
Tabu Search for the Linear Ordering Problem with
Cumulative Costs

ABRAHAM DUARTE
Departamento de Computación, Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

Abstract
Given a matrix of weights, the Linear Ordering Problem (LOP) consists of finding a
permutation of the columns and rows in order to maximize the sum of the weights in the
upper triangle. This well known NP-complete problem can also be formulated on a
complete weighted graph, where the objective is to find an acyclic tournament that
maximizes the sum of arc weights. The variant of the LOP that we target here was
recently introduced and adds a cumulative non-linear propagation of the costs to the
sum of the arc weights. We first review the previous methods for the LOP and for this
variant with cumulative costs (LOPCC) and then propose a heuristic algorithm for the
LOPCC, which is based on the Tabu Search (TS) methodology. Our method achieves
search intensification and diversification through the implementation of both short and
long term memory structures. Our extensive experimentation with 224 instances shows
that the proposed procedure outperforms existing methods in terms of solution quality
and has reasonable computing-time requirements.

Keywords: Combinatorial Optimization, Metaheuristics, Linear Ordering Problem

Original version: February 25, 2008
Revised version: May 19, 2009

Tabu Search for the LOP with Cumulative Costs/ 2

1. Introduction

Given a matrix of weights C = {cij}n×n, the LOP consists of maximizing the expression:

∑∑
−

= +=

=
1

1 1

)(
n

i

n

ij
ppLOP ji

cpC .

where pi is the index of the column (and row) in position i in the permutation. In the
LOP, the permutation p provides the ordering of both the columns and the rows. The
equivalent problem in graphs is that of finding, in a complete weighted graph, an
acyclic tournament with a maximal sum of arc weights (Reinelt, 1985).

Bertacco, et al. (2008) introduced a variant of this problem referred to as the Linear
Ordering Problem with Cumulative Costs (LOPCC). Given a complete digraph with
nonnegative node weights di and nonnegative arc costs cij, the objective of the LOPCC
is to find a Hamiltonian path p = (p1, p2, .., pn) and the corresponding node values αi that
minimize the expression:

∑
=

α=
n

i
iLOPCC pC

1
)(

where

jjiii p

n

ij
pppp cd α+=α ∑

+= 1

 for i = n, n-1,…, 1.

The cumulative backward computation of the α-values, from n to 1, makes the objective
function nonlinear. The bounded version of this problem, in which αi ≤ U for all i, is
referred to as Bounded Linear Ordering Problem with Cumulative Costs (BLOPCC).

The optimization of the universal mobile telecommunication standard (UMTS) in
mobile-phone telecommunication systems is an application of the LOPCC (Proakis,
2004). In this context, mobile terminals (MTs) communicate simultaneously with a
common base station. In order to distinguish among the signals of different MTs,
UMTS adopts the so-called code division multiple access technique, where each
terminal is identified by a specific code. In real situations, the MTs partially interfere
with each other due to distortions introduced by radio propagation. The successive
interference cancellation (SIC) is a very effective technique for interference reduction.
SIC sequentially detects MTs following a predetermined order and removes the
associated interference, improving the detection capability for the next users. If we
define αi as the power level at which user i must transmit his/her data and cij as the
power of interference generated from user i to user j, the optimal solution to the
corresponding LOPCC minimizes the overall transmission power (i.e. maximizes the
duration of the MT batteries) while ensuring a proper reception for all users.

As stated in Bertacco, et al. (2008), a practical problem that arises in
telecommunications and motivates the LOPCC is the joint power-control and receiver
optimization (JOPCO). Given a set of users {1, 2, ..., n}, the interference factors cij for
each pair of users (i, j), the noise power N0, the spreading factor NS, and the target ratio
T, the problem consists of simultaneously optimizing the SIC detection order and the
transmission power levels αi, considering that a proper reception is ensured when the

Tabu Search for the LOP with Cumulative Costs/ 3

average signal-to-noise plus interference is equal to the target ratio T. A solution to the
JOPCO problem is a permutation p = (p1, p2, .., pn) specifying the order in which users
{1, 2, ..., n} are examined to determine their transmission power levels αi and cancel the
associated interference. In mathematical terms:

𝑀𝑀𝑀𝑀𝑀𝑀 �𝛼𝛼𝑝𝑝𝑀𝑀

𝑀𝑀

𝑀𝑀=1

subject to: 𝑇𝑇 =
𝑐𝑐𝑝𝑝𝑀𝑀𝑝𝑝𝑀𝑀𝛼𝛼𝑝𝑝𝑀𝑀

𝑁𝑁0�𝑐𝑐𝑝𝑝𝑀𝑀𝑝𝑝𝑀𝑀 + ∑ 𝛼𝛼𝑙𝑙𝑁𝑁𝑆𝑆𝑐𝑐𝑙𝑙𝑝𝑝𝑀𝑀𝑙𝑙∈𝑈𝑈𝑀𝑀
 for 𝑀𝑀 = 1, … , 𝑀𝑀

where: 𝑈𝑈𝑀𝑀 = {𝑝𝑝𝑀𝑀+1,𝑝𝑝𝑀𝑀+2, … ,𝑝𝑝𝑀𝑀} for 𝑀𝑀 = 1, … ,𝑀𝑀 − 1

Figure 1 shows an example of a C matrix in which we have drawn a triangle above the
main diagonal to single out the coefficients that are added to calculate the objective
function value of the associated LOP.



















=

0121
5032
5104
3120

C

Figure 1. Coefficient matrix

Considering the coefficient matrix in Figure 1, the objective function value of a solution
p = (1,2,3,4) in the LOP is calculated as follows:

CLOP(p) = c12 + c13 + c14+ c23 + c24 + c34 = 2+1+3+1+5+5 = 17

Figure 2 shows the associated acyclic tournament when formulating the problem in a
graph.

