

A Black-Box Scatter Search for Optimization Problems
with Integer Variables

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

FRANCISCO GORTÁZAR, MICAEL GALLEGO, ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain
{francisco.gortazar, micael.gallego, abraham.duarte}@urjc.es

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universitat de València, Spain
Visiting the Leeds School of Business, University of Colorado at Boulder, USA
rafael.marti@uv.es

ABSTRACT

The goal of this work is the development of a black-box solver based on the scatter search
methodology. In particular, we seek a solver capable of obtaining high quality outcomes to
optimization problems for which solutions are represented as a vector of integer values. We refer to
these problems as integer optimization problems. We assume that the decision variables are
bounded and that there may be constraints that require that the black-box evaluator is called in
order to know whether they are satisfied. Problems of this type are common in operational research
areas of applications such as telecommunications, project management, engineering design and the
like. Our experimental testing includes 171 instances within four classes of problems taken from the
literature. The experiments compare the performance of the proposed method with both the best
context-specific procedures designed for each class of problem as well as context-independent
commercial software. The experiments show that the proposed solution method competes well
against commercial software and that can be competitive with specialized procedures in some
problem classes.

KEYWORDS: Black-box optimization, Metaheuristics, Hard optimization problems

June 16, 2012

mailto:laguna@colorado.edu
mailto:francisco.gortazar@urjc.es
mailto:micael.gallego
mailto:abraham.duarte%7d@urjc.es
mailto:rafael.marti@uv.es

L a g u n a , e t a l . | 2

1. Introduction

The black-box optimization framework is the OR (operations research) community response to the

need for modeling flexibility and the separation between the modeling environment and the

solution method. Achievements and progress in the solution of mathematical models of various

types, including integer programs, are numerous and well-documented in the OR literature.

Nonetheless, casting a problem as a mathematical model (integer or continuous, linear or nonlinear,

or mixed) remains an exercise of imagination, abstraction and compromises. The chief compromise

is associated with the set of real elements that the modeling framework may not support or that

their inclusion makes the model unworkably complex. Uncertainty is a typical example of this

situation, where clever but still limited modeling artifacts have been designed —for instance, those

related to robust optimization techniques. The modeling boundaries broaden when the concerns of

how the optimization problem will be solved are removed. That is precisely the role of black-box

optimization. For example, for problems where uncertainty is not only real but relevant, tools such

as computer simulation provide a rich environment to capture reality by liberating the analyst from

the burden of maintaining a rigid structure that will conform to the norms dictated by the solution

procedure. Thus, evaluating the merit of a solution is not restricted to a mathematical expression of

a given type (e.g., a linear equation for linear programming).

Black-box optimization refers to the process in which there is a complete separation between the

evaluation of the objective function —and perhaps other functions used to enforce constraints—

and the solution procedure, as illustrated in Figure 1. In simulation-optimization, the black box

model has been extremely popular in both research and practice. Commercial simulation software

began adding black-box optimizers in the early 1990’s. Nowadays, optimizers based on

metaheuristic technology dominate the application space in all areas of computer simulation,

including Monte Carlo, discrete-event, systems dynamics and agent based.

Figure 1. Schematic representation of the black-box optimization framework

This paradigm is not only useful in the case of optimizing simulations but also in situations where the

real system is best represented by computational processes or algorithms that do not necessarily

contain random elements but that are complex in nature. For instance, (Schittekat & Sörensen,

2009) describes the use of commercial software for vehicle routing as an evaluation box for a vendor

selection problem. A search is conducted to find the best combination of 3PL (third party logistics)

vendors, where each combination represents a solution to the problem and whose evaluation

consists of solving a detailed distribution and delivery plan that the commercial software produces.

In this case, the black-box evaluation is the result of solving a deterministic but complex optimization

problem.

L a g u n a , e t a l . | 3

Engineering design has been a fertile ground for the application of black-box optimization. There is a

simple explanation for this phenomenon. Over the course of many years, engineers have developed

and tested rather complex computer codes to evaluate designs. Wrapping optimization routines

around these codes became the simplest way to take advantage of this work, avoiding the arduous

task of tweaking the internal logic and structure of the available computer codes in order to add

optimization functionality. It is also an effective mechanism to bring together expertise from two

different communities: the optimization gurus and the experts in the particular area of application.

In the black-box environment, the optimization experts do not need to know the details of the

system being optimized, in the same way that the context experts do not need to know the

intricacies of optimization.

Consider, for example, the public-domain software called EPANET, developed and distributed by the

Water Supply and Water Resources Division of the United States Environmental Protection Agency.

This software models the hydraulics and water quality of water distribution piping systems. A design

in this context is a selection of a set of pipes, nodes, pumps, valves and storage tanks or reservoirs,

along with their properties and operational rules. The problem of evaluating a design is complex

(Yates, Templeman, & Boffey, 1984) and this is why many person-hours have gone into developing

EPANET. For a particular design, EPANET tracks the flow of water in each pipe, the pressure at each

node, the height of the water in each tank, and the concentration of a chemical species throughout

the network during a simulation period (Rossman, 2000). EPANET may be used to design a new

network or expand an existing one. In a recent study (Vasan & Simonovic, 2010) a differential

evolution algorithm was developed to optimize pipe network designs that are evaluated with

EPANET. Designs are evaluated in terms of cost and resilience (defined as the design’s capability to

overcome sudden failures). Their experiments show the merits of the differential evolution

algorithm when compared to similar approaches, such as (Baños, Gil, Agulleiro, & Reca, 2007) and

(Lippai, Heaney, & Laguna, 1999).

