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Abstract 
The linear ordering problem with cumulative costs (LOPCC) is a variant of the well-known 
linear ordering problem, in which a cumulative propagation makes the objective function 
highly non-linear.  The LOPCC has been recently introduced in the context of mobile-phone 
telecommunications. In this paper we propose two metaheuristic methods for this NP-hard 
problem.  The first one is based on the GRASP methodology, while the second one implements 
an Iterated Greedy-Strategic Oscillation procedure.  We also propose a post-processing based 
on Path Relinking to obtain improved outcomes.  We compare our methods with the state-of-
the-art procedures on a set of 218 previously reported instances. The comparison favors the 
Iterated Greedy – Strategic Oscillation with the Path Relinking post-processing, which is able to 
identify 87 new best objective function values. 
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1. Introduction 

The Linear Ordering Problem with Cumulative Costs (LOPCC) is an NP-hard problem arising in 
the context of UMTS mobile-phone communication systems. In a broadband uplink code-
division multiple-access transmission (CDMA), interference among users is a key point.  
Successive interference cancellation (SIC) for code division multiple access systems is an 
attractive technique to reduce multi-user access interference in uplink transmissions 
(Benvenutto, 2005).  SIC sequentially detects mobile terminals following a predetermined 
order and removes the associated interference, improving the detection capability for the next 
users.  The LOPCC appears in this context as the SIC optimization to ensure a proper signal 
reception.  

The LOPCC was originally introduced in Bertacco et al. (2005).  It can be described in 
mathematical terms as follows:  Let 𝐺𝐺 = (𝑉𝑉,𝐴𝐴) be a weighted directed graph, where 𝑉𝑉 is the 
set of vertices and 𝐴𝐴 the set of arcs (𝑛𝑛 = |𝑉𝑉|, 𝑚𝑚 = |𝐴𝐴|).  Let 𝑑𝑑𝑖𝑖  be the nonnegative weight of 
vertex 𝑖𝑖 and let 𝑐𝑐𝑖𝑖𝑖𝑖  be the nonnegative cost of arc (𝑖𝑖, 𝑖𝑖).  The LOPCC consists of finding a 
Hamiltonian path 𝑝𝑝 = (𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛) or permutation and the corresponding vertex values 𝛼𝛼𝑖𝑖  
that minimize the expression: 

𝐶𝐶(𝑝𝑝) = ∑ 𝛼𝛼𝑖𝑖𝑛𝑛
𝑖𝑖=1  , where  𝛼𝛼𝑝𝑝𝑖𝑖 = 𝑑𝑑𝑝𝑝𝑖𝑖 + ∑ 𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖

𝑛𝑛
𝑖𝑖=𝑖𝑖+1 𝛼𝛼𝑝𝑝𝑖𝑖   for 𝑖𝑖 = 𝑛𝑛,𝑛𝑛 − 1, … ,1. 

The cumulative backward computation of the α-values, from 𝑛𝑛 to 1, makes the objective 
function nonlinear and, as stated in Duarte et al. (2011), makes its solution space structurally 
different than the solution space of the classical linear ordering problem (LOP), and therefore 
solution procedures for the LOP do not perform well on the LOPCC. 

Bertacco et al. (2005) introduced LOPCC and its bounded variant BLOPCC, showing that both 
problems are NP-hard. They also presented a Mixed-Integer linear Programming model (MIP) 
and an ad-hoc enumerative method.  The authors solved small instances with up to 16 nodes 
with Cplex as well as with a customized branch and bound algorithm. Both methods are able to 
optimally solve all the instances with up to 12 nodes in a few seconds on a personal computer. 
For problems with 14 and 16 nodes, Cplex failed in most cases while their branch-and-bound 
procedure still success. Experiments with instances of size 20 resulted in solution times of 
about 4 hours. 

Benvenuto et al. (2005) tackled the LOPCC in the context of mobile-phone telecommunication 
systems, referring to the problem as the Joint Optimization of Power Control and Ordering 
(JOPCO). The authors proposed a greedy heuristic as well as a greedy randomized (GR) 
procedure in which the node inserted in the path under construction is randomly selected 
from a reduced candidate list of the best available nodes. GR is iterated a pre-established 
number of times and the solution achieving the lowest system transmit power is selected. The 
authors also target the MIP formulation (Bertacco et al., 2005) and reported computational 
experiments with small instances (𝑛𝑛 ≤16). The greedy method obtains solutions with an 
optimality gap of about 40%.  

Righini (2008) proposed a new lower bound applied in a branch-and-bound algorithm for the 
provably optimization of the LOPCC. The algorithm implements a strategy for sorting the 
branches at each node of the search tree.  Specifically, the first leaf that the branch and bound 
examines corresponds to the vertex with the largest cost.  As shown in their computational 
experiments, this technique allows the algorithm to find the optimal solution earlier.  The 
authors also presented an effective heuristic based on the truncation of the branch-and-bound 
algorithm (TB&B). The truncation reduces the total running time in a fraction of 10. 

Duarte et al. (2011) proposed an adaptation of the tabu search methodology to the LOPCC 
with three phases: construction, intensification and diversification.  The construction heuristic 
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is used to generate a pre-specified number of solutions from which select the one with the 
best objective function value to launch a tabu search.  Then, the two phases of the search, 
intensification and diversification, alternate until a maximum number of global iterations have 
elapsed without improving the overall best solution.  Each phase begins with the current 
solution and after termination both return the overall best solution.  They are adapted from 
the respective phases of the tabu search procedure for the classical LOP (Laguna et al., 1999).  
The adaptation consists of modifying the measure of influence for move selection and the 
introduction of a new move value computation.  The extensive experimentation shows that 
long-term diversification, based on frequency memory, coupled with the intensification 
strategy based on local search, is able to enhance the performance of a basic tabu search 
procedure and outperforms previous competing methods. 

In this paper, we propose two metaheuristic procedures for the LOPCC.  The first one is based 
on the GRASP methodology, while the second one implements an Iterated Greedy-Strategic 
Oscillation procedure.  We also propose a post-processing based on Path Relinking to obtain 
improved outcomes.  We compare our best procedure with the greedy randomized by 
Benvenuto et al. (2005), the tabu search by Duarte et al. (2011), and the truncated branch and 
bound by Righini (2008). Our extensive experimentation with 218 instances shows that the 
proposed procedure outperforms the state of the art methods in terms of solution quality with 
a reasonable computing-time requirement. 