Figure 2. Acyclic tournament

Consider now the instance of the LOPCC given by the coefficient matrix in Figure 1
and the node weights d = (3,2,4,1). In this case, the objective function value of solution
p = (1,2,3,4) is computed as:

CLOPCC (p) = α1 + α2 + α3+ α4
where

1 2 3 4 2

1

3

1

5

5

Tabu Search for the LOP with Cumulative Costs/ 4

α4 = d4 = 1
α3 = d3 + c34α4 = 4 + 5*1 = 9
α2 = d2 + c23α3 + c24α4 = 2 + 1*9 + 5*1 = 16
α1 = d1 + c12α2 + c13α3 + c14α4 = 3 + 2*16 + 1*9 + 3*1 = 47

and

CLOPCC (p) = 47 + 16 + 9 + 1 = 73.

The LOP optimal solution to this illustrative example is p1 = (3,2,1,4) with a maximum
objective function value of CLOP(p1) = 22. The objective function value corresponding
to the LOPCC is CLOPCC(p1) = 152, which does not reach the maximum value of 261
associated with the solution (3,4,2,1). Symmetrically, the LOPCC optimal solution is
p2 = (4,1,3,2) with a minimum value of CLOPCC(p2) = 61. The LOP objective function
value of this solution is CLOP(p2) = 10, which does not match the minimum value of 8
associated with the solution (4,1,2,3). In other words, a solution p that maximizes the
value of CLOP(p) does not necessarily maximize the value of CLOPCC(p), in the same way
that a solution p that minimizes the value of CLOPCC(p) does not result in a minimum
value of CLOP(p). In fact, we generated 25 random small instances (n = 5) and
computed the correlation coefficient between the CLOP and the CLOPCC values in the
universe of solutions. The average value of this coefficient across the 25 instances is
0.34, confirming that the two objective functions are not as tightly related as the casual
observation of their mathematical expressions may seem to indicate.

These examples illustrate that although both the LOP and the LOPCC share some
common characteristics, the calculation of their respective objective functions is such
that it makes their associated solution space structurally different. This is why it cannot
be expected that a solution procedure for the LOP will perform well when applied to the
LOPCC. However, since the LOP has been thoroughly studied for a number of years, it
wouldn’t be wise to ignore the search strategies devised in this context when developing
a customized solution for the LOPCC.

Although the interest for the LOPCC was triggered by the UMTS application, our
interest in the problem goes beyond this context. This is parallel to development of
solution methods for the LOP, which was introduced in the context of input-output
tables. Therefore, we study the LOPCC in order to design effective search strategies
and then apply the resulting method to several problem instances, including those
related to the UMTS application. In particular, we introduce additional instances and
also modify LOP instances found in the LOLIB library.

The linear ordering problem has generated a considerable amount of research interest
since 1958, when Chenery and Watanabe outlined some ideas on how to obtain
solutions for this problem and Becker (1967) proposed the first heuristic based on
calculating quotients to rank each node in the graph. The proposed procedure is quite
fast and produces reasonable results considering its simplicity. After this seminal work,
several heuristics and metaheuristics have been proposed. We review a relevant subset
of these procedures.

The multi-start method by Chanas and Kobylanski (1996) is based on a mechanism that
searches for the best position for inserting a node in the partial ordering under

Tabu Search for the LOP with Cumulative Costs/ 5

construction. Nodes are scanned according to the order established by the current
solution. When no further improvement is possible, the order given by the current local
optimum is reversed and the process is re-started.

Recently, metaheuristic optimization has been applied to the LOP. Laguna, et al. (1999)
proposed two procedures based on the tabu search methodology, one limited to short
term memory structures and one incorporating long term memory components. Starting
from a randomly generated permutation p, the short-term procedure alternates between
intensification and diversification phases. Intensification iterations start with the
random selection of a node. The probability of selecting a given node is proportional to
an influence measure. The method scans the neighborhood in search of the first move
with a strictly positive value (i.e., a move such that CLOP(p′) > CLOP(p), where p is the
current permutation of nodes and p′ is the permutation that results after the execution of
the chosen move). The first improving, if available, or the best non-improving move is
selected. The node that is moved becomes tabu-active for a pre-established number of
iterations, and therefore it cannot be selected for insertions during this time. In the
diversification phase, the probability of selecting a node is inversely proportional to the
number of times that the node has been selected during the intensification phase. The
basic procedure stops when a number of global iterations (intensification phase
followed by the diversification phase) are performed without improving the best
solution found so far. Laguna, et al. (1999) also proposed an extended tabu search
method in which the basic procedure is coupled with both long-term intensification and
diversification. The intensification incorporates elements from the path relinking
methodology, while the diversification is inspired by a symmetry property previously
introduced by Chanas and Kobylanski (1996).

Campos, et al. (2001) adapt the evolutionary method known as scatter search to the
LOP. The adaptation follows the so-called template introduced by Glover (1998).
Diversification generation is based on modifying a measure of attractiveness proposed
by Becker (1967) with a frequency measure that discourages nodes from occupying
positions that they have frequently occupied in previous solution generations. Local
improvement consists of a “hill climbing” heuristic that chooses the best position where
to insert a node. The reference set is updated with the “best” solutions found (where the
meaning of best includes not only solution quality but also diversity). Subsets of
reference solutions are generated and then subjected to a combination method. The
solution combination method is based on a voting scheme that creates a new trial
solution from a subset of reference solutions. (See Laguna and Martí (2003) for a
detailed description of the scatter search methodology and its applications.)
Computational experiments were performed to compare the scatter search
implementation with the multi-start method developed by Chanas and Kobylanski and
the tabu search procedures by Laguna, et al. (1999). The experiments showed that both
the tabu search and the scatter search variants have very small average deviations from
optimality for the well-known LOLIB instances.

