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ABSTRACT 

The goal of this work is the development of a black-box solver based on the scatter search 
methodology.  In particular, we seek a solver capable of obtaining high quality outcomes to 
optimization problems for which solutions are represented as a vector of integer values.  We refer to 
these problems as integer optimization problems.  We assume that the decision variables are 
bounded and that there may be constraints that require that the black-box evaluator is called in 
order to know whether they are satisfied.  Problems of this type are common in operational research 
areas of applications such as telecommunications, project management, engineering design and the 
like.  Our experimental testing includes 171 instances within four classes of problems taken from the 
literature.  The experiments compare the performance of the proposed method with both the best 
context-specific procedures designed for each class of problem as well as context-independent 
commercial software.  The experiments show that the proposed solution method competes well 
against commercial software and that can be competitive with specialized procedures in some 
problem classes. 
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1. Introduction 

The black-box optimization framework is the OR (operations research) community response to the 

need for modeling flexibility and the separation between the modeling environment and the 

solution method.  Achievements and progress in the solution of mathematical models of various 

types, including integer programs, are numerous and well-documented in the OR literature.  

Nonetheless, casting a problem as a mathematical model (integer or continuous, linear or nonlinear, 

or mixed) remains an exercise of imagination, abstraction and compromises.  The chief compromise 

is associated with the set of real elements that the modeling framework may not support or that 

their inclusion makes the model unworkably complex.  Uncertainty is a typical example of this 

situation, where clever but still limited modeling artifacts have been designed —for instance, those 

related to robust optimization techniques.  The modeling boundaries broaden when the concerns of 

how the optimization problem will be solved are removed.  That is precisely the role of black-box 

optimization.  For example, for problems where uncertainty is not only real but relevant, tools such 

as computer simulation provide a rich environment to capture reality by liberating the analyst from 

the burden of maintaining a rigid structure that will conform to the norms dictated by the solution 

procedure.  Thus, evaluating the merit of a solution is not restricted to a mathematical expression of 

a given type (e.g., a linear equation for linear programming). 

Black-box optimization refers to the process in which there is a complete separation between the 

evaluation of the objective function —and perhaps other functions used to enforce constraints— 

and the solution procedure, as illustrated in Figure 1.  In simulation-optimization, the black box 

model has been extremely popular in both research and practice.  Commercial simulation software 

began adding black-box optimizers in the early 1990’s.  Nowadays, optimizers based on 

metaheuristic technology dominate the application space in all areas of computer simulation, 

including Monte Carlo, discrete-event, systems dynamics and agent based. 

 

Figure 1. Schematic representation of the black-box optimization framework 

This paradigm is not only useful in the case of optimizing simulations but also in situations where the 

real system is best represented by computational processes or algorithms that do not necessarily 

contain random elements but that are complex in nature.  For instance, (Schittekat & Sörensen, 

2009) describes the use of commercial software for vehicle routing as an evaluation box for a vendor 

selection problem.  A search is conducted to find the best combination of 3PL (third party logistics) 

vendors, where each combination represents a solution to the problem and whose evaluation 

consists of solving a detailed distribution and delivery plan that the commercial software produces.  

In this case, the black-box evaluation is the result of solving a deterministic but complex optimization 

problem. 



L a g u n a ,  e t  a l .  | 3 

 

Engineering design has been a fertile ground for the application of black-box optimization.  There is a 

simple explanation for this phenomenon.  Over the course of many years, engineers have developed 

and tested rather complex computer codes to evaluate designs.  Wrapping optimization routines 

around these codes became the simplest way to take advantage of this work, avoiding the arduous 

task of tweaking the internal logic and structure of the available computer codes in order to add 

optimization functionality.  It is also an effective mechanism to bring together expertise from two 

different communities: the optimization gurus and the experts in the particular area of application.  

In the black-box environment, the optimization experts do not need to know the details of the 

system being optimized, in the same way that the context experts do not need to know the 

intricacies of optimization. 

Consider, for example, the public-domain software called EPANET, developed and distributed by the 

Water Supply and Water Resources Division of the United States Environmental Protection Agency.  

This software models the hydraulics and water quality of water distribution piping systems.  A design 

in this context is a selection of a set of pipes, nodes, pumps, valves and storage tanks or reservoirs, 

along with their properties and operational rules. The problem of evaluating a design is complex 

(Yates, Templeman, & Boffey, 1984) and this is why many person-hours have gone into developing 

EPANET.  For a particular design, EPANET tracks the flow of water in each pipe, the pressure at each 

node, the height of the water in each tank, and the concentration of a chemical species throughout 

the network during a simulation period (Rossman, 2000).  EPANET may be used to design a new 

network or expand an existing one.  In a recent study (Vasan & Simonovic, 2010) a differential 

evolution algorithm was developed to optimize pipe network designs that are evaluated with 

EPANET.  Designs are evaluated in terms of cost and resilience (defined as the design’s capability to 

overcome sudden failures).  Their experiments show the merits of the differential evolution 

algorithm when compared to similar approaches, such as (Baños, Gil, Agulleiro, & Reca, 2007) and 

(Lippai, Heaney, & Laguna, 1999). 