 

2. GRASP 

The GRASP methodology was developed in the late 1980s (Feo and Resende, 1989) and the 
acronym was coined in Feo et al. (1994).  Basically, each GRASP iteration consists in 
constructing a trial solution, combining randomization and greediness in a specific way, and 
then applying local search from the constructed solution to reach a local optimum.  We refer 
the reader to Resende and Ribeiro (2003; 2010) for recent surveys of this metaheuristic 
methodology. 
 

begin Constructive 
1.  U ← {1,..,n} %Set of unselected vertices 
2.  sol ← ∅     %Solution under construction 
3.  Select i randomly form U 
4.  k ← n 
5.  Set i in the position k of sol 
6.  U ← U \ {i} 
7.  while U ≠ ∅ do 
8.   k ← k – 1. 
9.   ∀j ∈ U Compute ∆C(j) in position k. 
10.  Cmax ← max{∆C(j) / j ∈ V } 
11.  Cmin ← min{∆C(j) / j ∈ V } 
12.  RCL ← {j ∈ U / ∆C(j)≤Cmin+β(Cmax-Cmin) 
13.  Select i randomly from RCL 
14.  Set i in the position k of sol 
15.  U = U \ {i} 
16. end while 
17. return sol 
end 

Figure 1. Constructive procedure 
 
The constructive procedure for the LOPCC randomly selects a vertex in the first iteration and 
places it in the last position, 𝑛𝑛, of the permutation (solution) under construction.  In the next 
iterations, a vertex is selected according to the increase of the objective function, ∆𝐶𝐶, caused 
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by placing an unselected node in the last available position, say 𝑘𝑘.  Instead of selecting the 
“best” vertex with respect to ∆𝐶𝐶, as a greedy algorithm would do, the procedure creates a 
restricted candidate list, RCL, of “good” vertices and randomly selects one of them.  As it is 
customary in GRASP, the RCL contains those unselected vertices with a ∆𝐶𝐶 value below a 
threshold.  Figure 1 shows the implementation details of this method. 

Duarte et al. (2011) introduced a vertex score value (measure of influence) to discriminate 
among different vertices in their tabu search procedure.  Specifically, the score value for vertex 
𝑖𝑖 is computed as: 

𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) = �𝑐𝑐𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖
𝑖𝑖

+ �𝑐𝑐𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖
𝑖𝑖

 

Instead of selecting vertices according to this score, our local search procedure considers the 
contribution of each vertex, α-values, to the objective function.  Specifically, the LS procedure 
selects the element with the largest contribution to the value of the current solution. In 
mathematical terms, we select the element 𝑖𝑖∗ with the minimum α value.  

𝑖𝑖∗ = arg min𝑖𝑖∈𝑉𝑉{𝛼𝛼𝑖𝑖} 

This new strategy takes into account that the vertices placed at the end of the permutation 
(close to position 𝑛𝑛) are “more critical” than the vertices placed at the beginning of the 
permutation (close to position 1) because their contribution to the objective function is much 
larger than the others due to the cumulative backward propagation of the objective function.  
In other words, our LS procedure tries to move some vertices from the last positions to the 
first positions.  If there is no improving move associated with 𝑖𝑖∗, we resort to the next element 
with the largest αi* value and so on. This local search method performs iterations until no 
further improvement is possible. 

 
begin LocalSearch(sol) 
1.  Let α = {α1,α2,...,αn} be the contribution of  

 each vertex to the objective function 
2.  imp ← true 
3.  while imp do 
4.   imp ← false 
5.   for j = 1 to n do 
6.    Sort α in ascending order 
7.    Let i be the element with α[j] contrib 
8.    Let pos_i the position of i in sol 
9.    for k = pos_i - 1 to 1 do 
10.    sol  ← swap(sol,k) 
11.    sBest ← UpdateBestSol(sol, imp) 
12.   end for 
13.  end for 
14. end while 
15. return sBest 
end 

Figure 2. Local search procedure 
 
The neighborhood of our local search method is defined by an insert operation.  In other 
words, an element is removed from its current position 𝑖𝑖 and inserted in another position 𝑖𝑖 
(with 𝑖𝑖 < 𝑖𝑖 to move it to a previous position).  However, instead of directly considering a target 
position 𝑖𝑖, the method scans the intermediate swap moves of consecutive positions in a search 
for the best improving move.  Specifically, given a vertex in a position 𝑖𝑖, we first try to 
exchange the vertices in positions 𝑖𝑖 and 𝑖𝑖 − 1; and record the associated move value (change 
in the objective function); then we try to exchange the vertices in positions 𝑖𝑖 − 1 and 𝑖𝑖 − 2 
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record the associated move value and so on until we reach position 1.  In this way we compute 
the move values in an incremental way, thus accelerating this time-consuming computation.  
This decomposition of a general insert move into its “associated” swap moves was successfully 
implemented by Schiavinotto and Stützle (2004) in the context of the classical LOP.  Figure 2 
shows the implementation details of our local search procedure for the LOPCC. 
 
Exploring the neighborhood of a solution is computationally expensive given the backward 
computation of the α-values.  We have however considered an incremental computation of 
these values when a swap of consecutive vertices is performed. In particular, suppose that the 
current solution consists of the permutation 𝑝𝑝 = (1,2, … ,𝑝𝑝𝑖𝑖−1,𝑝𝑝𝑖𝑖 , … ,𝑝𝑝𝑛𝑛) and that we 
exchange vertices 𝑝𝑝𝑖𝑖−1 and 𝑝𝑝𝑖𝑖 , thus obtaining 𝑝𝑝′ = (1,2, … ,𝑝𝑝𝑖𝑖−2,𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖−1, … ,𝑝𝑝𝑛𝑛). Then, the 
difference between the new alpha value, α’, and the previous one, α, ( α−α′=α∆ ) is given by: 

∆𝛼𝛼𝑝𝑝𝑠𝑠 = 0                                               for  𝑖𝑖 < 𝑠𝑠 ≤ 𝑛𝑛 

∆𝛼𝛼𝑝𝑝𝑖𝑖−1 = −𝑐𝑐𝑝𝑝𝑖𝑖−1𝑝𝑝𝑖𝑖𝛼𝛼𝑝𝑝𝑖𝑖  

∆𝛼𝛼𝑝𝑝𝑖𝑖 = 𝑐𝑐𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖−1�𝛼𝛼𝑝𝑝𝑖𝑖−1 + ∆𝛼𝛼𝑝𝑝𝑖𝑖−1� 

∆𝛼𝛼𝑝𝑝𝑠𝑠 = ∑ 𝑐𝑐𝑝𝑝𝑠𝑠𝑝𝑝𝑘𝑘∆𝛼𝛼𝑝𝑝𝑘𝑘
𝑖𝑖
𝑘𝑘=𝑠𝑠+1                  for 1 ≤ 𝑠𝑠 ≤ 𝑖𝑖 − 2 

 
The combination of the composition of swap moves to obtain a general insert move with the 
incremental computation of the α-values above, makes the local search very efficient, as it will 
be shown in our computational experience. 
 