García et al. (2006) applied the variable neighborhood search (VNS) to the LOP. Based
on a systematic change of neighborhood in a local search procedure, VNS uses both
deterministic and random strategies in search for the global optimum. The method
combines several neighborhoods for a thorough exploration of the search space. The
authors explore different search strategies and propose a hybrid method in which the
VNS is coupled with a short term tabu search for improved outcomes. Extensive

Tabu Search for the LOP with Cumulative Costs/ 6

experimentation with both real and synthetic instances shows that the proposed
procedure is highly competitive when compared to the tabu and scatter search
implementations.

Bertacco, et al. (2008) show that the LOPCC is NP-hard. They also propose a mixed
integer linear programming formulation of the BLOPCC, which is derived from the
LOP model of Grötschel, et al. (1984). The authors solve small instances with up to 16
nodes with Cplex as well as with a customized branch and bound algorithm. Both
methods are able to solve optimally all the instances with up to 12 nodes in a few
seconds on a personal computer. For problems with 14 and 16 nodes, Cplex failed in
most cases while the branch-and-bound procedure still succeeded. Experiments with
problems of size 20 resulted in solution times of about 4 hours.

It is interesting to point out that the mixed-integer programming formulation for the
BLOPCC may be modified to solve the more general LOPCC. The modification
consists of changing the values of U with a sufficiently large M value. It is well-known,
however, that big-M formulations produce weak linear programming relaxations,
rendering the model useless for the purpose of obtaining optimal solutions to the
LOPCC.

Benvenuto, et al. (2005) tackled the LOPCC in the context of mobile-phone
telecommunication systems, referring to the problem as the Joint Optimization of Power
Control and Ordering (JOPCO). The authors propose a greedy heuristic as well as a
greedy randomized (GR) procedure in which the node inserted in the path under
construction is randomly selected from a reduced candidate list of the best available
nodes. GR is iterated a pre-established number of times and the solution achieving the
lowest system transmit power is selected. The authors also consider solving the mixed
integer programming formulation presented above and reported computational
experiments with small instances (n ≤16). The greedy method obtains solutions with an
optimality gap in the neighborhood of 40%.

2. A Tabu Search Approach to the LOPCC
Our adaptation of tabu search for the LOPCC has three phases: construction,
intensification and diversification. Instead of starting from a totally random solution,
we developed a semi-greedy construction heuristic. The construction heuristic is used
to generate a pre-specified number of solutions (maxConstructions) from which we
select the one with the best objective function value to start the search. Figure 3 shows
a description in form of pseudo-code of our construction heuristic.

We point out that the reduced candidate list in step 6 is built considering the increase in
the objective function value caused by placing each unselected node in the current
empty position k. However, once a node is chosen from this list, we search for the best
position where to place the selected node. This entails calculating the ∆C values
associated with placing the selected node in positions k+1 to n. (The ∆C value
associated with placing the selected node in position k is already known from the
calculation in step 4.) The ∆C values are computed efficiently as an incremental update
from the previous step. The overall constructive method has a computational
complexity of O(n2).

Tabu Search for the LOP with Cumulative Costs/ 7

1. Initialize the position pointer and the set of unselected nodes. Since
the construction starts from the last element, the position pointer k = n
and the set of unselected nodes UN = {1, …, n}

2. Randomly choose node i ∈ UN and place it in position k and delete the
chosen node from the unselected set. That is, pk = i and UN = UN \ {i}.

while (UN ≠ ∅)
{

3. Move to the next empty position in the permutation. That is, make
k = k – 1.

4. Create a candidate list of nodes with the elements in UN.
5. Calculate the increase in the objective function value (∆C) caused

by placing an unselected node in position k. Since the LOPCC is a
minimization problem, the most attractive node in the candidate
list is the one that causes the least increase in the objective function
value (∆Cmin) and the least attractive node is the one that causes the
largest increase (∆Cmax).

6. The candidate list is reduced by considering only the nodes for
which ∆C ≤ ∆Cmax - β(∆Cmax - ∆Cmin). A node is then randomly
chosen from this reduced candidate list.

7. The chosen node, say i, is placed in the position, from k to n, that
minimizes the increase in the objective function. UN = UN \ {i}.

}

Figure 3. Greedy randomized adaptive construction

Once a solution has been chosen as starting point, a tabu search is launched. The two
phases of the search interact as shown in Figure 4. Each phase begins from the current
solution and after termination they return the overall best solution and a new current
solution. The search terminates after maxGlobal iterations have elapsed without
improving the overall best solution. A global iteration consists of executing steps 3 and
4 in Figure 4.

1. Find initial solution p with the construction heuristic
2. Update the overall best solution found (poverall_best = p)
while (global iterations without improving overall best < maxGlobal)
{

3. Execute the intensification phase starting from the current solution
p. Return the best overall solution poverall_best and the new current
solution p.

4. Execute the diversification phase starting from the current solution
p. Return the best overall solution poverall_best and the new current
solution p.

}

Figure 4. Global iterations of the tabu search procedure

The intensification and diversification phases, steps 3 and 4 in Figure 4, were adapted
from the tabu search procedure for the LOP described in Section 1. The adaptation
consists of: 1) modifying the measure of influence for node selection in the
intensification phase and 2) deriving a new move value computation.