As discussed in (Laguna, Molina, Pérez, Caballero, & Hernández-Díaz, 2010), “the challenge of

optimizing black boxes is to develop methods that can produce outcomes of reasonable quality

without taking advantage of problem structure and employing a computational effort that is

adequate for the context.” Equally challenging is the task of providing enough modeling flexibility to

tackle optimization problems in a variety of environments. For instance, the differential evolution

procedure designed in (Vasan & Simonovic, 2010) focuses on searching in a solution space defined

by a vector of integer values. This was achieved by “codifying” the set of available pipe diameters

into contiguous integers where zero represents the “no pipe” option. This solution representation is

also popular in the optimization of business process simulations, where choosing the best mix of

resources is critical. As shown in (April, Better, Glover, Kelly, & Laguna, 2005), the optimization of a

computer simulation of a healthcare facility deals with choosing the right number of physicians,

number of nurses, number of lab technicians, number of receptionists and number of examination

rooms. Likewise, optimizing the staffing levels at a call center implies the selection of the right

number of people at the right time in order to provide sales capacity and customer service for a

number of products. In both cases, solutions are also represented as vectors of integers, where

larger numbers result in increased resource levels.

L a g u n a , e t a l . | 4

The binary representation is a special case of the integer representation, where the variables are

limited to take on only two values: zero or one. Optimization methods for binary problems have a

long tradition, particularly in the area of evolutionary computation. Recall that the original genetic

algorithm proposals favored binary encodings as a universal form of representing solutions. In some

cases, binary vectors are indeed the natural representation of the relevant decisions. One example

is the aforementioned work by Schittekat and Sörensen (Schittekat & Sörensen, 2009), where

choosing vendors is best conceptualized as assigning a value of one to those that are chosen and a

value of zero to those vendors that are not chosen. Since there are no restrictions in the number of

vendors to choose, then every combination of ones and zeros (perhaps with the exception of all

zeros, which results in not choosing any vendors at all) is a valid solution to the problem.

Commercial general-purpose metaheuristic optimizers, such as Opttek’s OptQuest, Palisade’s

Evolver and Frontline’s Premium Solver, provide solution-representation flexibility by allowing the

modeling of optimization problems with a mix of continuous, integer, permutation, binary and other

special types of variables. However, added flexibility translates into complex search spaces and

increased difficulty in finding high-quality solutions. Previous studies have shown how even a small

amount of specialization makes a significant difference in the performance of black-box optimizers.

Campos, Laguna and Martí (Campos, Laguna, & Martí, 2005) developed a black-box optimization

procedure for problems for which solutions are represented as permutations. Computational tests

showed that their procedure outperformed the general-purpose optimizers that are not specialized

to only tackle permutation problems. Similar results were obtained in (Gortázar, Duarte, Laguna, &

Martí, 2010) for problems with binary variables.

Some solution methodologies have been designed with the black-box framework in mind, as in the

case of random-key genetic algorithms (RKGA). This is an evolutionary computation procedure

whose main search mechanisms are problem-independent crossover and mutation operators. They

were originally introduced in (Bean, 1994) for the solution of combinatorial optimization problems

related to sequencing. Solutions in RKGA implementations are represented as vectors of real

numbers that are randomly generated between 0 and 1. Each vector corresponds to a feasible

solution and mating is performed using the so-called parameterized uniform crossover (Spears &

DeJong, 1991), which is designed to always produce a feasible offspring. The associated decoder is a

deterministic algorithm that takes a random-key vector as input and returns a feasible solution of

the optimization problem along with the objective function value. The decoder acts as a black box

and is the only problem-dependent element of the solution procedure.

Additional examples of procedures that are partially based on the black-box paradigm are Bias

Random Key (Gonçalves & Resende, 2011), Cross Entropy (Laguna, Duarte, & Martí, 2009) and

Estimation of Distribution Algorithms (Larrañaga & Lozano, 2002). Because our design is fully based

on a black-box structure, we don’t compare performance against these procedures and limit our

computational experiments to tests with commercial solvers. In addition, comparisons are made

with specialized procedures for each class of problems in the test set. It is not expected for black-

box methods to perform better than the state-of-the-art in any particular problem instance;

however, the comparison is helpful in assessing the size of the gap between a general and a

specialized procedure in each problem class.

L a g u n a , e t a l . | 5

This work may be viewed as the fourth in a series of general-purpose solvers created for problems

with specific types of variables: continuous variables (Laguna & Martí, 2005), permutation variables

(Campos, Laguna, & Martí, 2005) and binary variables (Gortázar, Duarte, Laguna, & Martí, 2010).

Specifically, our interest is to develop a solver for an evaluation black box that takes as input a vector

of integers. The process is such that a solver sends a vector of integers to the black box that

calculates an objective function value and the left-hand-side of constraint values if any. These values

are returned to the solver and are used to make decisions with respect to the next trial solution that

is generated and turned in to the black box for evaluation. It is assumed that there is a

computational budget that limits the number of times that the black box may be called. This is the

criterion by which execution is stopped and computational effort is measured across competing

solution procedures.

Within the continuum of solution procedures, our proposal is closer to the general-purpose

commercial solvers than to the methods specially built for a particular class of problems. The

specialization over the commercial solvers consists of focusing on a specific solution representation

(i.e., a vector of integers). The results of our computational tests, discussed later, are consistent

with where the procedure falls within the specialization scale.

2. Modeling Integer Problems

Let an optimization problem be such that all the decision variables for must take on

integer values. We refer to this class as integer problems. We assume that all variables are bounded

in the interval and that the objective function to be maximized is denoted by . The

problem may be written as:

Maximize

Subject to

The solver enforces the box constraints on the variables but has knowledge neither of the functional

form of nor of any of the functions. For each solution , the black box calculates

and all values and returns them to the solver. In order to establish search directions, the solver

builds a penalized function of the form , where is the penalty term.

(Yeniay, 2005) describes the merits of a fairly extensive family of penalty functions of the following

form:

 ∑ { }

Clearly, if is feasible then . The constants are the factors that penalize infeasible

solutions. In problems where there is knowledge of the relative importance of meeting the

constraints, it would make sense to use a different penalty factor for each constraint. However, in

the current context, we assume that there is no such knowledge and therefore a single penalty

factor is used for all constraints. Typically, is given a value of 1 or 2. To ensure that the

L a g u n a , e t a l . | 6

value of any infeasible solution is worse than the value of any feaible solution, then must

be strictly greater than for all infeasible solutions. In our procedure we set and .

The large penalty factor has the effect of magnifying the infeasibility of the solutions explored during

the search. Therefore, the identification of feasible solutions has a high priority and the search

attempts to stay within the feasible region.