As discussed in (Laguna, Molina, Pérez, Caballero, & Hernández-Díaz, 2010), “the challenge of 

optimizing black boxes is to develop methods that can produce outcomes of reasonable quality 

without taking advantage of problem structure and employing a computational effort that is 

adequate for the context.”  Equally challenging is the task of providing enough modeling flexibility to 

tackle optimization problems in a variety of environments.  For instance, the differential evolution 

procedure designed in (Vasan & Simonovic, 2010) focuses on searching in a solution space defined 

by a vector of integer values.  This was achieved by “codifying” the set of available pipe diameters 

into contiguous integers where zero represents the “no pipe” option.  This solution representation is 

also popular in the optimization of business process simulations, where choosing the best mix of 

resources is critical.  As shown in (April, Better, Glover, Kelly, & Laguna, 2005), the optimization of a 

computer simulation of a healthcare facility deals with choosing the right number of physicians, 

number of nurses, number of lab technicians, number of receptionists and number of examination 

rooms.  Likewise, optimizing the staffing levels at a call center implies the selection of the right 

number of people at the right time in order to provide sales capacity and customer service for a 

number of products.  In both cases, solutions are also represented as vectors of integers, where 

larger numbers result in increased resource levels. 
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The binary representation is a special case of the integer representation, where the variables are 

limited to take on only two values: zero or one.  Optimization methods for binary problems have a 

long tradition, particularly in the area of evolutionary computation.  Recall that the original genetic 

algorithm proposals favored binary encodings as a universal form of representing solutions.  In some 

cases, binary vectors are indeed the natural representation of the relevant decisions.  One example 

is the aforementioned work by Schittekat and Sörensen (Schittekat & Sörensen, 2009), where 

choosing vendors is best conceptualized as assigning a value of one to those that are chosen and a 

value of zero to those vendors that are not chosen.  Since there are no restrictions in the number of 

vendors to choose, then every combination of ones and zeros (perhaps with the exception of all 

zeros, which results in not choosing any vendors at all) is a valid solution to the problem. 

Commercial general-purpose metaheuristic optimizers, such as Opttek’s OptQuest, Palisade’s 

Evolver and Frontline’s Premium Solver, provide solution-representation flexibility by allowing the 

modeling of optimization problems with a mix of continuous, integer, permutation, binary and other 

special types of variables.  However, added flexibility translates into complex search spaces and 

increased difficulty in finding high-quality solutions. Previous studies have shown how even a small 

amount of specialization makes a significant difference in the performance of black-box optimizers.  

Campos, Laguna and Martí (Campos, Laguna, & Martí, 2005) developed a black-box optimization 

procedure for problems for which solutions are represented as permutations.  Computational tests 

showed that their procedure outperformed the general-purpose optimizers that are not specialized 

to only tackle permutation problems.  Similar results were obtained in (Gortázar, Duarte, Laguna, & 

Martí, 2010) for problems with binary variables. 

Some solution methodologies have been designed with the black-box framework in mind, as in the 

case of random-key genetic algorithms (RKGA).  This is an evolutionary computation procedure 

whose main search mechanisms are problem-independent crossover and mutation operators.  They 

were originally introduced in (Bean, 1994) for the solution of combinatorial optimization problems 

related to sequencing.  Solutions in RKGA implementations are represented as vectors of real 

numbers that are randomly generated between 0 and 1.  Each vector corresponds to a feasible 

solution and mating is performed using the so-called parameterized uniform crossover (Spears & 

DeJong, 1991), which is designed to always produce a feasible offspring.  The associated decoder is a 

deterministic algorithm that takes a random-key vector as input and returns a feasible solution of 

the optimization problem along with the objective function value.  The decoder acts as a black box 

and is the only problem-dependent element of the solution procedure. 

Additional examples of procedures that are partially based on the black-box paradigm are Bias 

Random Key (Gonçalves & Resende, 2011), Cross Entropy (Laguna, Duarte, & Martí, 2009) and 

Estimation of Distribution Algorithms (Larrañaga & Lozano, 2002).  Because our design is fully based 

on a black-box structure, we don’t compare performance against these procedures and limit our 

computational experiments to tests with commercial solvers.  In addition, comparisons are made 

with specialized procedures for each class of problems in the test set.  It is not expected for black-

box methods to perform better than the state-of-the-art in any particular problem instance; 

however, the comparison is helpful in assessing the size of the gap between a general and a 

specialized procedure in each problem class. 
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This work may be viewed as the fourth in a series of general-purpose solvers created for problems 

with specific types of variables: continuous variables (Laguna & Martí, 2005), permutation variables 

(Campos, Laguna, & Martí, 2005) and binary variables (Gortázar, Duarte, Laguna, & Martí, 2010).  

Specifically, our interest is to develop a solver for an evaluation black box that takes as input a vector 

of integers.  The process is such that a solver sends a vector of integers to the black box that 

calculates an objective function value and the left-hand-side of constraint values if any.  These values 

are returned to the solver and are used to make decisions with respect to the next trial solution that 

is generated and turned in to the black box for evaluation.  It is assumed that there is a 

computational budget that limits the number of times that the black box may be called.  This is the 

criterion by which execution is stopped and computational effort is measured across competing 

solution procedures. 

Within the continuum of solution procedures, our proposal is closer to the general-purpose 

commercial solvers than to the methods specially built for a particular class of problems.  The 

specialization over the commercial solvers consists of focusing on a specific solution representation 

(i.e., a vector of integers).  The results of our computational tests, discussed later, are consistent 

with where the procedure falls within the specialization scale. 