Tabu Search for the LOP with Cumulative Costs/ 8

An iteration of the intensification phase begins by randomly selecting a node. We
consider the score value as a measure of influence to discriminate among the different
nodes. The score value for node i in the context of the LOPCC is calculated as follows:

∑∑ +=
j

iji
j

jij dcdciscore)(

In our intensification phase, we give priority to the low score nodes in an attempt to
finding positions that will decrease the objective function value of the current solution.
We insert the selected node in the first position that improves the objective value, if one
exists, or alternatively in the best non-improving position. Note that this rule may result
in the selection of a non-improving move. The move is executed even when the move
value is not positive, resulting in a deterioration of the current objective function value.
The displaced node becomes tabu-active for tabuTenure iterations, and therefore it
cannot be selected for insertions during this number of iterations. The intensification
phase terminates after maxIntensify consecutive iterations without improvement.

The diversification phase is performed for maxDiversify iterations. A node is randomly
selected iteratively, where the probability of selecting a node is inversely proportional to
its frequency count (which records the number of times that it has been chosen to be
moved in the intensification phase). The chosen node is placed in the best position, as
determined by the move values, allowing for non-improving moves to be executed.

The most computationally intensive element of our procedure is the search for a
position where to move a chosen node. The search for the best position is performed in
both phases and requires the calculation of the difference between the current objective
function value and the value after the move. A brute-force approach would create a trial
solution by temporarily executing a move on the current solution and then evaluating
the objective function. The calculated value would then be compared to the current
objective function value. Instead of this approach, we followed one that is more
computationally efficient and that reduces the number of calculations.

The simplistic approach of evaluating move values by calculating the difference
between the current objective function value and the objective function value after the
move is inefficient at best and totally impractical when tackling all but fairly small
problem instances. We use a 6-node example to show how we save computational time
when evaluating trial moves within our neighborhood search. We then present the
general formulas that we employ within our code.

Suppose that the current solution consists of the permutation p = (1, 2, 3, 4, 5, 6), then
the corresponding objective function value is calculated as follows:

CLOPCC(p) = α1 + α2 + α3 + α4 + α5 + α6

α1 = d1 +c12α2 + c13α3 + c14α4 + c15α5+ c16α6
α2 = d2 + c23α3 + c24α4 + c25α5+ c26α6
α3 = d3 + c34α4 + c35α5+ c36α6
α4 = d4 + c45α5+ c46α6
α5 = d5 + c56α6
α6 = d6

Tabu Search for the LOP with Cumulative Costs/ 9

The calculation is done in reversed order. That is, α6 is calculated first, then α5 and so
on and so forth. Now, let us suppose that we would like to know the move value
associated with inserting node 4 between nodes 1 and 2 to transform the current
permutation into p′ = (1, 4, 2, 3, 5, 6). The objective function value of this neighbor
solution is:

CLOPCC(p′) = 1α′ + 2α′ + 3α′ + 4α′ + α5 + α6

1α′ = d1 + c14 4α′ + c12 2α′ + c13 3α′ + c15α5+ c16α6

4α′ = d4 + c42 2α′ + c43 3α′ + c45α5+ c46α6

2α′ = d2 + c23 3α′ + c25α5+ c26α6

3α′ = d3 + c35α5+ c46α6

 α5 = d5 + c56α6
 α6 = d6

Clearly, the difference between CLOPCC(p) and CLOPCC(p′) is given by the terms inside
the box above. In general, moves that change a node j currently in position pj to a
position pi for which i < j cause 4 types of changes in the alpha values:

Mathematically, the difference between the new alpha value and the previous one (i.e.,

α−α′=α∆) is given by the following expressions:

Type 0: js
sp >=α∆ for0

Type 1: ijjscc
j

sk
ppppppp kksjjss

,,2,1for
1

1
−−=α∆+α−=α∆ ∑

−

+=

Type 2: ∑
=

α∆+α=α∆
j

ik
ppppp kkkjj

c)(

Type 3: 1,,2,1for
1

−−=α∆=α∆ ∑
+=

iisc
j

sk
pppp kkss

For the opposite move direction, that is, for i > j, the differences in the alpha values are
calculated as follows:

Type 0: is
sp >=α∆ for0

Type 1: ∑
+=

α−=α∆
i

jk
pppp kkjj

c
1

Type 2: jiiscc
i

sk
pppppppp kksjjjss

,,1,for)(
1

−=α∆+α∆+α=α∆ ∑
+=

(p1, …, pi-1, pi, pi+1, …, pj, pj+1, …, pn)

Type 0Type 1Type 2Type 3

Tabu Search for the LOP with Cumulative Costs/ 10

Type 3: 1,,2,1for
1

−−=α∆=α∆ ∑
+=

jjsc
i

sk
pppp kkss

We have empirically estimated that this procedure to compute the move value reduces
the computational time by 50%.

3. Computational Experiments
The tabu search procedure described in the previous section was implemented in C and
all experiments were performed on a personal computer with a 3.2 GHz Intel Xenon
processor and 2.0 GB of RAM. We have tested the procedure on three sets of instances:

(1) UMTS Instances from the telecommunications group of the Engineering
School of the University of Padova, related to detection-order optimization
in UMTS networks, and previously reported in Bertacco, et al. (2008). We
have considered the four communication scenarios considered in previous
works, i.e., synchronous and asynchronous transmissions, with and without
scrambling. There are 2000 instances in the original set, we selected the first
25 instances of size n = 16 from each group for a total of 100 instances in
this set.

(2) LOLIB Instances from the public-domain library, consisting of input-output
tables of sectors in the European economy. This is the well-known library
for the LOP with 49 instances.

(3) Random Instances generated from a (0, 100) uniform distribution. Reinelt

(1985) proposed the construction of these problem instances. We generate
instances of sizes ranging from 35 to 150 nodes. There are 25 instances in
each set for a total of 75.

Bertacco, et al. (2008) describe a process to obtain instances of the LOPCC from
matrices associated with the LOP in the context of power transmission. We follow their
procedure to obtain LOPCC instances (i.e., to generate the d-vector) for the matrices in
the three sets described above. The resulting LOPCC instances are available for
downloading at http://www.uv.es/rmarti.

