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Abstract — In this article we first review previous integer formulations for the 

maximum diversity problem.  This problem consists of selecting a subset of elements 

from a data set in such a way that the sum of the distances between the chosen elements 

is maximized.  We propose a branch and bound algorithm and expressions for upper 

bounds for this problem.  As far as we know, this is the first exact algorithm proposed 

for the maximum diversity problem.  Empirical results with a collection of previously 

reported instances indicate that the proposed algorithm is able to solve medium size 

instances and compares favorably with the well-known optimizer Cplex when solving 

the previous formulations. 
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1. Introduction 
The Maximum Diversity Problem (MDP) has been the subject of study since 1993 when 
Kuo, Glover and Dhir proposed different linear integer formulations.  Since then, 
different heuristic algorithms have been proposed to obtain approximate solutions in 
short computational times but, as far as we know, no exact method has been considered 
for this problem. 
 
We can find a large number of MDP applications in different contexts, such as 
ecological, medical or social sciences, or in animal and plant genetics, where the goal of 
obtaining new varieties by controlled breeding stocks with desired qualities of diversity 
can be formulated as a MDP (Porter et al. 1975). The maximum diversity problem also 
appears in the context of ethnicity when it is studied from a historical perspective, as 
shown in Swierenga (1977), and more recently in the application of U.S. immigration 
policy that promotes of ethnic diversity among immigrants (McConnell 1988).  
 
Ghosh (1996) proved the completeness of the MDP, proposed a multi-start algorithm 
and tested it on small instances.  In Glover et al. (1998), four different heuristics are 
introduced for this problem.  Since different versions of the MDP include additional 
constraints, the objective is to design heuristics whose basic moves for transitioning 
from one solution to another are both simple and flexible, allowing these moves to be 
adapted to multiple settings.  The authors compare the solution obtained with their 
heuristics with the optimal solution on small instances. 
 
In the last few years, researchers have implemented different metaheuristics to obtain 
high quality solutions to medium and large MDP instances.  Silva et al. (2004) present 
several GRASP algorithms for the MDP and test them on medium instances.  Their 
extensive computational experiments show that their procedures outperform previous 
methods when they are allowed to run for extremely long times (their methods employ 
on average more than 20 hours of CPU time).  Duarte and Martí (2006) proposed 
constructive and improvement algorithms for the MDP based on tabu search 
methodology and Gallego et al. (2006) implemented scatter search for the MDP.  Both 
latter studies target large instances and, as shown in their computational testing, provide 
the best known solutions for this problem. 
 
In this paper we first describe in Section 2 previous formulations for the MDP.  Section 
3 presents our theoretical contributions, which basically consist of upper bounds for 
partial solutions.  A description of the exact algorithm is given in Section 4.  It presents 
our for provably optimal solving method, which implements efficient strategies for 
branching and pruning.  The paper finishes with a computational study and the 
associated conclusions. 
 
 
2. Previous Formulations 
Kuo, Glover and Dhir (1993) proposed three linear integer formulations, F1, F2 and F3, 
to solve the MDP.  The authors illustrate the performance of F2 on a real example of 
small size.  However, they did not test these formulations with a MIP solver.  The 
experimentation described in Section 5 compares these three formulations when solving 
small and medium MDP instances with Cplex 8.0. 
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The MDP consists of selecting a subset of elements from a data set in such a way that 
the sum of the distances between the chosen elements is maximized.  In most 
applications, it is assumed that each element can be represented by a set of attributes.  
Let sik be the state or value of the kth attribute of element i, where k = 1, …, K.  Then, 
the distance dij between elements i and j may be simply defined as the Euclidean 
distance (or as any other distance function).  The maximum diversity problem can then 
be formulated as the following quadratic zero-one integer program, where variable xi 
takes the value 1 if element i is selected and 0 otherwise, i = 0, ..,n. 
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Glover and Wolsey (1974) show how to convert a 0-1 polynomial programming 
problem into a 0-1 linear programming problem.  In particular, they propose replacing 
the product of variables  with a new variable , satisfying the following 
additional constraints: 

jQj x∈∏ Qx

1−≤−∑
∈

Qxx Qj
Qj

 