3. Scatter Search

The metaheuristic known as scatter search belongs to the evolutionary programming family. The

procedure starts with the construction of a population of solutions from which a reference set

(RefSet) is selected and evolved by means of combination and improvement mechanisms. The

methodology consists of five methods:

1. Diversification generation method

2. Reference set update method

3. Subset generation method

4. Solution combination method

5. Improvement method

As described in (Laguna & Martí, 2003), there are standard (problem independent) forms of

implementing the reference set update and the subset generation methods. In our work, we

adopted two of those standard forms, namely, the reference set is updated with the standard static

method. This method consists of constructing the RefSet by selecting solutions from a population

 created by the diversification generator. Half of these solutions (i.e.,) are the best according

to their objective function values and the other half are selected for diversity purposes. Diversity is

measured by calculating the Hamming distance between solutions. After the initial construction, the

RefSet is updated by selecting the solutions with the highest quality in the set of solutions consisting

of the union of the current RefSet and the set of solutions that have been subjected to the

improvement method after being generated by the solution combination method.

The subset generation method is also standard and consists of all pairs of reference solutions for

which at least one of the two solutions is “new”. That is, pairs that have already been examined in

previous iterations are not considered. Below, we describe the implementation details of the

diversification generation, solution combination and the improvement methods, all of which are

specific to the current context.

3.1 Diversification Generation Method

We generate diverse solutions by construction. The main characteristic of constructive methods is

that solutions are typically built sequentially by adding one element at a time or setting the value of

a variable one at a time. The process is guided by a function that indicates the attractiveness of

adding an unselected element to the solution or of setting a variable to a particular value. In a black-

box structure, we assume that it is not possible to evaluate partial solutions. In other words, we

assume that the back box is designed to evaluate only full solutions. Therefore, we face a situation

in which constructing a solution by choosing the values of the variables sequentially is either

extremely convoluted or impossible because there may not be a simple mechanism to measure the

L a g u n a , e t a l . | 7

merit of assigning a specific value to a variable. In order to obtain a set of full solutions that is a

representative sample of the solution space, we relied on a tool from the area of experimental

design.

Within this field, a factorial design of experiments is a technique applied to a set of factors, each of

which can take on one of levels. A full factorial design considers all combinations of factors and

levels, resulting in experiments. When applying this technique to our context, where factors are

variables and levels are possible values of the variables (i.e.,). A full factorial design

corresponds to a complete enumeration of all possible (both feasible and infeasible) solutions.

Clearly, this approach is only practical for small values of .

In practice, the full factorial space is sampled instead of explored exhaustively. Latin Hypercube

Sampling (LHS) —introduced in (McKay, Beckman, & Conover, 1979) and refined in (Iman & Conover,

1982)— is an effective technique that is also computationally efficient. Figure 2 shows a LHS design

for 2 variables, and , that can take on the integers from 1 to 4 (i.e., and). The

square grid in Figure 2 shows both the 16 possible solutions and the sample positions (indicated with

X). The design is a Latin square because there is only one sample in each row and each column of

the square. In multiple dimensions, the design is known as a Latin hypercube.

 1 2 3 4

1 X

2 X

3 X

4 X

Figure 2. Latin square for a problem with and

Each LHS design results in solutions and therefore a common practice consists of

building several designs to generate a desired number of solutions. We start by creating vectors of

size with elements placed in the specified order. We then create a random

permutation of vectors, leaving one of the vectors in the order that it was created. A Latin

hypercube sample is obtained by matching each of the elements of the individual vectors to create

samples. For instance, the Latin square of Figure 2 is the result of a process by which the values of

the vector (1, 2, 3, 4), which correspond to , are matched with the values of a random

permutation of this vector, which correspond to . The random permutation is (3, 4, 2, 1), resulting

in the pairs (1, 3), (2, 4), (3, 2) and (4, 1). These pairs are the samples and the cells marked with X in

the Latin square of Figure 2.

Procedure 1 shows how to employ this technique to generate a set with solutions. The

procedure starts by initializing the repository of solutions as an empty set and by setting the value

of . Then, the permutation is set to the ordered vector , where is the value

in position . That is, and . The main loop of the procedure is executed until the

size of reaches . The loop starts by creating permutations of (line 4). These

permutations are labeled , for . The value in position of the permutation is .

Samples are constructed (line 7) and added to set (line 9), one by one. If reaches the desired

L a g u n a , e t a l . | 8

size (line 10), the outer for-loop breaks and the procedure stops. We point out that, similar

procedures based on design of experiments have been used in the literature to generate populations

of diverse solutions. See for instance the implementations in (Laguna & Martí, 2005), (Duarte,

Glover, Martí, & Gortázar, 2011) and (Duarte, Martí, & Gortázar, 2011).

LHS()

1. Make and

2. Make , where is the value in the array
3. WHILE DO

4. Construct random permutations of , where is the

permutation (for)
5. FOR TO DO

6. FOR TO DO

7. Set

8. END FOR

9.
10. IF BREAK

11. END FOR

12. END WHILE
END

Procedure 1. Latin Hypercube Sampling

The solutions in are evaluated by calling the black box. That is, the objective function value and

feasibility of the solutions are known for each solution . Hence, includes both feasible and

infeasible solutions. These data are the starting point for acquiring knowledge about the

characteristics that are embedded in high quality solutions. In the spirit of adaptive memory

programming (Taillard, Gambardella, Gendreau, & Potvin, 2001), which embodies a broad

framework that focuses on exploiting a collection of strategic memory components with the purpose

of balancing search intensification and diversification (Glover, 1997), we employ a memory structure

() that stores the average value of the objective function corresponding to solutions for

which the variables hold certain values. Specifically, is a two dimensional array of size

 , where columns represent variables and rows represent variable values. The

element of the matrix contains the average objective function value of solutions for which .

The objective function value information is stored every time a solution is evaluated with the black

box and therefore it includes the objective function values of both feasible and infeasible solutions.

The matrix is constructed with the solutions in .

The information contained in the memory structure is used to construct empirical

distribution functions that give the probability that a variable will be assigned a particular value. The

empirical probability distribution function (PDF) for variable is given by:

 ()

∑

Instead of using the PDF directly, it is more convenient to work with its corresponding cumulative

distribution function (CDF). As customary, the CDF is simply given by:

L a g u n a , e t a l . | 9

 () ∑ ()

for and () .