The performance of our tabu search implementation depends on the judicious selection
of the values for the six input parameters (maxConstructions, maxGlobal, maxIntensify,
maxDiversify, tabuTenure and β). We start by setting maxConstructions = 100 and
running an experiment to find the value of β that results in solutions with the highest
quality. For this experiment, we employ the 25 random instances of size n = 100.
Table 1 reports the average objective function value, the average percent deviation from
the best-known solution, the number of best solutions out of 100, and the average CPU
time in seconds for six different values of the β parameter.

Tabu Search for the LOP with Cumulative Costs/ 11

Table 1. Fine-tuning of the construction heuristic
β 0.5 0.6 0.7 0.8 0.9 1.0
Avg. Obj. Fun. 3.55E+03 3.25E+03 2.84E+03 2.76E+03 2.71E+03 3.40E+03
Avg. Deviation 16.55% 13.18% 7.61% 5.14% 1.11% 31.39%
No. of best 0 2 5 13 22 1
CPU Time 0.55 0.54 0.54 0.53 0.53 0.52

The results summarized in Table 1 indicate that setting β to 0.9 gives, on average, the
best outcome. These results compare favorably with the 97.47 % average deviation
obtained by executing GR (Benvenuto, et al. 2005) for 100 constructions (which
requires 0.05 seconds on average). If we run GR for 1000 constructions the quality of
the solutions exhibits a moderate improvement with an average deviation still larger
than 90%.

Since the search does not consist of only running the construction heuristic, we need to
verify that the setting for β works well when the rest of the search is performed. We use
the fine-tuning system known as Calibra1

maxIntensify = { 0.5n, 0.6n, …, 2.0n }
maxDiversify = { 0.5n, 0.6n, …, 2.0n }
tabuTenure = { 0.5

 (Adenso-Diaz and Laguna, 2006) to find the
best settings for maxIntensify, maxDiversify, tabuTenure and β. Calibra utilizes design
of experiments and local search to determine the best values for up to 5 input
parameters. We setup the experiment to instruct Calibra to search for the best parameter
values within the following set of values:

n , 0.6 n , …, 2.0 n }
β = { 0.5, 0.6, …, 1.0 }

The quality of the solutions generated by our tabu search procedure can only increase
with the value of maxGlobal. Calibra searches for the best parameter values
considering the quality of the solutions produced by the procedure being subjected to
the fine-tuning process. Calibra would always choose the largest allowed value for
maxGlobal if we let Calibra adjust this parameter. Hence, we set maxGlobal to 10 and
let Calibra adjust the other 4 parameters. The Calibra run confirmed that the best value
for β is 0.9 and suggested the following values as the best for the rest of the parameters:

maxIntensify = 0.8n
maxDiversify = 1.7n
tabuTenure = 1.7 n

With the search parameters set as indicated above, we proceed to compare the relative
merit of our tabu search approach, referred to as TS_LOPCC. In the following set of
experiments we compare the performance of TS_LOPCC with the Enumerative Method
(EM), i.e. the branch and bound of Bertacco, et al. (2008), and the Greedy Randomized
procedure (GR) of Benvenuto, et al. (2005). We employed the EM implementation that
the authors sent to us, and for which we are grateful. On the other hand, we
implemented the GR method according to the description published in Benvenuto, et al.
(2005) and set the number of iterations to 10,000 to obtain an execution time close to
the TS_LOPCC method.

1 The latest version of Calibra is available for download at
http://coruxa.epsig.uniovi.es/~adenso/wincalibra_download.exe

http://coruxa.epsig.uniovi.es/~adenso/wincalibra_download.exe�

Tabu Search for the LOP with Cumulative Costs/ 12

As mentioned in the introduction, the LOPCC shares some common features with the
LOP and therefore one might wonder whether a procedure designed for the LOP, when
properly modified, would perform well when applied to the LOPCC. In order to test
this, we modified the tabu search method (TS_LOP) originally developed by Laguna, et
al. (1999) for the LOP. The modification is straightforward and was done to obtain a
baseline for comparison and to confirm the need for a specialized method for the
LOPCC. We made two basic changes to TS_LOP. First, we changed the search from
maximization to minimization. And second, given a solution p, instead of computing its
value as CLOP(p), we compute it as C'LOP(p,d), which roughly approximates the CLOPCC
(p) value, where:

∑∑
−

= +=

=
1

1 1
),('

n

i

n

ij
pppLOP jij

cddpC

Tables 2 to 9 show, for each problem set and method, the average objective function
value (Obj. Function), the average percent deviation from the optimal or best-known
solution (Avg. Deviation), its standard deviation (Std. Deviation), the number of
optimal or best-known solutions (Num. of Opt. or Best), and the average computational
time (CPU seconds). Since optimal solutions are not known for the random instances,
the deviation values reported in Tables 7 to 10 are against the best solution found during
the experiment. Also for these tables, we report the number of best solutions found
instead of the number of optimal solutions.

Table 2. 25 UMTS instances (size 16) synchronous without scrambling.
 EM GR TS_LOP TS_LOPCC

Obj. Function 6.238 7.389 7.018 6.238
Avg. Deviation 0.0% 15.1% 8.8% 0.0%
Std. Deviation 0.0% 8.8% 8.3% 0.0%
Num. of Opt. 25 0 0 25
CPU seconds 18.39 0.11 0.07 0.06

Table 3. 25 UMTS instances (size 16) synchronous with scrambling.

 EM GR TS_LOP TS_LOPCC
Obj. Function 14.000 23.052 21.818 14.00
Avg. Deviation 0.0% 36.4% 24.1% 0.03%
Std. Deviation 0.0% 15.2% 17.2% 0.2%
Num. of Opt. 25 0 1 24
CPU seconds 7.72 0.11 0.07 0.03

Table 4. 25 UMTS instances (size 16) asynchronous without scrambling.