Qjxx Qj ∈∀≤+− ,0  
0≥Qx  

 
If the original variable xj is 0, the second additional constraint, -xj + xQ ≤ 0, implies xQ ≤ 
0; then, since xQ ≥ 0 (as given in the third additional constraint) we obtain xQ = 0.  
Symmetrically, if the new variable xQ is 0, the first additional constraint implies that any 
of the original variables must be 0, thus their product must also be 0.  Then we have: 

00 =⎯→←=∏ ∈ QjQj xx  

On the other hand, if all the original variables have value 1, the first additional 
constraint results in  -xQ ≤ -1 and, together with any of the second additional constraints, 
xQ ≤ 1, leads to xQ = 1. Symmetrically, if xQ takes the value 1, the second additional 
constraints force the original variables to be larger than or equal to 1; therefore, they 
must be 1 (since they are binary variables).  Therefore, QjQj xx =∏ ∈ . 
 
Kuo et al. (1993) apply this transformation and replace the product xixj in F1 with a new 
variable yij, obtaining the mixed integer program F2 in which the additional constraints 
have been added. 
 
 
 
 
 
 
 



An exact method for the MDP / 4 

 (F2) Maximize  ∑∑
−

= +=

=
1

1 1

n

i

n

ij
ijij ydz

  Subject to  mx
n

i
i =∑

=1

 1≤−+ ijji yxx  1 ≤ i < j ≤ n 
  0≤+− iji yx   1 ≤ i < j ≤ n 
  0≤+− ijj yx   1 ≤ i < j ≤ n 

  yij ≥ 0   1 ≤ i < j ≤ n 
  xi = {0, 1}  1 ≤ i ≤ n 
 
Glover (1975) introduces some inequalities to handle quadratic integer programs with 
both real and binary variables.  Consider a variable w and a 0-1 variable x such that: 
 

00 LwU ≥≥  if 0=x  ,   and      if 11 LwU ≥≥ 1=x . 
 

A simple way to model this situation is given by: 
 

xLLLwxUUU )()( 010010 −+≥≥−+  
 
U0, U1, L0, L1 are usually non-constant values and then the expressions (U1-U0)x and 
(L1-L0)x will usually be nonlinear.  Then, Glover (1975) introduces the following upper 
and lower bounds: 

 
111111000000 ,,, LLLUUULLLUUU ≥≥≥≥≥≥≥≥  

 
to rewrite the inequalities above with these new expressions: 
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Kuo et al. (1993) apply this transformation to F1 by decomposing the objective function 
into the sum of w-values: 
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Defining the following bounds,  
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F1 is rewritten as F3: 
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We can see how the new constraints make wi take the appropriate value in order to 
obtain the same z value as F1.  For example, when xi = 0, (1) implies wi ≤ 0.  Due to (2): 
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and by definition: 
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Therefore, (2) is less restrictive than (1) in F3 and the maximum value that wi can take 
to maximize the objective function z is 0.  In short, if xi = 0 then wi = 0 and their 
respective contribution to the objective function is 0.  Similarly, we can see that if xi = 1 
then 

∑
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So F3 and F1 provide the same objective value and both problems are equivalents.  
Therefore, the maximum diversity problem can be formulated as F1, F2 and F3.  In the 
computational experiments reported in Section 6 we will see their effectiveness when 
solving a set of instances. 
 
 
3. Upper Bounds for Partial Solutions 
The maximum diversity problem can be defined in terms of graphs.  We can represent 
each element in the problem as a vertex in a graph and the distance between elements as 
the weight or cost associated to the corresponding edge.  The MDP then consists of 
selecting a subset of vertices in such a way that the sum of the distances between them 
is maximized.  In this section we provide some expressions to compute the upper bound 
of the MDP value of a set of solutions that share some vertices, which will be called a 
partial solution. 
 
Let V={v1, v2, …, vn} be the set of vertices of a graph G and let m < n be the number of 
vertices that we have to select in an MDP solution.  We define a partial solution 
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Sel={s1, s2,…, sk} with k < m elements as a subset of V (Sel ⊂ V).  Let SSel be the set of 
solutions of the MDP in which all the elements in Sel are selected. 
 