2. Modeling Integer Problems 

Let an optimization problem be such that all the decision variables    for           must take on 

integer values.  We refer to this class as integer problems.  We assume that all variables are bounded 

in the interval       and that the objective function to be maximized is denoted by     .  The 

problem may be written as: 

Maximize      

Subject to                 

      

     

The solver enforces the box constraints on the variables but has knowledge neither of the functional 

form of      nor of any of the       functions.  For each solution  , the black box calculates      

and all      values and returns them to the solver.  In order to establish search directions, the solver 

builds a penalized function of the form                , where      is the penalty term.  

(Yeniay, 2005) describes the merits of a fairly extensive family of penalty functions of the following 

form: 

     ∑      {       } 

 

 

Clearly, if   is feasible then           .  The    constants are the factors that penalize infeasible 

solutions.  In problems where there is knowledge of the relative importance of meeting the 

constraints, it would make sense to use a different penalty factor for each constraint.  However, in 

the current context, we assume that there is no such knowledge and therefore a single penalty 

factor   is used for all constraints.  Typically,   is given a value of 1 or 2.  To ensure that the       
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value of any infeasible solution is worse than the      value of any feaible solution, then      must 

be strictly greater than      for all infeasible solutions. In our procedure we set       and    . 

The large penalty factor has the effect of magnifying the infeasibility of the solutions explored during 

the search.  Therefore, the identification of feasible solutions has a high priority and the search 

attempts to stay within the feasible region. 

3. Scatter Search 

The metaheuristic known as scatter search belongs to the evolutionary programming family.  The 

procedure starts with the construction of a population of solutions from which a reference set 

(RefSet) is selected and evolved by means of combination and improvement mechanisms.  The 

methodology consists of five methods: 

1. Diversification generation method 

2. Reference set update method 

3. Subset generation method 

4. Solution combination method 

5. Improvement method 

As described in (Laguna & Martí, 2003), there are standard (problem independent) forms of 

implementing the reference set update and the subset generation methods.  In our work, we 

adopted two of those standard forms, namely, the reference set is updated with the standard static 

method.  This method consists of constructing the RefSet by selecting   solutions from a population 

  created by the diversification generator.  Half of these solutions (i.e.,    ) are the best according 

to their objective function values and the other half are selected for diversity purposes.  Diversity is 

measured by calculating the Hamming distance between solutions.  After the initial construction, the 

RefSet is updated by selecting the solutions with the highest quality in the set of solutions consisting 

of the union of the current RefSet and the set of solutions that have been subjected to the 

improvement method after being generated by the solution combination method. 

The subset generation method is also standard and consists of all pairs of reference solutions for 

which at least one of the two solutions is “new”.  That is, pairs that have already been examined in 

previous iterations are not considered.  Below, we describe the implementation details of the 

diversification generation, solution combination and the improvement methods, all of which are 

specific to the current context. 

3.1 Diversification Generation Method 

We generate diverse solutions by construction.  The main characteristic of constructive methods is 

that solutions are typically built sequentially by adding one element at a time or setting the value of 

a variable one at a time.  The process is guided by a function that indicates the attractiveness of 

adding an unselected element to the solution or of setting a variable to a particular value.  In a black-

box structure, we assume that it is not possible to evaluate partial solutions.  In other words, we 

assume that the back box is designed to evaluate only full solutions.  Therefore, we face a situation 

in which constructing a solution by choosing the values of the variables sequentially is either 

extremely convoluted or impossible because there may not be a simple mechanism to measure the 
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merit of assigning a specific value to a variable.  In order to obtain a set of full solutions that is a 

representative sample of the solution space, we relied on a tool from the area of experimental 

design. 

Within this field, a factorial design of experiments is a technique applied to a set of   factors, each of 

which can take on one of   levels.  A full factorial design considers all combinations of factors and 

levels, resulting in    experiments.  When applying this technique to our context, where factors are 

variables and levels are possible values of the variables (i.e.,        ).  A full factorial design 

corresponds to a complete enumeration of all possible (both feasible and infeasible) solutions.  

Clearly, this approach is only practical for small values of   . 

In practice, the full factorial space is sampled instead of explored exhaustively.  Latin Hypercube 

Sampling (LHS) —introduced in (McKay, Beckman, & Conover, 1979) and refined in (Iman & Conover, 

1982)— is an effective technique that is also computationally efficient.  Figure 2 shows a LHS design 

for 2 variables,    and   , that can take on the integers from 1 to 4 (i.e.,     and    ).  The 

square grid in Figure 2 shows both the 16 possible solutions and the sample positions (indicated with 

X).  The design is a Latin square because there is only one sample in each row and each column of 

the square.  In multiple dimensions, the design is known as a Latin hypercube. 

     

  1 2 3 4 

   
 

1   X  

2    X 

3  X   

4 X    

Figure 2. Latin square for a problem with     and     

Each LHS design results in         solutions and therefore a common practice consists of 

building several designs to generate a desired number of solutions.  We start by creating   vectors of 

size   with elements             placed in the specified order.  We then create a random 

permutation of     vectors, leaving one of the vectors in the order that it was created.  A Latin 

hypercube sample is obtained by matching each of the elements of the individual vectors to create   

samples.  For instance, the Latin square of Figure 2 is the result of a process by which the values of 

the vector (1, 2, 3, 4), which correspond to   , are matched with the values of a random 

permutation of this vector, which correspond to   .  The random permutation is (3, 4, 2, 1), resulting 

in the pairs (1, 3), (2, 4), (3, 2) and (4, 1).  These pairs are the samples and the cells marked with X in 

the Latin square of Figure 2. 