 EM GR TS_LOP TS_LOPCC
Obj. Function 12.427 19.732 21.598 12.43
Avg. Deviation 0.0% 34.7% 30.7% 0.03%
Std. Deviation 0.0% 11.4% 16.6% 0.1%
Num. of Opt. 25 0 0 24
CPU seconds 44.77 0.12 0.08 0.03

Tabu Search for the LOP with Cumulative Costs/ 13

Table 5. 25 UMTS instances (size 16) asynchronous with scrambling.
 EM GR TS_LOP TS_LOPCC

Obj. Function 19.030 33.014 37.121 19.05
Avg. Deviation 0.0% 40.5% 35.2% 0.06%
Std. Deviation 0.0% 11.0% 20.4% 0.3%
Num. of Opt. 25 0 0 24
CPU seconds 22.28 0.12 0.07 0.03

Tables 2 to 5 show that for the UMTS instances, the GR procedure is clearly inferior in
terms of solution quality, although its performance is quite acceptable if we consider
that GR employs very simplistic search strategies. Surprisingly, the TS_LOP, originally
designed for the linear ordering problem without cumulative costs, performs slightly
better than the GR method that was specifically designed for this problem. The results
show that TS_LOPCC is capable of finding optimal solutions with high frequency (97
out of 100) and has very modest computational requirements (0.03 seconds). The
performance of EM, averaging 17.72 seconds for finding optimal solutions, is in line
with the results reported by Bertacco, et al. (2008). The minimum and maximum
deviations in the 100 UMTS instances reported in Tables 2 to 5 are 12.11% and 59.10%
for the GR method, 2.06% and 60.98% for the TS_LOP and 0.00% and 0.73% for the
TS_LOPCC method. These results give initial evidence of the robustness of the
proposed method, a conjecture that we test with additional experiments, whose results
are presented in Tables 6 to 9.

Table 6. 49 LOLIB instances (size 50)
 GR TS_LOP TS_LOPCC

Obj. Function 5.82E+12 8.564E+11 7.24E+08
Avg. Deviation 82.77% 71.70% 1.61%
Std. Deviation 32.7% 27.0% 15.8%
Num. of Best 1 0 48
CPU seconds 1.91 0.56 2.31

Table 7. 25 Random instances (size 35)

 GR TS_LOP TS_LOPCC
Obj. Function 0.935 3486712454 0.344
Avg. Deviation 48.8% 100.0% 0.86%
Std. Deviation 20.0% 0.0% 1.6%
Num. of Best 1 0 24
CPU seconds 1.68 10.23 0.39

Table 8. 25 Random instances (size 100)

 GR TS_LOP TS_LOPCC
Obj. Function 416417.87 8.5035E+30 1197.52
Avg. Deviation 98.56% 100.0% 0.0%
Std. Deviation 1.0% 0.0% 0.0%
Num. of Best 0 0 25
CPU seconds 200.01 86.21 30.75

Tabu Search for the LOP with Cumulative Costs/ 14

Table 9. 25 Random instances (size 150)
 GR TS_LOP TS_LOPCC

Obj. Function 46.165E+08 2.2411E+50 2252617.61
Avg. Deviation 99.91% 100.0% 0.0%
Std. Deviation 0.2% 0.0% 0.0%
Num. of Best 0 0 25
CPU seconds 200.03 281.14 180.43

The results for medium and large size instances (35 ≤ n ≤ 150) are shown in Tables 6 to
9. These experiments confirm the conclusions drawn from the small size instances.
TS_LOPCC clearly outperforms the other two methods. For instance, the number of
best solutions obtained with GR, TS_LOP and TS_LOPCC is 2, 0 and 116 (out of 119
large instances), respectively. We attempted to solve one instance of size 35 with EM
and the procedure did not terminate after 4 days of computing time. The best-known
solutions to these problems, therefore, are the ones found with the heuristics that we
tested. The deterioration of the solution quality obtained by TS_LOP from the
problems in Tables 2-5 to the problems in Tables 6-9 has an intuitive explanation. As
the size of the instances increases, the nonlinear terms in CLOPCC (p) become more
important causing a more severe underestimation of the C'LOP(p,d) approximation. The
minimum and maximum deviations in the 118 instances reported in Tables 6 to 9 are
66.35% and 94.83% for the GR method, 80.86% and 100.00% for the TS_LOP and
0.00% and 24.86% for the TS_LOPCC method. Tables 10, 11 and 12 in the Appendix
show the best solution value found for each problem instance in the UMTS, LOLIB and
Random sets, respectively. Our method is able to match the best value in 219 out of the
224 instances considered (with an asterisk between parentheses indicating an instance in
which TS_LPOCC does not match the best known objective function value).

To provide additional performance insights, we construct a time-to-target (TTT) plot for
TS_LOPCC when applied to a given problem instance. TTT plots have been developed
with the goal of analyzing the probability (abscissa axis) that a stochastic search
procedure finds a solution with an objective function value that is at least as good as a
target within a specified computational time (ordinate axis). TTT plots were used by
Feo, Resende and Smith (1994) and have been advocated by Hoos and Stützle (1998)
and assume that computational times follow an exponential distribution.

We consider the t1d100.1 instance from the Random set, which has a best-known
objective function value of 294.7. TS_LOPCC is run m times and the resulting
computational times employed to reach the target value are stored and sorted in
increasing order. Associate with the i-th sorted running time ti is a probability value
pi = (i – 1/2)/m. The (ti, pi) points, for i = 1, .., m, are plotted to construct the TTT plot
shown in Figure 5 (see empirical). This figure was obtained with the perl program by
Aiex, et al. (2008) and m=200. The theoretical curve is constructed by assuming the
computational times grow exponentially with the probability of finding a solution
whose objective function value matches the specified target.