Given a solution x={s1, s2,…, sk, u1, u2,…, um-k} in SSel, we denote the set of vertices in x 
not present in Sel as Unsel(x)={u1, u2,…, um-k}.  The value z of x can be broken down 
into z = z1 + z2 + z3, where z1 is the sum of the distances (edge weights) between the 
pairs of selected vertices (vertices in Sel), z2 is the sum of the edge weights with one 
extreme in Sel and the other in Unsel(x), and z3 is the sum of edge weights with both 
extremes in Unsel(x). 
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We use the example given in Figure 1 and the associated Euclidean distance matrix in 
Table 1 to illustrate these concepts.  The dimensions of the example problem are n = 6 
and m = 4. 
 

 
Figure 1.  MDP example 

 
 

 
 1 2 3 4 5 6 
1 - 2.24 3.16 6.08 5.66 4.12 
2 2.24 - 2.24 4.00 3.61 3.16 
3 3.16 2.24 - 3.61 5.10 5.39 
4 6.08 4.00 3.61 - 3.61 5.83 
5 5.66 3.61 5.10 3.61 - 3.00 
6 4.12 3.16 5.39 5.83 3.00 - 

 

Table 1: Distance matrix 
 

 
Consider the partial solution Sel={1,3} in the example given in Table 1.  We have 
SSel={{1,3,2,4}, {1,3,4,5}, {1,3,5,6}, {1,3,2,5}, {1,3,4,6}, {1,3,2,6}}.  Consider for 
example solution x={1,3,5,6} in SSel, then Unsel(x)={5,6}.  We can compute its value as 
z = z1 + z2 + z3 = 3.16 + 20.27 + 3.00 = 26.43 where 
 
z1 = d(1,3) = 3.16 
z2 = d(1,5) + d(3,5) + d(1,6) + d(3,6)  = 5.66 + 5.10 + 4.12 + 5.39 = 20.27 
z3 = d(5,6) = 3.00 
 
Figure 2 illustrates the decomposition of the value z of the solution x={1,3,5,6}.  It is 
clear that for any solution in SSel, z1 is an invariant and in this example it takes the value 
of 3.16.  In this section we want to obtain an upper bound of the value of any solution in 
SSel.  Propositions 1 and 2 provide an upper bound for the value of z2 and z3 respectively 
for any solution in SSel.  Proposition 3 provides an improved upper bound for the value 
of z2 + z3. 
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Figure 2. Decomposition of the solution value 

 
Given a set of vertices, Sel={s1, s2,…, sk}, and a vertex v ∈V-Sel, we define zSel(v) as  
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we can interpret zSel(v) as the potential contribution of v with respect to the selected 
vertices if we add it to the partial solution Sel. 
 
Proposition 1 

Given a partial solution Sel={s1, s2, …, sk} with k < m, let  be the 
ordered values of z

kn
SelSelSel zzz −,...,, 21

Sel(v) for all v in V-Sel (where is the maximum); then, for any 
solution x in S
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Sel : 

∑
−

=

≥=
km

j

j
Sel zzUB

1
22 . 

Proof 

Given the solution x={s1, s2,…, sk, u1, u2,…, um-k} in SSel, it is clear that:  
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Given a partial solution Sel={s1, s2,…, sk} with k < m, let  
be the ordered values of the distances between v in V-Sel and the other vertices in V-Sel 
(where is the maximum).  We define z

)(,),(),( 121 vdvdvd kn
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−−K

)(1 vdUnsel Unsel(v) as:  
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we can interpret zUnsel(v) as an upper bound of the potential contribution of v with 
respect to the unselected vertices if we add it to the partial solution Sel under 
construction. 
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In the example in Figure 1 and Table 1 with Sel={1,3}, if we consider vertex 2, we have 
d(2,4)=4.00, d(2,5)=3.61 and d(2,6)=3.16.  Then, 

16.3)2(,00.4)2(,00.4)2( 321 === UnselUnselUnsel ddd   and  00.200.4
2
1)2( ==Unselz  

 
Proposition 2 

Given a partial solution Sel={s1, s2, …, sk} with k < m, let  be the 
ordered values of z

kn
UnselUnselUnsel zzz −,...,, 21

Unsel(v) for all v in V-Sel (where is the maximum); then, for any 
solution x in S
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Proof 