Procedure 1 shows how to employ this technique to generate a set with       solutions.  The 

procedure starts by initializing the repository of solutions   as an empty set and by setting the value 

of  .  Then, the permutation    is set to the ordered vector            , where       is the value 

in position  .  That is,         and        .  The main loop of the procedure is executed until the 

size of   reaches      .  The loop starts by creating     permutations of    (line 4).  These 

permutations are labeled   , for       .  The value in position   of the     permutation is      .  

Samples are constructed (line 7) and added to set   (line 9), one by one.  If   reaches the desired 
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size (line 10), the outer for-loop breaks and the procedure stops.  We point out that, similar 

procedures based on design of experiments have been used in the literature to generate populations 

of diverse solutions.  See for instance the implementations in (Laguna & Martí, 2005), (Duarte, 

Glover, Martí, & Gortázar, 2011) and (Duarte, Martí, & Gortázar, 2011). 

LHS() 

1. Make     and         

2. Make               , where       is the     value in the array 
3. WHILE             DO 

4. Construct     random permutations of   , where    is the     

permutation (for        ) 
5. FOR       TO   DO 

6. FOR       TO   DO 

7. Set          

8. END FOR 

9.       
10. IF            BREAK 

11. END FOR 

12. END WHILE 
END 

Procedure 1. Latin Hypercube Sampling 

The solutions in   are evaluated by calling the black box.  That is, the objective function value and 

feasibility of the solutions are known for each solution    . Hence,   includes both feasible and 

infeasible solutions.  These data are the starting point for acquiring knowledge about the 

characteristics that are embedded in high quality solutions.  In the spirit of adaptive memory 

programming (Taillard, Gambardella, Gendreau, & Potvin, 2001), which embodies a broad 

framework that focuses on exploiting a collection of strategic memory components with the purpose 

of balancing search intensification and diversification (Glover, 1997), we employ a memory structure 

(      ) that stores the average value of the objective function corresponding to solutions for 

which the variables hold certain values.  Specifically,        is a two dimensional array of size 

   , where columns represent variables and rows represent variable values.  The             

element of the matrix contains the average objective function value of solutions for which     .  

The objective function value information is stored every time a solution is evaluated with the black 

box and therefore it includes the objective function values of both feasible and infeasible solutions. 

The        matrix is constructed with the solutions in  . 

The information contained in the        memory structure is used to construct empirical 

distribution functions that give the probability that a variable will be assigned a particular value.  The 

empirical probability distribution function (PDF) for variable    is given by: 

    (    )   
           

∑             
   

 

Instead of using the PDF directly, it is more convenient to work with its corresponding cumulative 

distribution function (CDF).  As customary, the CDF is simply given by: 
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    (    )  ∑     (     )

 

    

 

for         and     (    )   . 

To exploit the information contained in the CDFs, we configured a method to construct solutions 

based on quality information that is shown in Procedure 2 (and labeled QC).  The method takes as 

input the CDFs and      , and returns a set   of       solutions.  Procedure 2 simply constructs 

solutions for which the probability that a variable takes on a specific value is given by its 

corresponding CDF. 

QC() 

1.     
2. WHILE           DO 

3. FOR       TO   DO 

4.             
5.     
6. WHILE              DO 

7.       
8. END WHILE 

9.      

10. END FOR 

11.       
12. END WHILE 
END 

Procedure 2. QC Constructive Method 

In sum, the construction of solutions is done in two steps.  In the first step, LHS (Procedure 1) is 

executed and       solutions are obtained with Latin Hypercube Sampling.  These solutions are 

evaluated with the black box and the quality of their elements (i.e., the assignments of values to the 

decision variables) is captured by the        memory structure.  This structure is then used to 

create probability distribution functions, one for each variable.  Then,       additional solutions are 

constructed with the QC method (Procedure 2), which employs the information embedded in the 

CDFs that are associated with the PDFs constructed from the        memory structure.  These 

new solutions are also evaluated with calls to the black box.  Therefore, at the end of this process, 

the black box has been called a total of             times. 

3.2 Improvement Method 

Improvement methods within the scatter search framework are typically based on neighborhood 

searches, and commonly limited to local searches.  That is, the improvement method stops as soon 

as no neighbor is capable of improving upon the current solution.  The improvement method 

employs two types of neighborhoods and is organized in a similar way as variable neighborhood 

descent (Hansen & Mladenovic, 1999).  Neighborhoods are built from a solution representation and 

a move mechanism.  In our context, we represent a solution   as a vector of   variables, i.e., 

                such that        for all  .  With this representation, we define the following 

moves: 
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 Exchange of values.  Given a solution  , the exchange of the values of the variables    and    

is denoted by           and generates a new solution    such that   
           and 

  
    ,   

    . 

 Replacement of a single value.  Given a solution  , the replacement move denoted by 

             creates a solution    for which   
         and   

   .  The move is such 

that     . 

We refer to the neighborhood generated by swap moves as the swap neighborhood and the 

neighborhood generated by the replacement moves as the replace neighborhood.  The size of these 

neighborhoods is          and       , respectively.  A full exploration of both neighborhoods 

results in a computationally expensive local search that might not yield the desired results.  Instead 

of attempting to find the best move (i.e., the swap or replace that results in the largest improvement 

of the objective function value), we adopt the first-improvement strategy.  This strategy consists of 

traversing the neighborhoods and executing improving moves as soon as they are identified, as 

shown in Procedure 3. 