Tabu Search for the LOP with Cumulative Costs/ 15

Figure 5. Time-to- target plot for t1d100.1

Figure 5 shows that the probability that TS_LOPCC finds a solution that is at least as
good as the target value of 294.7 in at most 60 seconds is about 60%, in at most 80 is
about 80% and in at most 100 seconds is about 90%. The empirical probabilities match
well the theoretical curve in this example and we have verified (with a large sample)
that similar plots are obtained for hard problem instances in our test sets.

4. Conclusions
We described the development of a tabu search for the linear ordering problem with
cumulative costs. The problem is of practical significance and, given its complexity,
the application of metaheuristic technology is well justified. In our research, we exploit
the similarities of the LOPCC and the LOP, and, at the same time, we acknowledge
their differences. In particular, we showed that the objective function in the LOPCC is
such that a naïve modification of a solution method for the LOP is not capable of
finding high-quality solutions to LOPCC instances as the size of the problems increases.
Our tabu search adaptation for the LOPCC borrows from our previous experiences with
the LOP while incorporating strategic search elements that proved effective in the
current context.

Acknowledgments
This research has been partially supported by the Ministerio de Ciencia e Innovación
(TIN2006-02696, SEJ2005-08923/ECON), by the Comunidad de Madrid (URJC/TIC-
3731) and by the Government of Castilla y León (BU008A06).

References
Adenso-Díaz, B. and M. Laguna (2006) “Fine-tuning of Algorithms Using Partial
Experimental Designs and Local Search,” Operations Research, vol. 54, no. 1, pp. 99-
114.

Aiex, R.M., M. G. C. Resende and C. C. Ribeiro (2007) “TTTPLOTS: A perl Program
to Create Time-to-Target Plots” Optimization Letters, vol. 1, pp. 355-366.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

c u m u l a t i v e p r o b a b i l i t y

time to target solution

empirical
theoretical

Tabu Search for the LOP with Cumulative Costs/ 16

Becker, O. (1967) “Das Helmstädtersche Reihenfolgeproblem — die Effizienz
verschiedener Näherungsverfahren” in Computer uses in the Social Sciences,
Berichteiner Working Conference, Wien, January 1967.

Benvenuto, N., G. Carnevale and S. Tomasin (2005) “Optimum Power Control and
Ordering in SIC Receivers for Uplink CDMA Systems,” IEEE-ICC 2005, Seoul, Korea.

Bertacco, L., L. Brunetta and M. Fischetti (2008) “The Linear Ordering Problem with
Cumulative Costs”, European Journal of Operational Research, vol. 189, no. 3, pp.
1345-1357.

Campos, V., F. Glover, M. Laguna and R. Martí (2001) “An Experimental Evaluation
of a Scatter Search for the Linear Ordering Problem”, Journal of Global Optimization,
vol. 21, pp. 397-414.

Chanas, S. and P. Kobylanski (1996) “A New Heuristic Algorithm Solving the Linear
Ordering Problem”, Computational Optimization and Applications, vol. 6, pp. 191-205.

Feo, T. A., M. G. C. Resende and S. H. Smith (1994) “A Greedy Randomized Search
Procedure for Maximum Independence Set,” Operations Research, vol. 42, pp. 860-
878.

Grotschel, M., M. Junger and G. Reinelt (1984) “A Cutting Plane Algorithm for the
Linear Ordering Problem”, Operations Research, vol. 32, no. 6, pp. 1195-1220.

Hoos, H. H. and T. Stützle (1998) “Evaluating Las Vegas Algorithms — Pitfalls and
Remedies” in Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 238-
245.

Laguna, M., R. Martí and V. Campos (1999) “Intensification and Diversification with
Elite Tabu Search Solutions for the Linear Ordering Problem,” Computers and
Operations Research, vol. 26, pp. 1217-1230.

LOLIB (1997)

Proakis, J.G. (2004) Digital Communications 4th edition, Mc Graw Hill, New York.

http://www.iwr.uni-heildelberg.de/groups/comopt/software/LOLIB/

Reinelt, G. (1985) The Linear Ordering Problem: Algorithms and Applications,
Research and Exposition in Mathematics, vol. 8, H. H. Hofmann and R. Wille (Eds.),
Heldermann Verlag Berlin.