Given the solution x={s1, s2,…, sk, u1, u2,…, um-k} in SSel, it is clear that:  
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Consider again the partial solution Sel={1,3} in the example given in Table 1.  
Applying Propositions 1 and 2 we can bound the value z of any solution in SSel as:  
 

z = z1 + z2 + z3 ≤ z1 + UB2 + UB3 = 3.16 + 20.45 + 5.83 = 29.44 
 
It is easy to check that 29.44 is larger than any solution value in this set: 
 

f({1, 3, 2, 4}) = 21.33 
f({1, 3, 2, 5}) = 22.01 
f({1, 3, 2, 6}) = 20.31 
f({1, 3, 4, 6}) = 28.19 
f({1, 3, 4, 5}) = 27.22 
f({1, 3, 5, 6}) = 26.43 

 
Note that UB2 and UB3 are computed independently. We can improve the final bound if 
we simply merge both values.  Given a partial solution Sel={s1, s2, …, sk} with k < m 
for any v in V-Sel, we define z(v) as:  
 

z(v)=zSel(v)+zUnsel(v) 
 
Proposition 3 
Given a partial solution Sel={s1, s2, …, sk} with k < m, let  be the ordered 

values of z(v) for all v in V-Sel (where is the maximum); then, for any solution x in 
S

knzzz −,...,, 21

1z
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Proof 

We only need to put together the proofs of Propositions 1 and 2 to obtain this result. 
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In the example above we have  
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Similarly, 
 

61.12)
2
83.5,

2
61.3,

2
00.4max(96.9)4( =+=z  

57.12)
2
00.3,

2
61.3,

2
61.3max(76.10)5( =+=z  

43.12)
2
00.3,

2
83.5,

2
16.3max(51.9)6( =+=z  

 
Therefore the improved bound given in Proposition 3 for this example is z1+UB23=3.16 
+12.61+12.57=28.34, which is better (lower) than the bound of 29.44 obtained with 
Propositions 1 and 2.  Note that it is easy to see that UB23≤UB2+UB3 because UB2 is 
computed with respect to the maximum zSel(v) values and UB3 is computed with respect 
to the maximum zUnsel(v) values.  Then, the vertices v in UB2 and UB3 may be different, 
while UB23 is computed with respect to the vertices for which zSel(v)+zUnsel(v) is 
maximum.  We use the same vertices v in zSel(v) and zUnsel(v) when computing UB23 and 
therefore its maximum is lower than or equal to UB2+UB3. 
 
 
4. Search Tree 
Given a graph G=(V,E) with a set of vertices V={v1, v2, …, vn} and letting m<n be the 
number of vertices that we have to select in a solution, the search tree provides a 
generation and partition of the set of solutions for the Maximum Diversity Problem in 
which each node represents a partial solution (except the leaf or final nodes that 
represent complete solutions). 
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Figure 3. Basic search tree 
 
In a first approach to this problem we can build the complete enumeration tree as 
follows.  The initial node branches into n nodes (labeled from 1 to n, where node i 
represents the partial solution Sel={i}).  Each of these n nodes in the first level branches 
into n-1 nodes (which will be referred to as nodes in level 2).  For instance, node 2 in 
the first level (Sel={2}) has n-1 successors in level 2 (labeled as 1, 3, 4,.., n).  So, node 3 
in the second level, the successor of node 2 in the first level, represents the partial 
solution Sel={2,3}.  Therefore, at each level in the search tree, the algorithm extends the 
current partial solution by adding one more vertex.  Figure 3 represents this basic search 
tree for an example with n = 5 and m = 3. 
 
As shown in Figure 3, the basic search tree described above contains repetitions of the 
same solutions.  For example, the nodes marked as A, B, C and D, all represent the 
same solution {1,2,3}.  Therefore, this tree does not represent a partition of the set of 
solutions of the MDP.  So we then consider a search tree with no repetitions.  
Specifically, the initial node branches into n–m+1 nodes (labeled from 1 to n-m, where 
node i represents the partial solution Sel={i}).  Each of these n–m+1 nodes in the first 
level branches into a number of nodes in level 2 that depends on the value of their label.  
In general terms node i in level k branches into n-(m-k)-i nodes, beginning with node 
i+1 and ending with node n-(m-k).  In the example above with n = 5 and m = 3, Figure 4 
shows this search tree with no repetitions.  Node 1 in level 1 branches into nodes 2, 3 
and 4; node 2 in level 1 branches into nodes 3 and 4, and node 3 in level 1 branches into 
node 4.  Node 2 in level 2 branches into nodes 3, 4 and 5; nodes 3 branch into nodes 4 
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and 5, and nodes 4 branch into node 5.  The nodes in level 3, leaf nodes, represent 
complete solutions that are shown in the right hand column.  Comparing the search tree 
in Figure 4 with that in Figure 3, we can see that the size has been substantially reduced 
by avoiding the repetitions. 
 