 
3. Iterated Greedy – Strategic Oscillation for the LOPCC 

Iterated Greedy (IG) is a recent methodology that has been successfully applied to some hard 
optimization problems. See for example, Marchiori and Steenbeek (2000), for an 
implementation on the set covering problem, or Ruiz and Stü tzle (2007) for an application on a 
scheduling problem. It is based on a simple and effective principle: generate a sequence of 
solutions by iterating over a greedy constructive heuristic applying two phases, destruction 
and reconstruction (Jacobs and Brusco 1995, Culberson and Luo. 1996).  Figure 3 shows the 
general IG outline. 
 

begin IteratedGreedy 
1. s0   GreedyConstruction() 
2. s    ImproveSolution(s0) 
3. while not TerminationCondition do 
4.  sd  Destruction(s) 
5.  sc  Construction(sd) 
6.  s’  ImproveSolution(sc) 
7.  s   AcceptanceCriterion(s’, s) 
8.  sBest  UpdateBestSolution(s)  
9. end while 
10. return sBest 
end 

Figure 3. Iterated greedy procedure. 

 
As shown in Figure 3, IG starts from an initial solution (step 1) obtained with a greedy 
constructive heuristic.  Then it generates a sequence of solutions by partially destructing and 
reconstructing this solution (steps 3 to 9) with the greedy algorithm.  This is why we say that IG 
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iterates over a greedy algorithm.  Specifically, during the destruction phase (step 4), some 
elements of the current solution are eliminated, obtaining a partial solution. In the 
construction phase (step 5), the greedy constructive heuristic is applied to add elements into 
the partial solution until a complete solution is obtained. Once a newly reconstructed solution 
has been obtained, an acceptance criterion is applied to decide whether it will replace the 
incumbent solution or not (step 8). The process iterates through these two phases until some 
termination condition is met (e.g. maximum number of iterations, or maximum computation 
time allowed). Additionally, an optional local search phase for improving the initial and re-
constructed solutions can be applied (step 6). 
 
The approach described above can also be considered an implementation of the strategic 
oscillation methodology (Glover and Laguna, 1997).  Strategic oscillation (SO) is closely linked 
to the origins of tabu search, and operates by orienting moves in relation to a critical level, as 
identified by a stage of construction.  In particular, we consider a constructive/destructive type 
of strategic oscillation, where constructive steps “add” elements (as in the step 5 of Figure 3) 
and destructive steps “drop” elements (as in the step 4).  As described in Chapter 4 of the tabu 
search monograph (Glover and Laguna, 1997), the alternation of constructive with destructive 
processes, which strategically dismantle and then rebuild successive trial solutions, affords an 
enhancement of such traditional constructive procedures. 
 
In our Iterated Greedy-Strategic Oscillation implementation for the LOPCC we apply the 
constructive algorithm described in Section 2 with β set to 1 (see Figure 1) as the greedy 
procedure.  Additionally, we apply the local search described in Figure 2 as the improvement 
procedure.  As mentioned, the main phases in an IG algorithm are the destruction and the 
construction. The destruction procedure in our method is applied by randomly selecting %k 
vertices in the solution.  These elements (vertices) are then removed from the solution.  Since 
the solutions are ordered sets (permutations), when we remove a vertex or a set of vertices 
from a solution, we consider shifting the remaining vertices to occupy the “blank spaces” left 
by the removed vertices.  We apply two different strategies that we call left pack and right 
pack.  In the former, vertices are shifted to the left while in the later vertices are shifted to the 
right. The following example illustrates both strategies. 
 
Let s = (2, 4, 3, 1, 5, 7, 6) be a solution with n= 7. If we set %k = 30, it means that the 
destruction procedure removes 2 elements from s at random.  Consider that these two 
elements are vertices 3 and 7.  Then, the destruction procedure returns the partial solution 
𝑝𝑝𝑠𝑠 = (2, 4,−, 1, 5,−, 6).  The left pack strategy packs the elements at the beginning of the 
permutation, leaving the “empty positions” at the end; thus obtaining the partial solution 
𝑝𝑝𝑠𝑠1 = (2, 4, 1, 5, 6,−,−).  On the other hand, the right pack strategy packs the elements at the 
end of the permutation and the empty positions are moved at the beginning, resulting in 
𝑝𝑝𝑠𝑠2 = (−,−, 2, 4, 1, 5, 6).  These two strategies lead us to two different IG-SO procedures: IG-
SO1 (left pack) and IG-SO2 (right pack). We study the performance of these strategies in 
Section 5 where we report our experimental results. 
 
The construction phase focuses on the set of removed elements in the previous application of 
the destructive phase.  These vertices are sorted according to the increasing of the objective 
function caused by placing the corresponding element in an unselected position.  The 
construction procedure selects the “best” vertex; i.e., the one that causes the least increasing 
in the objective function value.  
 
The most common acceptance criterion in this method (step 7 in the algorithm of Figure 3) 
specifies accepting new solutions only if they improve the best solution so far. However, we 
have empirically found that this can lead to a premature convergence of the method (or 
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getting trapped in a local optimum relatively far from the global one).  As a consequence, we 
have implemented in IG-SO1 and IG-SO2 a more aggressive acceptance criterion for 
diversification purposes, based on accepting always the re-constructed solution. 
 