To exploit the information contained in the CDFs, we configured a method to construct solutions

based on quality information that is shown in Procedure 2 (and labeled QC). The method takes as

input the CDFs and , and returns a set of solutions. Procedure 2 simply constructs

solutions for which the probability that a variable takes on a specific value is given by its

corresponding CDF.

QC()

1.
2. WHILE DO

3. FOR TO DO

4.
5.
6. WHILE DO

7.
8. END WHILE

9.

10. END FOR

11.
12. END WHILE
END

Procedure 2. QC Constructive Method

In sum, the construction of solutions is done in two steps. In the first step, LHS (Procedure 1) is

executed and solutions are obtained with Latin Hypercube Sampling. These solutions are

evaluated with the black box and the quality of their elements (i.e., the assignments of values to the

decision variables) is captured by the memory structure. This structure is then used to

create probability distribution functions, one for each variable. Then, additional solutions are

constructed with the QC method (Procedure 2), which employs the information embedded in the

CDFs that are associated with the PDFs constructed from the memory structure. These

new solutions are also evaluated with calls to the black box. Therefore, at the end of this process,

the black box has been called a total of times.

3.2 Improvement Method

Improvement methods within the scatter search framework are typically based on neighborhood

searches, and commonly limited to local searches. That is, the improvement method stops as soon

as no neighbor is capable of improving upon the current solution. The improvement method

employs two types of neighborhoods and is organized in a similar way as variable neighborhood

descent (Hansen & Mladenovic, 1999). Neighborhoods are built from a solution representation and

a move mechanism. In our context, we represent a solution as a vector of variables, i.e.,

 such that for all . With this representation, we define the following

moves:

L a g u n a , e t a l . | 10

 Exchange of values. Given a solution , the exchange of the values of the variables and

is denoted by and generates a new solution such that
 and

 ,

 .

 Replacement of a single value. Given a solution , the replacement move denoted by

 creates a solution for which
 and

 . The move is such

that .

We refer to the neighborhood generated by swap moves as the swap neighborhood and the

neighborhood generated by the replacement moves as the replace neighborhood. The size of these

neighborhoods is and , respectively. A full exploration of both neighborhoods

results in a computationally expensive local search that might not yield the desired results. Instead

of attempting to find the best move (i.e., the swap or replace that results in the largest improvement

of the objective function value), we adopt the first-improvement strategy. This strategy consists of

traversing the neighborhoods and executing improving moves as soon as they are identified, as

shown in Procedure 3.

FLS()
1. Improve = true

2. WHILE Improve DO

3. Improve = false

4. Make { }
5. WHILE and Not Improve DO

6. Randomly select and make
7. Make { }

8. WHILE and Not Improve DO

9. Randomly select and make
10.

11. IF THEN

12.

13. Improve = true

14. END IF

15. END WHILE

16. IF Not Improve THEN

17. Make { }
18. WHILE and Not Improve DO

19. Randomly select and make
20.

21. IF THEN

22.

23. Improve = true

24. END IF

25. END WHILE

26. END IF

27. END WHILE

28. END WHILE
END

Procedure 3. FLS Improvement Method

The first-improvement local search (FLS) in Procedure 3 starts from an initial solution . The main

loop (lines 2 to 28) is executed as long as the current solution keeps improving. All variables in the

model are made available for the neighborhood search by creating the set of variable indices (line

4). A variable index is randomly selected and eliminated from (line 6), and the set of all

L a g u n a , e t a l . | 11

possible new values for variable is constructed (line 7). Note that does not include the current

value of the chosen variable (i.e., it does not include de value of). Lines 7 to 15 include the search

for a value whose replacement of the current value of results in an improvement of the

objective function. If such a value is found, the entire process is repeated from line 3. If not, then

the swap neighborhood is explored, starting in line 17. The exploration consists of random

selections of an index (line 19) that is different from in order to excute the move , as

shown in line 20. As soon as an improved moved is found (lines 21 to 23), the process restarts in line

3. The local search ends when all variables are explored and there is no replacement of swap

capable of improving the current solution. This occurs when the Boolean variable Improve has the

value of false and all variables in have been explored (see line 5 in Procedure 3).

3.3 Combination Methods

The combination mechanisms employed in our implementation operate on two solutions, and ,

to generate a new solution . We have created six of these procedures and their merit is assessed in

the computational testing section:

1. CM-A. This procedure calculates the (rounded) midpoint between the two reference

solutions. Therefore, each variable value in the new solution is (

).

2. CM-AE. This procedure generates three trial solutions and returns the best. The first trial

solution is the same one as the one generated by CM-A. The second and third trial solutions

are given by (

) and (

), respectively.

3. CM-EP. This is similar to CM-AE, with the first trial solution being the same as the one

generated by CM-A. The second and third trial solutions, however, are generated by finding

two points in the hyperplane . One point is found with , such that

it is between and the point where the hyperplane reaches the boundary. The other

one is the midpoint on the segment of the hyperplane that is between and the

boundary, which is reached by making .

4. CM-GPR. This procedure is based on the notion of path relinking (Glover & Laguna, 1997)

where a sequence of trial solutions are visited while transforming a so-called initiating

solution into a so-called guiding solution. Assume that is the initiating solution and that

 is the guiding solution. Then, at each step, the assignment

 that improves

the most is made. The process stops when . The best trial solution is returned.

5. CM-R. This procedure builds a new solution with a random selection, for each variable, of

the values in the reference solutions. That is
 or

 with (
) (

) for all . In the context of genetic algorithms, this combination method is known

as the fixed crossover operator (Dolezal, Hofmeister, & Lefmann, 1999).

6. CM-PR. This is similar to CM-R, however, the selection probabilities are proportional to the

quality of the reference solutions. Assuming that and , then

 (
)

 ()

 and (

) (
).

Of all the solutions produced by the application of a combination method, only the top are

chosen to be subjected to the improvement method.