 

 
Figure 4. Search tree 

 
A direct way to implement the construction of the search tree is by means of a recursive 
procedure.  Figure 5 shows the pseudo-code of this procedure.  This algorithm has two 
input parameters, level k and the partial solution under construction.  Once the final 
level is reached and the solution is completed, the method prints it and performs a 
backward step.  For the sake of simplicity, this figure does not show the implementation 
details and data structures that make our final procedure more efficient. 
 

procedure createSolutions (k , solution) 
var 
  init_value, i: integer; 
begin 
   if k = m+1 then 
      print(solution);   // Solution output 
   else 
      if k = 1 then    // Initialization for each level 
          init_value := 1; 
      else 
          init_value := solution[k - 1] + 1; 
      end if 
      for i := init_value to n-(m-k) do // Create the new nodes in the tree 
          solution[k]:=i; 
          createSolutions(k+1, solution); // Recursive call 
      end for 
   end if 
end 

Figure 5. Search tree construction procedure 
 
The value of a heuristic solution gives a lower bound for the problem.  The tree is 
explored in a depth first search where nodes represent partial solutions (except the leaf 
nodes in level m that represent complete solutions).  The upper bound z1+UB23 is 
computed at each node.  If it is lower than the lower bound we fathom the node, 
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otherwise we branch the node and explore its first child node.  We apply a second test to 
fathom nodes in the search tree based on the following proposition. 
 
Given a solution x={s1, s2, …, sm}, we can express its value as: 
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represents the contribution of si to the value z.  From this expression we can introduce 
the maximum, dmax(v), and minimum, dmin(v), potential contribution of a vertex v to any 
solution.  Let d(v,vσ(1)), d(v,vσ(2)),…, d(v,vσ(n-1)) be the ordered values of the distances 
between v and the other vertices in the graph (where d(v,vσ(1)) is the maximum).   
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It is clear from the definition that any solution with vertex v selected verifies: 
 

dmin(v) ≤ d(v) ≤ dmax(v) 
 
 
Proposition 4 
Given an optimal solution x and two vertices u, v∈V, if dmax(u) < dmin(v) and v is not 
selected in x, then u cannot be selected in x. 

 

Proof 

Consider that u is in the optimal solution x= } and we will see that it leads 
us to a contradiction.  The value z of x can be broken down into: 
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From the definition of dmax we have: 
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Similarly, if we consider the solution y={v, s2, s3, …, sm}, its value z' verifies: 

∑∑∑∑∑
−

= +=

−

= +==

+≥+=
1

2 1
min

1

2 12

),()(2),(),('
m

i

m

ij
ji

m

i

m

ij
ji

m

j
j ssdvdssdsvdz  

 
Applying dmax(u) < dmin(v) in the two previous inequalities, we obtain z'>z.  This 
contradicts the fact that x is an optimal solution; therefore, u cannot be selected in an 
optimal solution in which v is not selected. 

 ■ 
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Figure 6 illustrates the application of Proposition 4 to fathom some nodes in the search 
tree in an example with n=6 and m=3.  Consider in this example that dmax(3)<dmin(1), 
then according to Proposition 4, if vertex 1 is not selected in an optimal solution, vertex 
3 cannot be selected.  Therefore, we can fathom all the solutions (partial and complete) 
in which vertex 3 is selected and vertex 1 is not, because they cannot be optimal 
solutions.  Figure 6 shows the search tree of this example in which ten nodes (depicted 
with dashed lines) are fathomed.  Note that one of the fathomed nodes is in the first 
level and three of them are in the second one. 
 