4. Path Relinking post-optimization 

Path relinking (PR) was suggested as an approach to integrate intensification and 
diversification strategies in the context of tabu search (Glover, 1996; Glover and Laguna, 
1997). PR generates new solutions constructing a path from an initiating solution to a guiding 
solution. This process is accomplished by introducing attributes contained in the guiding 
solutions, and incorporating them in an intermediate solution originated in the initiating 
solution. In this section we adapt PR to the LOPCC as a post-processing of the GRASP or 
Iterated Greedy – Strategic Oscillation.  Specifically, we explore different designs in which 
greedy, randomized, and evolutionary elements are considered in the PR implementation as a 
form of search intensification. 
 
The PR algorithm operates on a set of solutions, called elite set (ES), constructed with the 
application of a previous method, which can be either GRASP or IG - SO  in our case.  Based on 
previous studies (see for example Resende and Werneck, 2004) this set should be created 
considering both quality and diversity. We therefore apply a method to generate b different 
solutions (with relatively good quality and diversity) to populate it.  Given the pair of solutions 
(𝑈𝑈,𝑉𝑉) in ES, we consider the path from 𝑈𝑈 to 𝑉𝑉 (where 𝑈𝑈 is the initiating solution and 𝑉𝑉 the 
guiding one).  In this path, we move one by one the elements in 𝑈𝑈 to their corresponding 
position in the guiding solution.  Specifically, given element (vertex)  , let 𝑘𝑘𝑢𝑢  and 𝑘𝑘𝑣𝑣  be its 
corresponding position in 𝑈𝑈 and 𝑉𝑉 respectively.  To generate an intermediate solution, the 
procedure swaps the elements 𝑘𝑘 and 𝑘𝑘′ that are placed in positions 𝑘𝑘𝑢𝑢  and 𝑘𝑘𝑣𝑣  in 𝑈𝑈.  Therefore, 
after a sequence of swaps, a series of intermediate solutions are generated and the guiding 
solution is reached. Figure 4 illustrates this method with 𝑈𝑈 =  (2,1,4,3) and 𝑉𝑉 = (3,4,2,1).  
This figure only shows a small fraction of the solutions examined to generate a path from 𝑈𝑈 to 
𝑉𝑉.  For 𝑘𝑘 = 1, we have that 𝑘𝑘𝑢𝑢 = 2, 𝑘𝑘𝑣𝑣 = 4 and 𝑘𝑘′ = 3 and we would swap vertex 1 with 3 in 
𝑈𝑈 obtaining solution (2,3,4,1).  Similarly, in the first step PR generates the following four 
intermediate solutions (depicted in the figure in the same column and with the swapped 
elements in white font): (3, 1,4,2), (2,4, 1,3), (4,1,2, 3), (2,3,4,1).  Consider for example that 
(4,1,2, 3) is the best of the four in terms of the objective function; then we will apply the next 
swaps to it to generate intermediate solutions closer to 𝑉𝑉 = (3,4,2,1).  Specifically, we 
generate the following three intermediate solutions: (3, 1,2, 4), (1,4, 2, 3), (4,3,2, 1). In this 
way, the guiding solution is finally reached. 
 

 
Figure 4. Path relinking. 
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Note that the PR shown in Figure 4 implements a greedy selection; i.e., at each step in the path 
from 𝑈𝑈 to 𝑉𝑉, the selection of the elements to be swapped is made to minimize the objective 
function value.  Other alternatives, not tested in this paper, are the greedy randomized 
selection and the truncated path relinking (see Resende et al., 2010). 
 
We first consider a straightforward implementation of PR called Static PR.  In this variant, we 
first apply the generation procedure (GRASP or IG - SO) to construct the elite set ES and then 
we apply PR to generate new solutions between all the pairs of solutions in ES. Given two 
solutions in ES, 𝑈𝑈 and 𝑉𝑉, we apply path relinking from 𝑈𝑈 to 𝑉𝑉.  If the best solution in the path 
improves upon the best solution generated, 𝑥𝑥𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏 , we update it; otherwise we discard it. The 
algorithm terminates when PR is applied to all the pairs in ES and the best overall solution 
𝑥𝑥𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏  is returned as the output of the algorithm.  When we apply PR between two solutions, 
we also apply the local search method (described in Section 2) to some of the solutions 
generated in the path (every prMax steps).  Note that two consecutive solutions after a 
relinking step only differ in the positions of two vertices and therefore, it does not seem 
efficient to apply the local search exploration at every step of the relinking process. 
 
An alternative design is given by the Dynamic PR in which, after creating the initial ES, each 
solution 𝑈𝑈 generated with the corresponding method (GRASP or IG - SO) is directly subjected 
to the PR algorithm, which is applied between 𝑈𝑈 and a solution 𝑉𝑉 selected from ES. The 
selection is made probabilistically according to the quality of the solutions in ES. The local 
search method is applied as in the static version, but now, the resulting solution is directly 
tested for inclusion in ES. If successful, it can be used as the guiding solution in subsequent 
iterations of PR, which makes a difference with the static PR described above.  
 
Solutions in ES are sorted from the best 𝑥𝑥1 to the worst 𝑥𝑥𝑏𝑏 . If a solution generated with PR 𝑥𝑥 is 
better than 𝑥𝑥1, it is directly admitted to ES.  Additionally, if it is better than 𝑥𝑥𝑏𝑏  and “sufficiently 
different” than the other solutions in ES, it is also admitted to ES.  Since solutions are 
represented as permutations in the LOPCC, we consider the Manhattan distance to test the 
term “sufficiently different”.  Specifically, given two solution, 𝑈𝑈 =  (𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛) and 
𝑉𝑉 = (𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛), their distance is computed as: 
 

𝑑𝑑(𝑈𝑈,𝑉𝑉) = ∑ |𝑢𝑢𝑖𝑖 − 𝑣𝑣𝑖𝑖|𝑛𝑛
𝑖𝑖=1 . 

 
Therefore, the distance between a solution and the set of solutions ES,  
 

𝑑𝑑(𝑈𝑈,𝐸𝐸𝐸𝐸) = min𝑉𝑉∈𝐸𝐸𝐸𝐸{𝑑𝑑(𝑈𝑈,𝑉𝑉)}, 
 
is considered “sufficiently different” if 𝑑𝑑(𝑈𝑈,𝐸𝐸𝐸𝐸)  ≥  𝑑𝑑𝑏𝑏ℎ, where the parameter 𝑑𝑑𝑏𝑏ℎ is a 
distance threshold value empirically adjusted. To keep the size of ES constant and equal to b, 
whenever we add a solution to this set, we remove another one (its closest solution in ES 
among those worse than it in value). 
 