L a g u n a , e t a l . | 12

4. Test Problems

We employed the following four sets of test problems:

 Bandwidth Coloring Problem (Martí, Gortázar, & Duarte, 2010). This is a special type of

graph coloring problem for which colors have values. A valid coloring of the graph is one for

which the difference of the values of the colors of two adjacent nodes (i.e., nodes that are

connected) must exceed the value of the connecting edge. As in the classical coloring

problem, the objective is to minimize the number of colors.

 Capacitated Task Allocation Problem (Lusa & Potts, 2008). This problem consists of

assigning a set of tasks to a set of processors in order to minimize the total cost of the

assignment. The total cost may include a fixed cost for using a processor and a

communication cost associated with the assignment of related tasks to different processors.

 Maximally Diverse Grouping Problem (Gallego, Laguna, Martí, & Duarte, 2011). This is the

problem of partitioning a set of elements into a given number of groups in order to

maximize total diversity, measured as the sum of the individual group diversities.

 Water Distribution Network Problem (Vasan & Simonovic, 2010). The objective of this

problem is to select the size and location of pipes in a water distribution network in order to

meet water pressure requirements at a minimum cost.

These problems present different challenges according to their structure. However, they all have in

common that their solution can be represented as a vector of integer values.

4.1 Bandwidth Coloring Problem

Let be a graph where () is the set of vertices and () is the set of

edges. Associated with each edge between nodes and , there is a positive quantity . A -

coloring of assigns the color { } to vertex in such a way that

 for all . The objective of the bandwidth coloring problem (BCP) is to find a -coloring

such that is minimized. Mathematically, the problem may be expressed as follows:

Minimize

Subject to for all

 { } for all

The vertex coloring problem is a special case of the BCP for which for all . Both

problems are NP-Hard and the BCP has interesting practical applications in telecommunications, e.g.,

in the assignment of frequencies in wireless networks (Martí, Gortázar, & Duarte, 2010). The best

solution method for the BCP (known as FCNS) belongs to (Prestwich, 2002).

For the computational experiments, we have employed the well-known GEOM instances. This set of

33 instances was created by Michel Trick and is available at http://mat.gsia.cmu.edu/COLOR02/.

The set contains graphs of three different density levels and with number of vertices ranging from 20

to 120. In our solution representation, () is the index of the color assigned to vertex .

http://mat.gsia.cmu.edu/COLOR02/

L a g u n a , e t a l . | 13

4.2 Capacitated Task Allocation Problem

The capacitated task allocation problem (CTAP) consists of assigning a set of tasks to a set of

processors. Each task requires an amount of resources and each processor has a resource

capacity of . Each pair of tasks has a communication cost that is incurred when the

tasks are assigned to different processors. The cost of assigning task to processor is given by ,

and the cost of using processor is given by . The problem may be formulated as a quadratic

binary program with one set of variables indicating whether task is assigned to processor and

another set of variables indicating whether processor is being used. The mathematical model

has the following form:

Minimize ∑ ∑ (∑

) ∑ ∑ ∑

Subject to ∑

 ∑

 { }

 { }

The CTAP has practical applications in distributed computing environments and in the automobile

industry, where micro-processing components must be placed and linked (Lusa & Potts, 2008). The

best CTAP solution method in the literature is based on a variable neighborhood search (VNS)

developed in (Lusa & Potts, 2008).

We use the 76 CTAP instances compiled in (Lusa & Potts, 2008), of which 8 belong to problems

found in practice. The 68 instances that were artificially generated include three levels of difficulty,

as related to the tightness of the capacity constraint. Also, some instances do not include the

processor cost and some do not include the assignment cost . The size of the instances ranges

from 15 to 100 tasks and between 4 and 30 processors. In our solution representation,

() is the index of the processor to which task is assigned.

4.3 Maximally Diverse Grouping Problem

The maximally diverse grouping problem (MDGP) has the objective of dividing a set of elements

into groups in order to maximize the diversity of all groups. There is a diversity measure between

each pair of elements that is given by . The diversity of a group is the sum of the diversity

values corresponding to each pair of elements assigned to the group. The size of a group must be

between and . A special case of the problem arises when for all groups. The problem

may be formulated as quadratic binary problem with a set of variables to indicate that element

is assigned to group :

Maximize ∑ ∑ ∑

Subject to ∑

L a g u n a , e t a l . | 14

 ∑

 { }

The MDGP has practical applications in circuit design (Chen, 1986) (Feo & Khellaf, 1990), storage of

large codes in paged memory (Kral, 1965) and the assignment of students to groups (Weitz & Jelassi,

1992). The best solution method in the literature is a tabu search with strategic oscillation (Gallego,

Laguna, Martí, & Duarte, 2011).

A set of 60 Geo instances from the MDGPLIB (available in http://www.optsicom.es/mdgp) were

employed for experimentation. The first 10 instances of each group with = 30, 60, 120, 240, 480

and 960 were selected to compile the set of 60. The instances are of the DSG (different group size)

type, i.e., . In our solution representation, () is the index of the group to which

element is assigned.

4.4 Water Distribution Network Problem

A water distribution network problem (WDNP) that has been studied by the civil engineering

community consists of expanding the capacity of a network of pipes to meet the needs of a water

distribution system. In particular, the problem consists of determining the size of the pipe and the

segment in an existing network where the new pipe will be added. The pipe network may be

represented as a graph where is the set of pipe segments and is the set of nodes

that connect the pipes. The objective is to add pipes of specified diameters to the segments in in

such a way that the total cost of the expansion is minimized and the water pressure at the nodes is

satisfied. Let be the diameter of the pipe added to segment and let be its length, then

the problem may be stated as:

Minimize ∑

Subject to

where is the pressure in node associated with the pipes placed in the current solution and is

the required pressure at the node. The value of depends on the problem and, in the literature, a

value of has been used for the New York City problem (Shaake & Lai, 1969), while a value

of has been used for the Hanoi network (Fujiwara & Khang, 1987). These are the two

problems that we use for experimentation, with the values of that are suggested in the literature.

The pressure values are calculated with a hydraulic simulator known as EPANET 2.0 (Rossman, 2000).

