·10-4, 4.0073·10-5) with value 
1.9872·101.  
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The improvement method applied in SSm for this problem is fmincon and all decision variables are 
declared as log_var (it is frequent in parameter estimation problems for the solution to lie very close to 
the bounds, and in these cases the log_var strategy performs remarkably well). 
 
In order to obtain statistically significant results, we run each method 10 times on this problem and report 
the average (Avg. Value), best and worst solution values of the 10 runs (each run is limited to 50 
seconds). Table 1 reports these three values as well as the average running time in seconds and the 
average number of function evaluations of each method.  Direct and OQNLP only allow one run since 
Direct is a determinist method and we are using the OQNLP implementation for Matlab, which does not 
permit the modification of the random generator seed.  Therefore, the value of these methods must be 
compared with the average value of the other methods. 
 

Solver Best Value Worst Value Avg. Value CPU Time (sec.) Avg. # Evaluations 
SSm 1.9872·101 6.8613·101 2.4747·101 41 1144 
DE 3.1951·104 3.2945·104 3.2051·104 46 1250 

SRES 3.3858·104 4.2707·104 3.8398·104 47 1300 
Global 3.1638·104 4.2755·104 3.5225·104 45 1277 
OQNLP 3.1252·104 3.1252·104 3.1252·104 51 1565 
Direct 3.6421·104 3.6421·104 3.6421·104 45 1053 

Table 1. Comparison for the alpha-pinene problem. 
 
Table 1 shows that the best solution quality is obtained with the SSm method in the lowest computational 
time.  Moreover, considering the average values over the 10 runs, it also shows that SSm is robust, since it 
is able to obtain the best solutions on average.  Our proposal also presents a moderate number of function 
evaluations when compared with the other solvers.  None of the other methods obtains solutions of good 
quality in this problem for the computation time horizon considered. 
 
Complementary information to compare the methods is given in Figure 7.  It depicts the convergence 
curves of the best three methods for this problem: DE, Global and SSm.  This experiment has the goal of 
showing how the value of the best solution found improves over time.  The three procedures were run for 
50 seconds and the best solution found was reported every second (approx.)  As shown in Table 1, the 
best solution for SSm has, in fact, a value of 19.872; however, it is not depicted in Figure 7 for scaling 
purposes. 
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Figure 7. Convergence curves for the alpha-pinene isomerization problem.  

 

As shown in Table 1 and Figure 7, SSm performs significantly better than the rest of the solvers in the 
short time horizon considered (50 seconds). Actually, the best-known solution was obtained by SSm in 9 
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out of the 10 runs carried out. The other solvers failed to reach points close to this solution, although 
several of them could ultimately succeed it would be at a very large computational cost. 
 
In our second experiment we consider another typical application of global optimization in process 
engineering.  Specifically, we target an extremely hard problem that arises from the integrated design and 
control of complex processes.  The objective is to find the static variables of the process design, the 
operating conditions and the controllers’ parameters which optimize a combined measure of the plant 
economics and its controllability, subject to a set of constraints which ensure appropriate dynamic 
behaviour and process specifications. The particular case study considered here was presented by Moles 
et al (2003a), and it has 8 decision variables, 185 constraints (33 differential-algebraic equality 
constraints and 152 non-linear inequality constraints) and the value of the best known solution is 
1.5379·103. 
 
We perform a preliminary experiment to set appropriate parameter values for this problem.  We do not 
reproduce the results of this experiment here, just the conclusions and the configuration of the final SSm 
method. 
 

• The improvement method was deactivated because it consumes excessive running time without 
significant solution improvement.  However, a final refinement phase was activated using the 
solver Nomadm.  The reason for these two special settings is the presence of discontinuities in 
the problem, which makes gradient-based algorithms fail or converge prematurely. 

• RefSet was initialized using only diverse solutions in order to avoid a very short Euclidean 
distance among RefSet members, which made the convergence slower. 

• The Intensification strategy was deactivated because it did not work properly, probably because 
the value of dth becomes too low in the first few iterations. 

 
As in the first experiment, we run each method 10 times on this problem and report the average (Avg. 
Value), best and worst solution values of the 10 runs (each run was given an allowed time horizon of 360 
seconds approx.) as well as the average running time in seconds and the average number of function 
evaluations of each method.  Since our preliminary experimentation indicates that improved solutions are 
obtained when the local search is not applied, we also report the results of OQNLP with no local search as 
OQNLP* (this solver implements this option). 
 

Solver Best Value Worst Value Avg. Value CPU Time (sec.) Avg. # Evaluations 
SSm 1.5379·103 1.5423·103 1.5397·103 362 12530 
DE 1.5379·103 1.6418·103 1.5483·103 301 16782 

SRES 1.5381·103 1.5392·103 1.5385·103 352 13170 
Global 1.5697·103 1.6731·103 1.6049·103 334 14998 
OQNLP 2.4839·103 2.4839·103 2.4839·103 332 10927 

OQNLP* 1.7424·103 1.7424·103 1.7424·103 480 12306 
Direct 2.3387·103 2.3387·103 2.3387·103 308 18015 

Table 2. Comparison on a design plant problem. 
 