We finally consider a third design based on PR called Evolutionary Path Relinking (Resende et 
al., 2010).  In particular, the solutions obtained with the application of PR are considered to be 
candidates to enter ES, as in the dynamic design described above, but now PR is again applied 
to them as long as new solutions enter to ES. In this way, we can say that ES evolves. When 
none of the new solutions obtained with combinations are admitted to enter the ES, GRASP or 
IG - SO is then applied again using the same rules to include the generated solutions in the ES. 
The whole method stops after a specified number of global iterations.  We compare in our 
computational study in Section 5 these three designs, static, dynamic and evolutionary. 



Heuristics for the LOP with Cumulative Costs/ 9 

5. Computational Experiments 

All the metaheuristics described in the previous sections were implemented in Java and 
experiments were conducted on a MacBook Pro computer with a 2.4 GHz Intel I3 processor 
and 4 GB of RAM.   
 
5.1 Sets of instances 

We have tested the procedure on three sets of instances previously reported (Bertacco et al., 
2005; Duarte et al., 2009): 
 

(1) UMTS Instances from the telecommunications group of the Engineering School of 
the University of Padova, related to detection-order optimization in UMTS 
networks, and previously reported in Bertacco et al. (2005).  We have considered 
the four communication scenarios considered in previous works, i.e., synchronous 
and asynchronous transmissions, with and without scrambling.  There are 2000 
instances in the original set, we selected the first 25 instances of size 𝑛𝑛 =  16 from 
each group for a total of 100 instances in this set. 
 

(2) LOLIB Instances from the public-domain library, consisting of input-output tables 
of sectors in the European economy (LOLIB, 1997).  This is the well-known library 
for the LOP.  We consider the 43 instances of size 𝑛𝑛 =  50. 

 
(3) Random Instances generated from a (0, 100) uniform distribution.  Reinelt (1985) 

proposed the construction of these problem instances.  We generate instances of 
sizes ranging from 35 to 150 nodes.  There are 25 instances in each set for a total 
of 75. 

 
5.2 Constructive Methods and Local Search 

In our preliminary experimentation, to determine the values of the key search parameters and 
to compare the different search strategies, we employ the 25 random instances of size 100.  In 
our first experiment we measure the contribution of the local search in the GRASP algorithm 
described in Section 2 and compare it with the previous constructive heuristic, CH, proposed in 
Duarte et al. (2011) with and without its associated local search.  Table 1 reports the average 
objective function value, the average percent deviation from the best-known solution, the 
number of best solutions found (out of 25), and the average CPU time in seconds obtained 
with these four methods run for 100 iterations.  In this experiment we set to 1 the value of the 
β parameter. In the next experiment we will discuss different values for β.  We run the CH 
heuristic with the parameters’ values recommended by their authors. 
 

Table 1.  Constructive variants on 25 Random instances (size 100) 
 GRASP 

(without LS) 
GRASP  

(with LS) 
CH 

(without LS) 
CH 

(with LS) 
Obj. Function 4270886.39 1149.83777 9157900.33 1195.13279 
Avg. Deviation 93339.7% 0.9% 176688.2% 5.3% 
Num. of Best 0 18 0 7 
CPU seconds 0.14 165.35 0.18 179.68 

 
Table 1 shows that the best solution quality is obtained with the GRASP (in the version with 
the local search), which is able to match 18 best solutions (of this experiment) out of 25 
instances.  Comparing the constructive methods with and without the local search, the results 
clearly indicate the advantage of using an improvement method (with a reduction on the 
average deviation of several orders of magnitude).  However, the variants with local search 
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employ more computational time than the other methods as expected (165.35 and 179.68 
seconds on average, compared to less than one second for the other two methods).   
 
To complement the analysis of the results shown in Table 1, we now compare GRASP (with LS) 
and CH (with LS) with two well-known nonparametric tests for pair-wise comparisons: the 
Wilcoxon test and the Sign test. The former one answers the question: Do the two samples 
(solutions obtained with both methods in our case) represent two different populations? The 
resulting p-value of 0.001 indicates that the values compared come from different methods. 
Table 2 shows the ranks computation of this test. On the other hand, the Sign test computes 
the number of instances on which an algorithm supersedes another one. The resulting p-value 
of 0.001 indicates that the GRASP (with LS) is the clear winner between both methods. 
 

Table 2.  Wilcoxon test on 25 Random instances (size 100) 
 N Average rank Sum of ranks 

Negative ranks   (CH<GRASP) 4 8.50 34.00 
Positive ranks     (GRASP<CH) 21 13.86 291.00 
Ties                       (CH=GRASP) 0   
Total 25   

 
Our second preliminary experiment has the goal of finding appropriate values for the critical 
search parameter of the GRASP procedure.  With the same set of 25 instances used in the 
previous experiment, we compute the average percent deviation from the best-known 
solution of the solutions obtained with the GRASP method with the parameter β set to 0.0, 0.1, 
0.2, … 0.9 and 1.0.  Figure 5 shows the average percentage deviation with respect to the best 
known solutions obtained with each variant. 
 

 
 

Figure 5. GRASP Avg. deviations. 
 
The results in Figure 5 show that the best outcomes are obtained when the GRASP is run with 
a value of β = 1.0.  This is an interesting result since this parameter manages the “proportion” 
of randomization versus greediness in the construction process.  Therefore we can conclude 
that diversity is more important than quality when constructing a solution for the LOPCC (to be 
submitted to an improvement phase).  This behavior is different than that one observed by 
Martí et al. (2011) in the classical LOP where the best solutions are obtained with a value of 0.4 
in the parameter of a proposed GRASP. 
 
5.3 Iterated Greedy – Strategic Oscillation 

In our third preliminary experiment we undertake to compare the two iterated greedy-
strategic oscillation methods described in Section 3, IG-SO1 and IG-SO2, to study how the k 
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parameter (percentage of removed elements in the destruction phase) affects their 
performance, and to compare them with GRASP.  Note that with low values of k (10% or 20%) 
the iterated greedy only removes a small fraction of the elements in the current solution and 
therefore it creates an intensification pattern since similar solutions are generated, exploring 
their neighborhood (by means of the associated local search). Alternatively, large values of k 
(80% or 90%) make the IG-SO to destroy most of the current solution, producing a 
diversification effect over the long term of the search.  Figure 6 shows in a diagram the results 
of this experiment. 
 