Therefore, the feasibility of a solution (i.e., a selection of pipe segments and their size) is not known

until the hydraulic calculations are performed by the simulator. The most recent results associated

with this problem are due to (Vasan & Simonovic, 2010). In our solution representation, is the

index of the diameter assigned to pipe-segment .

5. Experimental Testing

The results reported in this section were obtained with an Intel i7 @ 2.7 GHz and 4GB of RAM

computer running Windows XP. The code was implemented in Java SE6. The metrics that we use to

measure algorithmic performance are:

http://www.optsicom.es/mdgp

L a g u n a , e t a l . | 15

 Feas: Fraction of a set of problems for which a method is capable of finding at least one

feasible solution.

 Score: Let the experiment consist of comparing procedures using instances. Also, for a

particular procedure, let be the number of times that the other procedures produce

a better result. The Score of a procedure is the fraction of times in which the other

procedures “win” (i.e., they produce better solutions than the procedure being scored) and

is calculated as . Therefore, the best score is 1 (meaning

that no other procedure produced better solutions) and the worst is 0 (meaning that all

other procedures produced better solutions). In this calculation, we do not distinguish

among infeasible solutions, they are all assigned a large negative value (for a maximization

problem) or a large positive value (for a minimization problem) to indicate that they are the

worst.

 Dev: Average percent deviation from the best-known solution. Only feasible solutions are

included in this calculation.

 Best: Fraction of instances in a set for which a procedure is able to find the best-known

solution.

The collection of 171 instances (33 BCP, 76 CTAP, 60 MDGP and 2 WDNP) was divided into a training

set of 51 instances (11 BCP, 26 CTAP, 14 MDGP and 0 WDNP) and a test set of 120 instances (22 BCP,

50 CTAP, 46 MDGP and 2 WDNP).

In our first experimentation, we are interested in determining the best values for and .

That is, we want to determine the right mix of LHS and QS solutions to be used as a departure point.

We used the training set, ran several combinations, and quickly determined that, given a desired

total number of solutions, the best results are obtained when half of the solutions are generated

with the LHS method and half with the QC method.

As described in Section 3.2, the improvement method that we developed is based on the

assumption that a full-neighborhood search is computationally too expensive to be effective. This is

why the FLS improvement method (see Procedure 3) explores neighborhoods by making transitions

from the current solution to the next as soon as an improvement opportunity is identified. To test

our assumption and to assess the contribution of the improvement method, we perform an

experiment that compares the performance of three forms of generating solutions: 1) the

diversification generator (LHS.QC), 2) the diversification generator with the FLS improvement

method (LHS.QC.FLS), and 3) the diversification generator with a best improvement strategy

(LHS.QC.BLS). The best improvement strategy consists of a full neighborhood search to determine

the next solution to visit. The three alternatives are given a time limit of 1 minute and performance

is measured with Feas and Score.

The results in Table 1 show that the strategy of generating and improving solutions is better than the

strategy of spending the entire computational budget (of 1 minute in this case) only generating

solutions (as done by LHS.QC). The total Score of 0 associated with LHS.QC indicates that in all cases,

the addition of either local search produced better results. The results also confirm that first-

improvement is the better improvement strategy. Only in one instance (out of 51), the best-

improvement strategy was a better choice, and hence the Score of 0.990 for LHS.QC.FLS.

L a g u n a , e t a l . | 16

Problem Metric LHS.QC LHS.QC.BLS LHS.QC.FLS

BCP Feas 1 1 1
 Score 0 0.545 0.955

CTAP Feas 0.885 1 1
 Score 0 0.615 1

MDGP Feas 1 1 1
 Score 0 0.643 1

Total Feas 0.941 1 1
 Score 0 0.608 0.990

Table 1. Diversification generation and improvement methods

To build the final configuration of our procedure, we test the efficacy of the combination methods

described in Section 3.3. We once again employ the training set of instances and compare the

performance of the six combination methods when embedded in a scatter search framework along

with LHS.QC.FLS. All variants were executed a total of 1 minute per instance.

In Table 2 we compare the performance of the combination methods with the Score values only.

Note that LHS.QC.FLS alone is already capable of finding at least one feasible solution in all instances

(see Table 1). Therefore, Feas does not provide any discrimination power. The score values indicate

that CM-EP does not perform well in any of the problems. The best methods are CM-AE for BCP,

CM-A for CTAP and CM-RP for MDGP. Note that although CM-PR has a score of 0.914 on the MDGP

instances, the method performs poorly on the other two types of problems. Overall, CM-A exhibits

the most robust behavior with scores ranging from 0.709 to 0.846 and a total score of 0.780. This is

the combination method that we merge with LHS.QC.FLS to build our scatter search (SS) for integer

problems.

Problem CM-A CM-AE CM-EP CM-GPR CM-R CM-RP

BCP 0.709 0.818 0.455 0.745 0.509 0.473
CTAP 0.846 0.715 0.323 0.515 0.808 0.569
MDGP 0.714 0.643 0.371 0.657 0.814 0.914

Total 0.780 0.718 0.365 0.604 0.745 0.643

Table 2. Score values for 6 combination methods

We now compare the performance of the scatter search procedure with commercial black-box

optimizers. For this experiment, we use all but 2 of the instances (the WDNP instances) in the test

set for a total of 118. The comparison is made against the following three commercial software

packages and the stopping criterion is set to 1 minute per problem instance:

 OptQuest by OptTek Systems (http://www.opttek.com/)

 Premium Solver by Frontline Systems (http://www.solver.com/)

 Evolver by Palisade Corporation (http://www.palisade.com/)

Figures 3, 4 and 5 show the evolution throughout the search of the average values of Dev and Feas

for the 118 instances in the test set. Table 3 shows a summary of these measures for the entire set

as well as the value of Best associated with each method.

http://www.opttek.com/
http://www.solver.com/
http://www.palisade.com/

L a g u n a , e t a l . | 17

The graphs of Dev show that SS has more search diversification power than the competing

approaches. These approaches seem to stagnate, particularly in the CTAP and MDGP instances. The

graphs also show that all the approaches have difficulties in producing high quality solutions for the

BCP instances.