Table 2 shows that the best solutions are obtained with the DE and SSm methods.  Both are able to match 
the best-known solution.  Although SSm presents a slightly longer average computational time than DE 
(362 versus 301 seconds), the former presents a lower number of function evaluations (12,530) than the 
latter (16,782).  Moreover, comparing the best and worst values across the 10 runs, SSm presents a very 
low dispersion.  The other solvers under consideration are also able to obtain good solutions which are 
close to the best-known. 
 
Figure 8 depicts the convergence curves of the best three methods for this problem.  Specifically, it shows 
the best curve (over the 10 runs) of the SSm, DE and SRES methods.  The curves in this figure show that 
the three algorithms present similar convergence rates.  In the first fractions of one second, the SRES 
obtains the best solutions; however, after five seconds SSm slightly improves on the other two methods 
and after one minute the three of them obtain the same solutions in terms of quality. 
 
In our final experiment we target the Parameter Estimation in Biochemical Pathways problem. This is a 
challenging parameter estimation problem introduced as a benchmark by Moles et al. (2003b).  This 
problem has a large number of local minima, and a very small basin of attraction for the global solution, 
which makes it very difficult to solve in a reduced computational time.  As a reference, Moles et al. 
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(2003b) reported computation times of about 40 hours using Evolution Strategies on a PC Pentium-
III/866 MHz. The problem consists of a system of 8 ordinary differential equations and 36 parameters to 
be estimated from a set of pseudo-experimental data.  Since this is a synthetic problem, its global solution 
is known and has a value of 0.0. 
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Figure 8: Convergence curves for the integrated design problem. 
 
After preliminary experimentation with the SSm method, the following options and parameters were set to 
enhance diversification over intensification in the global search for an aggressive search of the solution 
space. 
 

• The RefSet dimension b was set to 4 to limit intensification and favour diversification via the 
RefSet rebuilding process (which with this low b value is applied more often than with the 
default design). 

• Filters for solutions to join the RefSet are tightened causing the same effect as a small number of 
RefSet members. Only solutions that significantly improve the existing ones in the RefSet are 
allowed to join it. The function tolerance for joining the RefSet was 10-2 (i.e. vth = 0.99) and the 
function tolerance for aspiration criteria was 10-3. 

• The distance filter of local search was deactivated to perform local searches from close points, 
due to the small basin of attraction of the global solution. 

• The variables were declared log_var since this option has proved particularly effective in 
parameter estimation problems. Moreover, the local search algorithm used was n2fb (in double 
precision in the final refinement) as it is more efficient than SQP methods for challenging 
parameter estimation problems like this one. 

 
The results obtained with the different global solvers, for a computation time horizon of 350 seconds, are 
presented in Table 3, and the best convergence curves are shown in Figure 9. 
 

Solver Best Value Worst Value Avg. Value CPU Time (sec.) Avg. # Evaluations 
SSm 1.5868·10-7 1.1181·102 1.4073·101 323 17190 
DE 2.7429·102 4.3230·102 3.7853·102 354 18756 
Sres 2.1099·102 3.9095·102 2.5875·102 350 20580 

Global 7.4123·102 8.4587·102 7.8100·102 143 9012 
OQNLP 7.8145·101 7.8145·101 7.8145·101 416 20718 
Direct 1.1368·103 1.1368·103 1.1368·103 351 30547 

Table 3. Comparison on a parameter estimation problem. 
 
Table 3 clearly shows the superiority in terms of solution quality of our proposal SSm.  It is able to obtain 
significantly better solutions (the best solution value is 1.5868·10-7) than the other six approaches (with 
best values from 7.8145·101 to 1.1368·103) over similar running times (323 seconds on average).  
Moreover, the SSm is quite robust with an average value of 14.073, closely followed by OQNLP with an 
average value of 78.145. 
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Figure 9: Convergence curves for the parameter estimation problem. 
 
Figure 9 shows that SSm clearly improves on the other two best methods for this problem.  When the 
optimization process starts, the SSm procedure quickly moves to the range of high quality solutions and 
maintains its lead during the rest of the solution time (this is especially true after the first minute of 
computation time).  Within the running time horizon of 350 seconds, SSm found the global solution in 6 
out of 10 runs, whereas the rest of the solvers failed in all the runs. It is particularly important to highlight 
that SSm decreased the computational time reported by Moles et al (2003b) by more than two orders of 
magnitude, which is a very relevant result, and the best-known heuristic solution for this problem to date. 
 
 
Conclusions 
The objective of our study has been to expand and advance knowledge associated with the 
implementation of SS procedures.  Unlike other population based methods such as the well-known 
genetic algorithms, scatter search has not yet been extensively studied.  Specifically, we have introduced 
new strategies in the five key methods of SS procedure: a diversification generation method based on 
magnitudes, a selective reference set update method based on filters, a combination method that 
discriminates among reference solutions and a restrictive application of the improvement method. 
 
In particular, we have considered a SS implementation for nonlinear continuous optimization of black-
box models.  We can find extremely difficult instances within this class of problems and we have 
compared our proposal with five well-known methods when solving three benchmark instances.  The 
comparison favors our SS implementation. 
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