The diagram depicted in Figure 6 shows that the best results are found with IG-SO1 with 
k=70% (that exhibits a 4.35% average percent deviation with respect to the best known 
solution) and lower quality results are obtained with extreme k-values (especially with values 
lower than 20%).  Moreover, if we compute the average percent deviation of GRASP with 
respect to the best known values in this experiment, we obtain a 6.34%, which indicates the 
superiority of IG-SO over GRASP.  Moreover, the number of best solutions that each method is 
able to match is 9 for IG-SO1 (k=70%), 9 for IG-SO2 (k=50%) and 7 for GRASP.  Note that the 
best solutions are computed with respect to the best values achieved in each particular 
experiment (in this way we can better discriminate among methods). This is why we cannot 
directly compare these values across different tables.  As a consequence of the previous 
experiments we will consider IG-SO1 (k=70%) as our best method to be coupled with PR in the 
next experiments. 
 

 
 

Figure 6. Iterated greedy variants. 
 
5.4 Path Relinking 

In our four and final preliminary experiment, we compare the path relinking variants described 
in Section 4. Table 3 shows the results of the iterated greedy-strategic oscillation by itself, IG-
SO1, and coupled with the three PR methods, Static PR, Dynamic PR and EvPR.  The parameter 
𝑑𝑑𝑏𝑏ℎ is empirically adjusted to 0.05 ∗ 𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝑖𝑖𝑠𝑠𝑏𝑏𝑀𝑀𝑛𝑛𝑐𝑐𝑠𝑠 where this maximum distance is computed 
as: 
 

𝑀𝑀𝑀𝑀𝑥𝑥𝑀𝑀𝑖𝑖𝑠𝑠𝑏𝑏𝑀𝑀𝑛𝑛𝑐𝑐𝑠𝑠 = ∑ |𝑖𝑖 − (𝑛𝑛 − 𝑖𝑖 + 1)|𝑛𝑛
𝑖𝑖=1 . 

 
On the other hand, regarding the prMax parameter controlling the application of the local 
search to intermediate solutions, experimental results show that as it increases the algorithm 
is able to marginally improve the quality of the final solution.  However, running times also 
increase since the application of the local search is time-consuming.  We therefore set prMax 
to 10 as a good compromise between solution quality and speed. 
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Table 3.  Path relinking variants on 25 Random instances (size 100) 

 IG-SO1  Static PR Dynamic PR EvPR 
Obj. Function 1069.65 1089.82 1039.96 1058.78 
Avg. Deviation 3.08% 3.49% 2.04% 1.44% 
Num. of Best 5 3 7 11 
CPU seconds 296.48 338.04 353.11 351.37 

 
Results in Table 3 report that the best outcomes are obtained with the iterated greedy-
strategic oscillation method coupled with evolutionary path relinking, EvPR.  This variant is 
able to match 11 best solutions (in this experiment) out of 25 instances, which compares 
favorably with the 5, 3 and 7 best solutions obtained with the iterated greedy by itself, and 
coupled with the static and dynamic variants respectively.  The average percentage deviations 
reported in this table are in line with the best solutions found with each method. Specifically, 
IG-SO1, Static PR, Dynamic PR and EvPR obtain 3.08%, 3.49%, 2.04% and 1.44% respectively.  It 
must be noted that the static PR variant performs worse than the dynamic one and even worse 
than the iterated greedy-strateic oscillation by itself.  
 
We applied a statistical test to the data used to generate Table 3.  Specifically, we applied the 
Friedman test for paired samples to the best solutions obtained by each method.  This test 
computes, for each instance, the rank-value of each method according to solution quality 
(where rank 4 is assigned to the worst method and rank 1 to the best one). Then, it calculates 
the average rank values of each method across all the instances solved.  If the averages are 
very different, the associated p-value or significance will be small.  The resulting significance 
level of 0.018 obtained in this experiment clearly indicates that there are statistically 
significant differences among the four methods tested (it is lower than the typical threshold of 
0.05).  Specifically, the rank values produced by this test are 1.92, 2.32, 2.82 and 2.94 for the 
EvPR, Dynamic PR, IG-SO1 and Static PR, respectively.  This indicates that among the 
procedures that we tested, EvPR is the best at obtaining solutions with minimum values. 
 
5.5 Comparison with best methods 

In our final experiment, we compare our best algorithm, EvPR, with the best previous 
methods: the GR by Benvenuto et al. (2005), the truncated branch and bound, TB&B, by 
Righini (2008), and the tabu search, TS, by Duarte et al. (2011).  Tables 4 and 5 show the results 
of these four methods on the 100 UMTS, and the 43 LOLIB instances respectively. Tables 6, 7 
and 8 show the results on the Random instances with 35, 100 and 150 nodes respectively. 
 

Table 4.  Best methods on 100 UMTS instances 
 GR  TB&B TS EvPR 

Obj. Function 79.05 12.92 12.92 12.92 
Avg. Deviation 574.20% 0.00% 0.00% 0.00% 
Num. of Opt. 0 100 100 100 
CPU seconds 3.90 0.21 1.63 1.62 

 
 

Table 5.  Best methods on 43 LOLIB instances 
 GR  TB&B TS EvPR 

Obj. Function 5.53E+10 7.24E+10 8.26E+08 1.35 
Avg. Deviation 350347.9% 287638.8% 1.40% 0.00% 
Num. of Opt. 0 0 28 36 
CPU seconds 33.46 30.00 37.74 32.34 
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Table 6.  Best methods on 25 Random instances (n=35) 

 GR  TB&B TS EvPR 
Obj. Function 0.91 0.63 0.34 0.34 
Avg. Deviation 126.43% 0.45% 0.51% 0.45% 
Num. of Opt. 0 0 21 24 
CPU seconds 8.84 8.00 3.40 3.75 

 
 

Table 7.  Best methods on 25 Random instances (n=100) 
 GR  TB&B TS EvPR 

Obj. Function 288137.55 9614.23 1161.46 1058.78 
Avg. Deviation 13001.93% 430.00% 5.79% 0.74% 
Num. of Best 0 0 12 13 
CPU seconds 511.19 540.00 406.79 351.38 

 
 

Table 8.  Best methods on 25 Random instances (n=150) 
 GR  TB&B TS EvPR 

Obj. Function 1.12E+11 1.14E+08 2.27E+06 1.85E+06 
Avg. Deviation 993996.3% 1736.7% 9.19% 3.37% 
Num. of Best 0 0 7 15 
CPU seconds 2249.80 2000.00 2074.31 1127.24 

 
 
The results in Tables 4 to 8 clearly indicate that the GR method obtains low quality solutions, 
several orders of magnitude larger than its competing methods.  On the other hand, the UMTS 
instances, reported in Table 4, are not adequate to compare state-of-the-art methods, such as 
TB&B, TS and EvPR, since all of them are able to obtain the optimal value in all these instances 
within very short computational times. 
 