Figure3. Profile of Dev and Feas on BCP instances

Figure4. Profile of Dev and Feas on CTAP instances

Figure5. Profile of Dev and Feas on MDGP instances

The summary results in Table 3 are all in favor of SS. The procedure is the only one capable of

finding at least one feasible solution to all instances in the test set. It produces the smallest value of

Dev and the largest values of Best and Score. The one case in which SS does not produce the best

outcome is for the value of Dev in the BCP instances.

10%

100%

1000%

6 12 18 24 30 36 42 48 54 60

D
e

v

CPU Time

0,60

0,70

0,80

0,90

1,00

6 12 18 24 30 36 42 48 54 60
Fe

as

CPU Time

Evolver

OptQuest

Solver

SS

0%

1%

10%

100%

6 12 18 24 30 36 42 48 54 60

D
e

v

CPU Time

0,75

0,80

0,85

0,90

0,95

1,00

6 12 18 24 30 36 42 48 54 60

Fe
as

CPU Time

Evolver

OptQuest

Solver

SS

0,00%

0,01%

0,10%

1,00%

10,00%

100,00%

6 12 18 24 30 36 42 48 54 60

D
e

v

CPU Time

0,40

0,50

0,60

0,70

0,80

0,90

1,00

6 12 18 24 30 36 42 48 54 60

Fe
as

CPU Time

Evolver

OptQuest

Solver

SS

L a g u n a , e t a l . | 18

Problem Metric Evolver OptQuest Solver SS

BCP Feas 0.818 0.955 0.864 1
 Dev 7.168 6.822 2.330 3.968
 Best 0 0 0 0
 Score 0.167 0.379 0.788 0.758

CTAP Feas 0.900 0.840 0.980 1
 Dev 0.513 0.328 0.530 0.081
 Best 0.020 0.020 0 0.320
 Score 0.347 0.472 0.293 0.987

MDGP Feas 0.587 0.565 0.783 1
 Dev 0.027 0.038 0.039 0.003
 Best 0 0 0 0.109
 Score 0.522 0.238 0.478 1

Total Feas 0.763 0.754 0.881 1
 Dev 1.698 1.776 0.689 0.775
 Best 0.008 0.008 0.000 0.178
 Score 0.381 0.362 0.458 0.949

Table 3. Comparison of SS and commercial software

The next experiment compares the performance of SS against the state-of-the-art for the three

problem classes in the test set. In particular, the following procedures are used for comparison:

 FCNS for the BCP (Prestwich, 2002)

 VNS for the CTAP (Lusa & Potts, 2008)

 SO for the MDGP (Gallego, Laguna, Martí, & Duarte, 2011)

Once again, the test consists of 1-minute runs for each problem instance. The results are

summarized in Table 4.

Problem Metric State-of-the-art SS

BCP Dev 0.025 3.848
 Best 0.318 0
 Score 1 0

CTAP Dev 0.068 0.081
 Best 0.020 0.320
 Score 0.300 0.720

MDGP Dev 0.002 0.003
 Best 0.174 0.109
 Score 0.848 0.261

Total Dev 0.034 0.775
 Best 0.136 0.178
 Score 0.644 0.407

Table 4. Comparison of SS and the state-of-the-art

As expected, the state-of-the-art methods produce better results than the SS that has been designed

under the black-box paradigm. However, the SS is able to find solutions of reasonably high quality

for CTAP and MDGP instances. The experiment confirms that the structure and the objective-

function landscape of the BCP are not amenable to the black-box paradigm.

Our final experiment deals with finding solutions to the 2 WNDP instances. Each instance is run for 5

minutes. The New York network consists of 21 segments and 7 possible pipe diameters. In the

L a g u n a , e t a l . | 19

Hanoi network there are 34 pipe segments and 16 possible diameters. Table 5 shows the cost (in

millions) associated with the best solution found by each procedure, all of them treating the

evaluation of the objective function as a black box. A penalized function is used to direct the search

toward solutions that are feasible with respect to the required pressure values at the nodes.

Problem Evolver Solver OptQuest SS Best-known

Hanoi Infeasible Infeasible $6.42 $6.26 $6.19
New York $38.64 $44.70 $38.64 $38.81 $38.64

Table 5. SS and commercial solvers applied to the 2 WNDP instances

Both, Evolver and Solver are not able to find a single feasible solution for the Hanoi problem. SS

finds a solution that is slightly better than OptQuest’s solution and that is 1.1% worse than the best

known. On the other hand, SS is not able to match the best-known solution to the New York

problem, while both Evolver and OptQuest do.

6. Conclusions

This work is part of a larger project that has produced black-box optimizers for problem represented

by continuous variables, binary strings and permutation vectors. These representations cover a

large spectrum of problems classes in the literature. Our goal in all of these projects has been to

develop procedures that can be shown to be generally more effective than commercial black-box

solvers and at least somewhat competitive to the individual state-of-the-art for each problem class.

We recognize that our approach falls in between the specialized methods and the more general

black-box approach used by commercial software. We believe, however, that the mechanisms that

we have created can be (and in fact have been) embedded in commercial software packages in order

to increase their effectiveness.

Acknowledgments

This research has been partially supported by the Government of Spain (Grant Refs. TIN2009-07516
and TIN2012-35632).

References

April, J., Better, M., Glover, F., Kelly, J. P., & Laguna, M. (2005, January). Enhancing Business Process
Management with Simulation Optimization. BPTrends, 1-11.

Baños, R., Gil, C., Agulleiro, J. I., & Reca, J. (2007). A Memetic Algorithm for Water Distribution
Network Design. In A. Saad, E. Avineri, K. Dahal, M. Sarfraz, & R. Roy, Soft Computing in Industrial
Applications: Recent and Emerging Methods and Techniques (pp. 279–289). Berlin: Springer.

Bean, J. C. (1994). Genetic Algorithms and Random Keys for Sequencing and Optimization. INFORMS
Journal on Computing, 6(2), 154-160.

Campos, V., Laguna, M., & Martí, R. (2005). Context-Independent Scatter and Tabu Search for
Permutation Problems. INFORMS Journal on Computing, 17(1), 111-122.

Chen, C.-C. (1986). Placement and partitioning methods for integrated circuit layout. Berkeley:
University of California.