FLS( ) 
1. Improve = true 

2. WHILE Improve DO 

3. Improve = false 

4. Make   {       } 
5. WHILE     and Not Improve DO 

6. Randomly select     and make       
7. Make   {         }    

8. WHILE     and Not Improve DO 

9. Randomly select     and make       
10.                  

11. IF            THEN 

12.      

13. Improve = true 

14. END IF 

15. END WHILE 

16. IF Not Improve THEN 

17. Make   {     } 
18. WHILE     and Not Improve DO 

19. Randomly select     and make       
20.                

21. IF            THEN 

22.      

23. Improve = true 

24. END IF 

25. END WHILE 

26. END IF 

27. END WHILE 

28. END WHILE 
END 

Procedure 3. FLS Improvement Method  

The first-improvement local search (FLS) in Procedure 3 starts from an initial solution  .  The main 

loop (lines 2 to 28) is executed as long as the current solution keeps improving.  All variables in the 

model are made available for the neighborhood search by creating the set   of variable indices (line 

4).  A variable index   is randomly selected and eliminated from   (line 6), and the set   of all 
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possible new values for variable   is constructed (line 7).  Note that   does not include the current 

value of the chosen variable (i.e., it does not include de value of   ).  Lines 7 to 15 include the search 

for a value   whose replacement of the current value of    results in an improvement of the 

objective function.  If such a value is found, the entire process is repeated from line 3.  If not, then 

the swap neighborhood is explored, starting in line 17.  The exploration consists of random 

selections of an index   (line 19) that is different from   in order to excute the move          , as 

shown in line 20.  As soon as an improved moved is found (lines 21 to 23), the process restarts in line 

3.  The local search ends when all variables are explored and there is no replacement of swap 

capable of improving the current solution.  This occurs when the Boolean variable Improve has the 

value of false and all variables in   have been explored (see line 5 in Procedure 3). 

3.3 Combination Methods 

The combination mechanisms employed in our implementation operate on two solutions,    and    , 

to generate a new solution  .  We have created six of these procedures and their merit is assessed in 

the computational testing section: 

1. CM-A.  This procedure calculates the (rounded) midpoint between the two reference 

solutions.  Therefore, each variable value in the new solution is       (
  

    
  

 
). 

2. CM-AE.  This procedure generates three trial solutions and returns the best.  The first trial 

solution is the same one as the one generated by CM-A.  The second and third trial solutions 

are given by      (
              

 
) and      (

             

 
), respectively. 

3. CM-EP.  This is similar to CM-AE, with the first trial solution being the same as the one 

generated by CM-A.  The second and third trial solutions, however, are generated by finding 

two points in the hyperplane               .  One point is found with    , such that 

it is between     and the point where the hyperplane reaches the       boundary.  The other 

one is the midpoint on the segment of the hyperplane that is between    and the       

boundary, which is reached by making    . 

4. CM-GPR.  This procedure is based on the notion of path relinking (Glover & Laguna, 1997) 

where a sequence of trial solutions are visited while transforming a so-called initiating 

solution into a so-called guiding solution.  Assume that    is the initiating solution and that 

    is the guiding solution.  Then, at each step, the assignment   
    

   that improves       

the most is made.  The process stops when       .  The best trial solution is returned. 

5. CM-R.  This procedure builds a new solution with a random selection, for each variable, of 

the values in the reference solutions.  That is      
  or   

   with  (     
 )   (   

  
  )      for all  .  In the context of genetic algorithms, this combination method is known 

as the fixed crossover operator (Dolezal, Hofmeister, & Lefmann, 1999). 

6. CM-PR.  This is similar to CM-R, however, the selection probabilities are proportional to the 

quality of the reference solutions.  Assuming that         and         , then 

 (     
 )  

 (  )

            
 and  (     

  )     (     
 ). 

Of all the solutions produced by the application of a combination method, only the top     are 

chosen to be subjected to the improvement method. 
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4. Test Problems 

We employed the following four sets of test problems: 

 Bandwidth Coloring Problem (Martí, Gortázar, & Duarte, 2010).  This is a special type of 

graph coloring problem for which colors have values.  A valid coloring of the graph is one for 

which the difference of the values of the colors of two adjacent nodes (i.e., nodes that are 

connected) must exceed the value of the connecting edge.  As in the classical coloring 

problem, the objective is to minimize the number of colors. 

 Capacitated Task Allocation Problem (Lusa & Potts, 2008).  This problem consists of 

assigning a set of tasks to a set of processors in order to minimize the total cost of the 

assignment.  The total cost may include a fixed cost for using a processor and a 

communication cost associated with the assignment of related tasks to different processors. 

 Maximally Diverse Grouping Problem (Gallego, Laguna, Martí, & Duarte, 2011).  This is the 

problem of partitioning a set of elements into a given number of groups in order to 

maximize total diversity, measured as the sum of the individual group diversities.  

 Water Distribution Network Problem (Vasan & Simonovic, 2010).  The objective of this 

problem is to select the size and location of pipes in a water distribution network in order to 

meet water pressure requirements at a minimum cost. 

These problems present different challenges according to their structure.  However, they all have in 

common that their solution can be represented as a vector of integer values. 