Considering the LOLIB (Table 5) and the small Random instances (Table 6) we observe a similar 
pattern; the truncated branch and bound (TB&B) is not able to match any optimal value, while 
TS and EvPR present good results.  In particular TS obtains 28 and 21 optimal values (out of 43 
and 25 instances) and EvPR obtains 36 and 24 respectively.  Similarly, the average percentage 
deviation confirms a slight improvement of EvPR over TS. Specifically, TS presents a 1.4% and 
0.51% while EvPR achieves a 0.00% and 0.45% on LOLIB and small random instances 
respectively. 
 
Considering now the most challenging instances (Random instances with n=100 and n=150) we 
can confirm the superiority of EvPR over the other three methods considered and, in 
particular, over the recent tabu search method (TS).  Specifically, TS exhibits a 5.79 and a 9.19 
percentage deviation with respect to the best known solutions over the medium and large 
random instances respectively, while EvPR obtains a remarkable 0.74% and 3.37%.  It is 
important to note that EvPR consumes shorter computational times than TS. 
 
We applied a Friedman test for paired samples to the best solutions obtained by each method 
in Tables 5 to 8 and the resulting significance level of 0.000 clearly indicates that there are 
statistically significant differences among the four methods tested.  Moreover, the rank values 
produced by this test are 1.33, 1.67, 3.10 and 3.90 for the EvPR, TS, TB&B and GR respectively.  
This indicates that among the procedures that we tested, EvPR is the best at obtaining 
solutions with minimum values.  We finally compare EvPR and TS with the Wilcoxon and the 
Sign tests.  The resulting p-value of 0.000 obtained in both tests, together with the previous 
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results, indicates that the EvPR is the clear winner in the comparison.  Table 9 shows the ranks 
computed in the Wilcoxon test. 
 

Table 9.  Wilcoxon test on best methods 
 N Average rank Sum of ranks 

Negative ranks   (EvPR<TS) 79 63.01 4978.00 
Positive ranks     (EvPR>TS) 39 52.38 2043.00 
Ties                       (EvPR=TS) 0   
Total 118   

 
To complement the analysis above, Figure 7 shows the typical search profile for EvPR and TS.  
This run corresponds to the set of instances used in our preliminary testing with a time limit of 
400 seconds.  Tables in the Appendix report the best known values identified in our study. 
 

 
 

Figure 7. Search profile of best methods. 
 
 
6. Conclusions 

We have described the development and implementation of six different methods for the 
solution of the linear ordering problem with cumulative costs.  Specifically we have proposed a 
GRASP, two iterated greedy-strategic oscillation and three path relinking algorithms.  We 
arrived to our final design by way of performing a series of preliminary experiments.  The final 
design is then compared to state-of-the-art methods and the outcome of our experiments 
seems quite conclusive in regard to the merit of the procedure that we propose, which is able 
to indentify 87 new best solutions out of 218 instances.  We believe that the performance 
boost that we achieved by the combination of a memory-less method, such as iterated greedy-
strategic oscillation, mainly based on randomization with an adaptive memory procedure, such 
as path relinking, is a valuable lesson for future implementations. 
 
Acknowledgments 

This work is partially supported by the Ministerio de Educación y Ciencia under reference code 
TIN2009-07516.  The authors thank Prof. Giovanni Righini for providing them with their 
truncated branch and bound for the LOPCC. 



Heuristics for the LOP with Cumulative Costs/ 15 

 
References 

Benvenuto, N., G. Carnevale and S. Tomasin, 2005. Optimum Power Control and Ordering in 
SIC Receivers for Uplink CDMA Systems. IEEE-ICC 2005, Seoul, Korea. 

Bertacco, L., L. Brunetta and M. Fischetti, 2005. The Linear Ordering Problem with Cumulative 
Costs. European Journal of Operational Research 189 (3), 1345-1357. 

Culberson, J. and F. Luo (1996). Exploring the k-colorable landscape with iterated greedy. D.S. 
Johnson, M.A. Trick, eds. Cliques, coloring, and satisfiability: second DIMACS implementation 
challenge 26. American Mathematical Society, 245-84. 

Duarte, A., M. Laguna, R. Martí, 2011. Tabu Search for the Linear Ordering Problem with 
Cumulative Costs. Computational Optimization and Aplications 48, 697 - 715. 

Feo, T.A., and M.G.C. Resende, 1989. A probabilistic heuristic for a computationally difficult set 
covering problem. Operations Research Letters 8, 67–71. 

Feo, T.A., M.G.C. Resende, and S.H. Smith, 1994. A greedy randomized adaptive search 
procedure for maximum independent set. Operations Research 42, 860–878. 

Glover, F., 1996. Tabu search and adaptive memory programming—Advances, applications and 
challenges, Interfaces in Computer Science and Operations Research, R.S. Barr, R.V. Helgason, 
and J.L. Kennington (Editors), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1–75. 

Glover, F., and M. Laguna, 1997. Tabu search”, Kluwer Academic Publishers, Norwell, MA, USA, 
1997. 

Jacobs, L.W. and Brusco, M.J., 1995. A local-search heuristic for large set-covering problems. 
Naval Research Logistics 42, 1129-1140. 

Laguna, M., R. Martí and V. Campos, 1999. Intensification and Diversification with Elite Tabu 
Search Solutions for the Linear Ordering Problem. Computers and Operations Research  26, 
1217-1230. 