Dolezal, O., Hofmeister, T., & Lefmann, H. (1999). A Comparison of Approximation Algorithms for the
MaxCut-Problem. Universität Dortmund.

L a g u n a , e t a l . | 20

Duarte, A., Glover, F., Martí, R., & Gortázar, F. (2011). Hybrid Scatter Tabu Search for Unconstrained
Global Optimization. Annals of Operations Research, 183, 95-123.

Duarte, A., Martí, R., & Gortázar, F. (2011). Path Relinking for Large Scale Global Optimization. Soft
Computing, 15, 2257-2273.

Feo, T. A., & Khellaf, M. (1990). A class of bounded approximation algorithms for graph partitioning.
Networks, 20, 181-195.

Fujiwara, O., & Khang, D. B. (1987). A two-phase decomposition method for optimal design of
looped water distribution networks. Water Resources Research, 26(4), 539–549.

Gallego, M., Laguna, M., Martí, R., & Duarte, A. (2011). Tabu search with Strategic Oscillation for the
maximally diverse grouping problem. Journal of the Operational Research Society, 1-20.

Glover, F. (1997). Tabu Search and Adaptive Memory Programing – Advances, Applications and
Challenges. In R. S. Barr, R. V. Helgason, & J. L. Kennington (Eds.), Interfaces in Computer Science and
Operations Research: Advances in Metaheuristics, Optimization and Stochastic Modeling
Technologies (pp. 1-75). Boston: Kluwer Academic Publishers.

Glover, F., & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic Publishers.

Gonçalves, J. F., & Resende, M. G. (2011). Biased Random-key Genetic Algorithms for Combinatorial
Optimization. Journal of Heuristics, 17(5), 487-526.

Gortázar, F., Duarte, A., Laguna, M., & Martí, R. (2010). Black-box Scatter Search for General Classes
of Binary Optimization Problems. Computers and Operations Research, 37(11), 1977-1986.

Hansen, P., & Mladenovic, N. (1999). An Introduction to Variable Neighborhood Search. In S. Voss, S.
Martello, I. Ossman, & C. Roucairol (Eds.), Meta-heuristics, Advances and Trends in Local Search
Paradigms for Iotimization (pp. 433-458). Boston: Kluwer Academic Publishers.

Iman, R. L., & Conover, W. J. (1982). A Distribution-free Approach to Inducing Rank Correlation
Among Input Variables. Communications in Statistics - Simulation and Computation, 11, 311–334.

Kral, J. (1965). To the problem of segmentation of a program. Information Processing Machines, 2,
116-127.

Laguna, M., & Martí, R. (2003). Scatter Search: Methodology and Implementations in C. Boston:
Kluwer Academic Publishers.

Laguna, M., & Martí, R. (2005). Experimental Testing of Advanced Scatter Search Designs for Global
Optimization of Multimodal Functions. Journal of Global Optimization, 33, 235-255.

Laguna, M., Duarte, A., & Martí, R. (2009). Hybridizing the Cross Entropy Method: An application to
the Max-Cut Problem. Computers and Operations Research, 36(2), 487-498.

Laguna, M., Molina, J., Pérez, F., Caballero, R., & Hernández-Díaz, A. (2010). The Challenge of
Optimizing Expensive Black Boxes: A Scatter Search / Rough Set Theory Approach. Journal of the
Operational Research Society, 61(1), 53-67.

Larrañaga, P., & Lozano, J. A. (2002). Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Boston: Kluwer Academic Publishers.

Lippai, I., Heaney, J. P., & Laguna, M. (1999). Robust Water System Design with Commercial
Intelligent Search Optimizers. Journal of Computing in Civil Engineering, 13(3), 135-143.

Lusa, A., & Potts, C. N. (2008). A variable neighbourhood search algorithm for the constrained task
allocation problem. Journal of Operational Research Society, 59(6), 812-822.

Martí, R., Gortázar, F., & Duarte, A. (2010). Heuristics for the bandwidth colouring problem.
International Journal of MetaHeuristics, 11-29.

L a g u n a , e t a l . | 21

McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A Comparison of Three Methods for Selecting
Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics, 21, 239–
245.

Prestwich, S. (2002). Constrained bandwidth multicoloration neighborhoods. Computational
symposium on graph coloring and its generalizations, (pp. 126-133). Ithaca, NY.

Rossman, L. A. (2000). EPANET: User’s Manual. Cincinnati: United States Environmental Protection
Agency.

Schittekat, P., & Sörensen, K. (2009). Supporting 3PL Decisions in the Automotive Industry by
Generating Diverse Solutions to a Large-Scale Location-Routing Problem. Operations Research, 57(5),
1058-1067.

Shaake, J. C., & Lai, D. (1969). Linear programming and dynamic programming application to water
distribution network design. Cambridge: Massachusetts Institute of Technology.

Spears, W. M., & DeJong, K. A. (1991). On the Virtues of Parameterized Uniform Crossover. In R. K.
Belew, & L. B. Booker (Ed.), Proceedings of the Fourth International Conference on Genetic
Algorithms (pp. 230-236). San Francisco: Morgan Kaufmann Publishers Inc.

Stein, M. (1987). Large Sample Properties of Simulations Using Latin Hypercube Sampling.
Technometrics, 29, 143–151.

Taillard, E. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive Memory
Programming: A Unified View of Metaheuristics. European Journal of Operational Research, 135, 1-
16.

Vasan, A., & Simonovic, S. P. (2010). Optimization of Water Distribution Network Design Using
Differential Evolution. Journal of Water Resources Planning and Management, 136(2), 279-287.

Weitz, R. R., & Jelassi, M. T. (1992). Assigning students to groups: a multi-criteria decision support
system approach. Decision Sciences, 23(3), 746-757.

Yates, D. F., Templeman, A. B., & Boffey, T. B. (1984). The Computational Complexity of the Problem
of Determining Least Capital Cost Designs for Water Supply Networks. Engineering Optimization,
7(2), 143-155.

Yeniay, Ö. (2005). Penalty Function Methods for Constrained Optimization with Genetic Algorithms.
Mathematical and Computational Applications, 10(1), 45-56.