4.1 Bandwidth Coloring Problem 

Let         be a graph where   (       ) is the set of vertices and   (      ) is the set of 

edges.  Associated with each edge between nodes   and  , there is a positive quantity    .  A  -

coloring of   assigns the color        {       } to vertex       in such a way that                

     for all          .  The objective of the bandwidth coloring problem (BCP) is to find a  -coloring 

such that   is minimized.  Mathematically, the problem may be expressed as follows: 

Minimize   

Subject to                     for all           

        {       } for all       

The vertex coloring problem is a special case of the BCP for which       for all        .  Both 

problems are NP-Hard and the BCP has interesting practical applications in telecommunications, e.g., 

in the assignment of frequencies in wireless networks (Martí, Gortázar, & Duarte, 2010).  The best 

solution method for the BCP (known as FCNS) belongs to (Prestwich, 2002). 

For the computational experiments, we have employed the well-known GEOM instances.  This set of 

33 instances was created by Michel Trick and is available at http://mat.gsia.cmu.edu/COLOR02/.  

The set contains graphs of three different density levels and with number of vertices ranging from 20 

to 120.  In our solution representation,    (      ) is the index of the color assigned to vertex  . 

http://mat.gsia.cmu.edu/COLOR02/
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4.2 Capacitated Task Allocation Problem 

The capacitated task allocation problem (CTAP) consists of assigning a set of   tasks to a set of   

processors.  Each task   requires an amount    of resources and each processor   has a resource 

capacity of   .  Each pair of tasks       has a communication cost       that is incurred when the 

tasks are assigned to different processors.  The cost of assigning task   to processor   is given by    , 

and the cost of using processor   is given by   .  The problem may be formulated as a quadratic 

binary program with one set of variables     indicating whether task   is assigned to processor   and 

another set of variables    indicating whether processor   is being used.  The mathematical model 

has the following form: 

Minimize ∑ ∑    (  ∑       
 
   )  ∑ ∑        ∑     

 
   

 
   

 
   

 
   

   
    

Subject to ∑       
            

 ∑           
 
            

     {   }      

    {   }    

The CTAP has practical applications in distributed computing environments and in the automobile 

industry, where micro-processing components must be placed and linked (Lusa & Potts, 2008).  The 

best CTAP solution method in the literature is based on a variable neighborhood search (VNS) 

developed in (Lusa & Potts, 2008). 

We use the 76 CTAP instances compiled in (Lusa & Potts, 2008), of which 8 belong to problems 

found in practice.  The 68 instances that were artificially generated include three levels of difficulty, 

as related to the tightness of the capacity constraint.  Also, some instances do not include the 

processor cost    and some do not include the assignment cost    .  The size of the instances ranges 

from 15 to 100 tasks and between 4 and 30 processors.  In our solution representation,    

(      ) is the index of the processor to which task   is assigned. 

4.3 Maximally Diverse Grouping Problem 

The maximally diverse grouping problem (MDGP) has the objective of dividing a set of   elements 

into   groups in order to maximize the diversity of all groups.  There is a diversity measure between 

each pair of elements       that is given by    .  The diversity of a group is the sum of the diversity 

values corresponding to each pair of elements assigned to the group.  The size of a group   must be 

between    and   .  A special case of the problem arises when       for all groups.  The problem 

may be formulated as quadratic binary problem with a set of variables     to indicate that element   

is assigned to group  : 

Maximize ∑ ∑ ∑       
 
     

   
      

 
    

Subject to ∑    
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    ∑    
 
               

     {   }      

The MDGP has practical applications in circuit design (Chen, 1986) (Feo & Khellaf, 1990), storage of 

large codes in paged memory (Kral, 1965) and the assignment of students to groups (Weitz & Jelassi, 

1992).  The best solution method in the literature is a tabu search with strategic oscillation (Gallego, 

Laguna, Martí, & Duarte, 2011). 

A set of 60 Geo instances from the MDGPLIB (available in http://www.optsicom.es/mdgp) were 

employed for experimentation.  The first 10 instances of each group with   = 30, 60, 120, 240, 480 

and 960 were selected to compile the set of 60.  The instances are of the DSG (different group size) 

type, i.e.,      .  In our solution representation,    (      ) is the index of the group to which 

element   is assigned. 

4.4 Water Distribution Network Problem 

A water distribution network problem (WDNP) that has been studied by the civil engineering 

community consists of expanding the capacity of a network of pipes to meet the needs of a water 

distribution system.  In particular, the problem consists of determining the size of the pipe and the 

segment in an existing network where the new pipe will be added.  The pipe network may be 

represented as a graph         where   is the set of pipe segments and   is the set of nodes 

that connect the pipes.  The objective is to add pipes of specified diameters to the segments in   in 

such a way that the total cost of the expansion is minimized and the water pressure at the nodes is 

satisfied.  Let    be the diameter of the pipe added to segment     and let    be its length, then 

the problem may be stated as: 

Minimize ∑      
 
    

Subject to           

where    is the pressure in node   associated with the pipes placed in the current solution and    is 

the required pressure at the node.  The value of   depends on the problem and, in the literature, a 

value of        has been used for the New York City problem (Shaake & Lai, 1969), while a value 

of       has been used for the Hanoi network (Fujiwara & Khang, 1987).  These are the two 

problems that we use for experimentation, with the values of   that are suggested in the literature.  

The pressure values are calculated with a hydraulic simulator known as EPANET 2.0 (Rossman, 2000).  