http://www.iwr.uni-heildelberg.de/groups/comopt/software/LOLIB/�

Tabu Search for the LOP with Cumulative Costs/ 17

Appendix: Best-Known Solutions to all Test Problems

Table 10. Best known objective function values to UMTS instances

Instance Value Instance Value Instance Value Instance Value
mrho1_00 12.675 mrho1_01 18.756 mrho1_10 17.105 mrho1_11 25.610
mrho2_00 2.953 mrho2_01(*) 9.897 mrho2_10 7.435 mrho2_11 19.289
mrho3_00 3.774 mrho3_01 7.543 mrho3_10 7.172 mrho3_11 5.087
mrho4_00 5.002 mrho4_01 7.430 mrho4_10 6.777 mrho4_11 8.999
mrho5_00 4.021 mrho5_01 6.161 mrho5_10(*) 6.161 mrho5_11 13.171
mrho6_00 9.856 mrho6_01 17.084 mrho6_10 18.363 mrho6_11 20.803
mrho7_00 3.372 mrho7_01 8.547 mrho7_10 7.447 mrho7_11 13.110
mrho8_00 5.633 mrho8_01 7.563 mrho8_10 12.614 mrho8_11 10.060
mrho9_00 4.627 mrho9_01 12.827 mrho9_10 13.253 mrho9_11 11.592
mrho10_00 6.741 mrho10_01 33.836 mrho10_10 18.139 mrho10_11(*) 38.887
mrho11_00 3.963 mrho11_01 8.506 mrho11_10 6.902 mrho11_11 9.281
mrho12_00 2.751 mrho12_01 3.452 mrho12_10 2.449 mrho12_11 3.216
mrho13_00 2.411 mrho13_01 3.228 mrho13_10 4.068 mrho13_11 4.496
mrho14_00 14.717 mrho14_01 35.729 mrho14_10 23.614 mrho14_11 44.275
mrho15_00 6.705 mrho15_01 16.581 mrho15_10 10.982 mrho15_11 35.022
mrho16_00 1.729 mrho16_01 2.175 mrho16_10 2.123 mrho16_11 4.565
mrho17_00 4.519 mrho17_01 13.720 mrho17_10 18.221 mrho17_11 9.099
mrho18_00 8.141 mrho18_01 22.326 mrho18_10 22.924 mrho18_11 40.619
mrho19_00 5.991 mrho19_01 5.922 mrho19_10 7.825 mrho19_11 8.037
mrho20_00 12.290 mrho20_01 21.502 mrho20_10 21.594 mrho20_11 23.450
mrho21_00 8.841 mrho21_01 28.360 mrho21_10 18.769 mrho21_11 29.041
mrho22_00 4.573 mrho22_01 10.727 mrho22_10 8.828 mrho22_11 12.379
mrho23_00 4.744 mrho23_01 8.888 mrho23_10 7.073 mrho23_11 10.597
mrho24_00 13.563 mrho24_01 32.150 mrho24_10 32.682 mrho24_11 66.905
mrho25_00 2.368 mrho25_01 7.090 mrho25_10 7.636 mrho25_11 8.758

(*) TS_LOPCC does not match the best-known solution to this problem instance

Table 11. Best known objective function values to LOLIB instances

Instance Value Instance Value Instance Value
be75eec 6.61 t65n11xx 2.09 t75i11xx 4455.05
be75np 30386616.48 t65w11xx 19.26 t75k11xx 1.32
be75oi 3.07 t69r11xx 14.04 t75n11xx 9.90
be75tot 297138.99 t70b11xx 93.67 t75u11xx(*) 0.068427
stabu70 15.01 t70d11xx 79.74 tiw56n54 2.65
stabu74 14.03 t70d11xxb 4.44 tiw56n58 3.63
stabu75 9.42 t70f11xx 1.27 tiw56n62 3.02
t59b11xx 76396.22 t70i11xx 121146.03 tiw56n66 2.69
t59d11xx 4395.50 t70k11xx 0.50 tiw56n67 1.88
t59f11xx 24.14 t70l11xx 798.92 tiw56n72 1.57
t59i11xx 621682.25 t70n11xx 0.05 tiw56r54 2.66
t59n11xx 1618.90 t70u11xx 35490330260.19 tiw56r58 3.60
t65b11xx 29362.84 t70w11xx 0.50 tiw56r66 2.19
t65d11xx 3898.61 t70x11xx 0.23 tiw56r67 1.54
t65f11xx 1.25 t74d11xx 4.76 tiw56r72 1.35
t65i11xx 826127.40 t75d11xx 5.19
t65l11xx 2663.86 t75e11xx 2338.28

(*) TS_LOPCC does not match the best-known solution to this problem instance

Tabu Search for the LOP with Cumulative Costs/ 18

Table 12: Best known objective function values to Random instances

Instance Value Instance Value Instance Value
t1d35.1 0.931 t1d100.1 294.70 t1d150.1 11010.20
t1d35.2 0.167 t1d100.2 297.27 t1d150.2 216751.90
t1d35.3 0.155 t1d100.3 1431.21 t1d150.3 772872.52
t1d35.4 0.196 t1d100.4 8864.08 t1d150.4 88416.64
t1d35.5 1.394 t1d100.5 172.11 t1d150.5 100095.91
t1d35.6 0.200 t1d100.6 479.30 t1d150.6 58579.73
t1d35.7 0.120 t1d100.7 6638.95 t1d150.7 172627.38
t1d35.8 0.226 t1d100.8 3095.19 t1d150.8 353334.04
t1d35.9 0.436 t1d100.9 75.83 t1d150.9 434222.49
t1d35.10(*) 0.205 t1d100.10 174.44 t1d150.10 146736.66
t1d35.11 0.372 t1d100.11 259.80 t1d150.11 13900.04
t1d35.12 0.235 t1d100.12 246.92 t1d150.12 98680.52
t1d35.13 0.196 t1d100.13 841.47 t1d150.13 133838.81
t1d35.14 0.138 t1d100.14 279.38 t1d150.14 99741.17
t1d35.15 1.376 t1d100.15 458.02 t1d150.15 352880.29
t1d35.16 0.287 t1d100.16 829.98 t1d150.16 24497326.54
t1d35.17 0.200 t1d100.17 783.01 t1d150.17 98564.17
t1d35.18 0.384 t1d100.18 724.49 t1d150.18 767813.83
t1d35.19 0.238 t1d100.19 249.29 t1d150.19 96627.16
t1d35.20 0.068 t1d100.20 272.82 t1d150.20 2279010.02
t1d35.21 0.202 t1d100.21 232.05 t1d150.21 50249.96
t1d35.22 0.177 t1d100.22 176.64 t1d150.22 866394.89
t1d35.23 0.346 t1d100.23 1796.08 t1d150.23 23972543.85
t1d35.24 0.138 t1d100.24 559.05 t1d150.24 119426.11
t1d35.25 0.146 t1d100.25 698.71 t1d150.25 462316.51

(*) TS_LOPCC does not match the best-known solution to this problem instance