LOLIB, 1997. http://www.iwr.uni-heildelberg.de/groups/comopt/software/LOLIB/ 

Marchiori, E. and A. Steenbeek, 2000. An evolutionary algorithm for large set covering 
problems with applications to airline crew scheduling. In: Cagnoni, S. et al. (Eds.), Real-World 
Applications of Evolutionary Computing, Lecture Notes in Computer Science, vol. 1803. 
Springer-Verlag, Berlin, pp. 367–381. 

Martí, R., G. Reinelt and A. Duarte, 2011. A benchmark library and a comparison of heuristic 
methods for the linear ordering problem. Computational Optimization and Applications, 
Forthcoming. 

Reinelt, G., 1985. The Linear Ordering Problem: Algorithms and Applications, Research and 
Exposition in Mathematics, Vol. 8, H. H. Hofmann and R. Wille (Eds.), Heldermann Verlag 
Berlin. 

Resende, M.G.C., and C.C. Ribeiro, 2003. Greedy randomized adaptive search procedures.  
Handbook of metaheuristics, F. Glover and G. Kochenberger (Editors), Kluwer Academic 
Publishers, Norwell, MA, USA, pp. 219–250. 

Resende, M.G.C., and R.F. Werneck, 2004. A hybrid heuristic for the p-median problem”, 
Journal of Heuristics 10, 59–88. 

Resende, M.G.C., R. Martí, M. Gallego and A. Duarte, 2010. GRASP and Path Relinking for the 
Max-Min Diversity Problem. Computers and Operations Research 37, 498-508. 

http://www.iwr.uni-heildelberg.de/groups/comopt/software/LOLIB/�


Heuristics for the LOP with Cumulative Costs/ 16 

Resende, M.G.C., and C.C. Ribeiro, 2010. Greedy randomized adaptive search procedures: 
Advances and applications”, Handbook of metaheuristics, 2nd edition, M. Gendreau and J.-Y. 
Potvin (Editors), Springer, pp. 281–317. 

Righini, G., 2008. A branch-and-bound algorithm for the linear ordering problem with 
cumulative costs. European Journal of Operational Research 186 (3), 965-971. 
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Appendix – Best Known solutions 

Numbers in bold have been identified in this study by our method (IG-SO1+EvPR). 

 

Instance Value   Instance Value   Instance Value 

be75eec 5.085 
 

t69r11xx 14.036 
 

t75n11xx 9.897 

be75np 16543433.910 
 

t70b11xx 93.671 
 

t75u11xx 0.326 

be75oi 2.788 
 

t70d11xn 79.742 
 

tiw56n54 2.645 

be75tot 297138.273 
 

t70d11xx 4.435 
 

tiw56n58 3.620 

stabu1 13.284 
 

t70f11xx 1.267 
 

tiw56n62 3.024 

stabu2 14.029 
 

t70i11xx 121146.029 
 

tiw56n66 2.687 

stabu3 9.412 
 

t70k11xx 0.492 
 

tiw56n67 1.877 

t59b11xx 76261.813 
 

t70l11xx 798.919 
 

tiw56n72 1.567 

t59d11xx 4086.303 
 

t70u11xx 35490330260.185 
 

tiw56r54 2.626 

t59n11xx 1618.897 
 

t70x11xx 0.231 
 

tiw56r58 3.602 

t65b11xx 28230.444 
 

t74d11xx 4.756 
 

tiw56r66 2.189 

t65d11xx 3898.568 
 

t75d11xx 5.059 
 

tiw56r67 1.541 

t65i11xx 826108.100 
 

t75e11xx 2062.289 
 

tiw56r72 1.349 

t65l11xx 2657.735 
 

t75i11xx 4454.931 
   t65w11xx 19.258 

 
t75k11xx 1.323 

   
Table 10. Best known objective function values to LOLIB instances 

 
Instance Value   Instance Value   Instance Value 
t1d35.1 0.923 

 
t1d100.1 253.988 

 
t1d150.1 8588.289 

t1d35.2 0.167 
 

t1d100.2 288.372 
 

t1d150.2 184853.686 
t1d35.3 0.154 

 
t1d100.3 1307.432 

 
t1d150.3 574943.633 

t1d35.4 0.196 
 

t1d100.4 7539.979 
 

t1d150.4 75510.287 
t1d35.5 1.394 

 
t1d100.5 169.336 

 
t1d150.5 79069.363 

t1d35.6 0.200 
 

t1d100.6 395.035 
 

t1d150.6 46829.985 
t1d35.7 0.120 

 
t1d100.7 5936.281 

 
t1d150.7 161149.153 

t1d35.8 0.226 
 

t1d100.8 2760.619 
 

t1d150.8 251940.422 
t1d35.9 0.436 

 
t1d100.9 62.942 

 
t1d150.9 364320.250 

t1d35.10 0.205 
 

t1d100.10 162.942 
 

t1d150.10 122217.421 
t1d35.11 0.369 

 
t1d100.11 233.586 

 
t1d150.11 13900.039 

t1d35.12 0.234 
 

t1d100.12 236.696 
 

t1d150.12 65717.265 
t1d35.13 0.196 

 
t1d100.13 593.319 

 
t1d150.13 109460.320 

t1d35.14 0.138 
 

t1d100.14 249.162 
 

t1d150.14 74854.867 
t1d35.15 1.376 

 
t1d100.15 406.478 

 
t1d150.15 352880.286 

t1d35.16 0.286 
 

t1d100.16 707.413 
 

t1d150.16 16950196.691 
t1d35.17 0.199 

 
t1d100.17 725.790 

 
t1d150.17 77828.419 

t1d35.18 0.381 
 

t1d100.18 622.942 
 

t1d150.18 711286.599 
t1d35.19 0.236 

 
t1d100.19 228.486 

 
t1d150.19 67840.414 

t1d35.20 0.068 
 

t1d100.20 255.151 
 

t1d150.20 1886041.875 
t1d35.21 0.202 

 
t1d100.21 228.590 

 
t1d150.21 41453.911 

t1d35.22 0.177 
 

t1d100.22 159.336 
 

t1d150.22 695751.688 
t1d35.23 0.345 

 
t1d100.23 1658.168 

 
t1d150.23 22203891.826 

t1d35.24 0.132 
 

t1d100.24 469.658 
 

t1d150.24 105162.367 
t1d35.25 0.143 

 
t1d100.25 644.782 

 
t1d150.25 462316.511 

                
Table 11. Best known objective function values to Random instances 

 