Therefore, the feasibility of a solution (i.e., a selection of pipe segments and their size) is not known 

until the hydraulic calculations are performed by the simulator.  The most recent results associated 

with this problem are due to (Vasan & Simonovic, 2010).  In our solution representation,    is the 

index of the diameter assigned to pipe-segment  . 

5. Experimental Testing 

The results reported in this section were obtained with an Intel i7 @ 2.7 GHz and 4GB of RAM 

computer running Windows XP.  The code was implemented in Java SE6.  The metrics that we use to 

measure algorithmic performance are: 

http://www.optsicom.es/mdgp
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 Feas: Fraction of a set of problems for which a method is capable of finding at least one 

feasible solution. 

 Score: Let the experiment consist of comparing   procedures using   instances.  Also, for a 

particular procedure, let   be the number of times that the other     procedures produce 

a better result.  The Score of a procedure is the fraction of times in which the other 

procedures “win” (i.e., they produce better solutions than the procedure being scored) and 

is calculated as                      .  Therefore, the best score is 1 (meaning 

that no other procedure produced better solutions) and the worst is 0 (meaning that all 

other procedures produced better solutions).  In this calculation, we do not distinguish 

among infeasible solutions, they are all assigned a large negative value (for a maximization 

problem) or a large positive value (for a minimization problem) to indicate that they are the 

worst. 

 Dev: Average percent deviation from the best-known solution.  Only feasible solutions are 

included in this calculation. 

 Best: Fraction of instances in a set for which a procedure is able to find the best-known 

solution. 

The collection of 171 instances (33 BCP, 76 CTAP, 60 MDGP and 2 WDNP) was divided into a training 

set of 51 instances (11 BCP, 26 CTAP, 14 MDGP and 0 WDNP) and a test set of 120 instances (22 BCP, 

50 CTAP, 46 MDGP and 2 WDNP). 

In our first experimentation, we are interested in determining the best values for       and      .  

That is, we want to determine the right mix of LHS and QS solutions to be used as a departure point.  

We used the training set, ran several combinations, and quickly determined that, given a desired 

total number of solutions, the best results are obtained when half of the solutions are generated 

with the LHS method and half with the QC method. 

As described in Section 3.2, the improvement method that we developed is based on the 

assumption that a full-neighborhood search is computationally too expensive to be effective.  This is 

why the FLS improvement method (see Procedure 3) explores neighborhoods by making transitions 

from the current solution to the next as soon as an improvement opportunity is identified.  To test 

our assumption and to assess the contribution of the improvement method, we perform an 

experiment that compares the performance of three forms of generating solutions: 1) the 

diversification generator (LHS.QC), 2) the diversification generator with the FLS improvement 

method (LHS.QC.FLS), and 3) the diversification generator with a best improvement strategy 

(LHS.QC.BLS).  The best improvement strategy consists of a full neighborhood search to determine 

the next solution to visit.  The three alternatives are given a time limit of 1 minute and performance 

is measured with Feas and Score. 

The results in Table 1 show that the strategy of generating and improving solutions is better than the 

strategy of spending the entire computational budget (of 1 minute in this case) only generating 

solutions (as done by LHS.QC).  The total Score of 0 associated with LHS.QC indicates that in all cases, 

the addition of either local search produced better results.  The results also confirm that first-

improvement is the better improvement strategy.  Only in one instance (out of 51), the best-

improvement strategy was a better choice, and hence the Score of 0.990 for LHS.QC.FLS. 
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Problem Metric LHS.QC LHS.QC.BLS LHS.QC.FLS 

BCP Feas 1 1 1 
 Score 0 0.545 0.955 

CTAP Feas 0.885 1 1 
 Score 0 0.615 1 

MDGP Feas 1 1 1 
 Score 0 0.643 1 

Total Feas 0.941 1 1 
 Score 0 0.608 0.990 

Table 1. Diversification generation and improvement methods 

To build the final configuration of our procedure, we test the efficacy of the combination methods 

described in Section 3.3.  We once again employ the training set of instances and compare the 

performance of the six combination methods when embedded in a scatter search framework along 

with LHS.QC.FLS.  All variants were executed a total of 1 minute per instance. 

In Table 2 we compare the performance of the combination methods with the Score values only.  

Note that LHS.QC.FLS alone is already capable of finding at least one feasible solution in all instances 

(see Table 1).  Therefore, Feas does not provide any discrimination power.  The score values indicate 

that CM-EP does not perform well in any of the problems.  The best methods are CM-AE for BCP, 

CM-A for CTAP and CM-RP for MDGP.  Note that although CM-PR has a score of 0.914 on the MDGP 

instances, the method performs poorly on the other two types of problems.  Overall, CM-A exhibits 

the most robust behavior with scores ranging from 0.709 to 0.846 and a total score of 0.780.  This is 

the combination method that we merge with LHS.QC.FLS to build our scatter search (SS) for integer 

problems. 

Problem CM-A CM-AE CM-EP CM-GPR CM-R CM-RP 

BCP 0.709 0.818 0.455 0.745 0.509 0.473 
CTAP 0.846 0.715 0.323 0.515 0.808 0.569 
MDGP 0.714 0.643 0.371 0.657 0.814 0.914 

Total 0.780 0.718 0.365 0.604 0.745 0.643 

Table 2. Score values for 6 combination methods 

We now compare the performance of the scatter search procedure with commercial black-box 

optimizers.  For this experiment, we use all but 2 of the instances (the WDNP instances) in the test 

set for a total of 118.  The comparison is made against the following three commercial software 

packages and the stopping criterion is set to 1 minute per problem instance: 

 OptQuest by OptTek Systems (http://www.opttek.com/) 

 Premium Solver by Frontline Systems (http://www.solver.com/) 

 Evolver by Palisade Corporation (http://www.palisade.com/) 

Figures 3, 4 and 5 show the evolution throughout the search of the average values of Dev and Feas 

for the 118 instances in the test set.  Table 3 shows a summary of these measures for the entire set 

as well as the value of Best associated with each method. 

http://www.opttek.com/
http://www.solver.com/
http://www.palisade.com/
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The graphs of Dev show that SS has more search diversification power than the competing 

approaches.  These approaches seem to stagnate, particularly in the CTAP and MDGP instances.  The 

graphs also show that all the approaches have difficulties in producing high quality solutions for the 

BCP instances.   

 

Figure3. Profile of Dev and Feas on BCP instances 

 

Figure4. Profile of Dev and Feas on CTAP instances 

 

Figure5. Profile of Dev and Feas on MDGP instances 

The summary results in Table 3 are all in favor of SS.  The procedure is the only one capable of 

finding at least one feasible solution to all instances in the test set.  It produces the smallest value of 

Dev and the largest values of Best and Score.  The one case in which SS does not produce the best 

outcome is for the value of Dev in the BCP instances. 
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Problem Metric Evolver OptQuest Solver SS 

BCP Feas 0.818 0.955 0.864 1 
 Dev 7.168 6.822 2.330 3.968 
 Best 0 0 0 0 
 Score 0.167 0.379 0.788 0.758 

CTAP Feas 0.900 0.840 0.980 1 
 Dev 0.513 0.328 0.530 0.081 
 Best 0.020 0.020 0 0.320 
 Score 0.347 0.472 0.293 0.987 

MDGP Feas 0.587 0.565 0.783 1 
 Dev 0.027 0.038 0.039 0.003 
 Best 0 0 0 0.109 
 Score 0.522 0.238 0.478 1 

Total Feas 0.763 0.754 0.881 1 
 Dev 1.698 1.776 0.689 0.775 
 Best 0.008 0.008 0.000 0.178 
 Score 0.381 0.362 0.458 0.949 

Table 3. Comparison of SS and commercial software 

The next experiment compares the performance of SS against the state-of-the-art for the three 

problem classes in the test set.  In particular, the following procedures are used for comparison: 

 FCNS for the BCP (Prestwich, 2002) 

 VNS for the CTAP (Lusa & Potts, 2008) 

 SO for the MDGP (Gallego, Laguna, Martí, & Duarte, 2011) 

Once again, the test consists of 1-minute runs for each problem instance.  The results are 

summarized in Table 4. 

Problem Metric State-of-the-art SS 

BCP Dev 0.025 3.848 
 Best 0.318 0 
 Score 1 0 

CTAP Dev 0.068 0.081 
 Best 0.020 0.320 
 Score 0.300 0.720 

MDGP Dev 0.002 0.003 
 Best 0.174 0.109 
 Score 0.848 0.261 

Total Dev 0.034 0.775 
 Best 0.136 0.178 
 Score 0.644 0.407 

Table 4. Comparison of SS and the state-of-the-art 

As expected, the state-of-the-art methods produce better results than the SS that has been designed 

under the black-box paradigm.  However, the SS is able to find solutions of reasonably high quality 

for CTAP and MDGP instances.  The experiment confirms that the structure and the objective-

function landscape of the BCP are not amenable to the black-box paradigm.   

Our final experiment deals with finding solutions to the 2 WNDP instances.  Each instance is run for 5 

minutes.  The New York network consists of 21 segments and 7 possible pipe diameters.  In the 
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Hanoi network there are 34 pipe segments and 16 possible diameters.  Table 5 shows the cost (in 

millions) associated with the best solution found by each procedure, all of them treating the 

evaluation of the objective function as a black box.  A penalized function is used to direct the search 

toward solutions that are feasible with respect to the required pressure values at the nodes. 

Problem Evolver Solver OptQuest SS Best-known 

Hanoi Infeasible Infeasible $6.42 $6.26 $6.19 
New York $38.64 $44.70 $38.64 $38.81 $38.64 

Table 5. SS and commercial solvers applied to the 2 WNDP instances 

Both, Evolver and Solver are not able to find a single feasible solution for the Hanoi problem.  SS 

finds a solution that is slightly better than OptQuest’s solution and that is 1.1% worse than the best 

known.  On the other hand, SS is not able to match the best-known solution to the New York 

problem, while both Evolver and OptQuest do. 

6. Conclusions 

This work is part of a larger project that has produced black-box optimizers for problem represented 

by continuous variables, binary strings and permutation vectors.  These representations cover a 

large spectrum of problems classes in the literature.  Our goal in all of these projects has been to 

develop procedures that can be shown to be generally more effective than commercial black-box 

solvers and at least somewhat competitive to the individual state-of-the-art for each problem class.  

We recognize that our approach falls in between the specialized methods and the more general 

black-box approach used by commercial software.  We believe, however, that the mechanisms that 

we have created can be (and in fact have been) embedded in commercial software packages in order 

to increase their effectiveness. 
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