 
 

Figure 6. Fathomed nodes in search tree  
 
 
As we have mentioned, at each node of the search tree we compute z1+UB23 and test 
whether we can fathom the node or not.  To calculate UB23, we first need to obtain 
z(v)=zSel(v)+zUnsel(v) for any v in V-Sel, where zUnsel(v) involves several time-consuming 
calculations.  However, we have found that the way in which we generate the search 
tree, in order to avoid duplications, allows us to compute zUnsel(v) offline.  Specifically, 
zUnsel(v) only depends on the value of v, k (number of selected vertices) and, in this 
search tree, on the largest label of the selected vertices (max_label).  For example, in the 
search tree shown in Figure 6, we can see that the two nodes labeled with 3 in level 2 
have the same values for zUnsel(4), zUnsel(5) and zUnsel(6) because k=2 and max_label=3.  
The same happens with the nodes labeled as 4 and 5 in level 2 of Figure 6.  Therefore, 
we compute the values of zUnsel(v) for each possible combination of k and max_label at 
the beginning of the method.  In the next section we empirically show the effectiveness 
of this offline computation. 
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5. Computational Experiments 
This section describes the computational experiments that we performed to test the 
efficiency of our branch and bound procedure as well as comparing it with the solution 
obtained with the previous linear integer formulations.  We have implemented the 
branch and bound in Java SE 6 and solved the integer formulations with Cplex 8.0.  All 
the experiments were conducted on a Pentium 4 computer at 3 GHz with 3 GB of RAM.  
 
We have employed three sets of instances in our experimentation.  The first one was 
introduced in Glover et al. (1998), the second is an extension of the first one to target 
large graphs, and the third set is from Silva et al. (2004): 
 

Glover: This data set consists of 75 matrices for which the values were 
calculated as the Euclidean distances from randomly generated points 
with coordinates in the 0 to 100 range.  The number of coordinates 
for each point is also randomly generated between 2 and 21.  Glover, 
Kuo and Dhir (1998) developed this data generator and constructed 
instances with n=10, 15 and 30.  The value of m ranges from 0.15n to 
0.75n. 

 
Glover2: This data set consists of 50 matrices constructed with the same graph 

generator employed in the Glover set.  We generated ten instances 
with n=25, 50, 100, 125 and 150.  For each value of n we consider 
m=0.1n, 0.3n (generating five instances for each combination of n 
and m). 

 
Silva: This data set consists of 50 matrices with random numbers between 0 

and 9 generated from an integer uniform distribution.  These 
instances were introduced by Silva, Ochi and Martins (2004).  We 
use their generator to construct instances of the same size as those in 
the Glover2 set (in order to compare the performance of the methods 
in both sets). 

 
In our first experiment we compare the three linear integer formulations, F1, F2 and F3, 
introduced in Section 2.  We limit the execution of the Cplex solver to 1 hour (3,600 
seconds) of computer time.  Table 2 shows, for each combination of the n and m values 
in the Glover set of instances, the average value of the gap, Gap, the CPU time in 
seconds, CPU, and the number of optima that each method is able to match, #Opt.  The 
value of the gap is computed as the upper bound minus the lower bound and divided by 
the upper bound (and multiplied by 100). 
 
Table 2 shows that, as expected, formulation F3 produces better results than F1 and F2 
in shorter running time.  Specifically, F1 presents an average gap value of 0.7% 
achieved in 591.6 seconds on average, F2 0.8% achieved in 711.7 seconds, and F3 0.0% 
achieved in 96.9 seconds.  On the other hand, F1, F2 and F3 obtain 65, 66 and 75 
optimal solutions respectively (out of 75 instances). 
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  F1 F2 F3 
n m Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt 

10 2 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5 
10 3 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5 
10 4 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5 
10 6 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5 
10 8 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5 
15 3 0.0 0.0 5 0.0 0.6 5 0.0 0.1 5 
15 4 0.0 0.1 5 0.0 0.8 5 0.0 0.1 5 
15 6 0.0 0.4 5 0.0 1.3 5 0.0 0.2 5 
15 9 0.0 0.4 5 0.0 1.1 5 0.0 0.2 5 
15 12 0.0 0.0 5 0.0 0.6 5 0.0 0.0 5 
30 6 0.0 59.0 5 0.0 514.7 5 0.0 35.7 5 
30 9 0.0 1597.0 5 4.7 3564.7 1 0.0 292.9 5 
30 12 7.6 3600.0 0 6.8 3501.9 1 0.0 929.3 5 
30 18 3.5 3600.0 0 1.0 3055.9 4 0.0 193.2 5 
30 24 0.0 16.8 5 0.0 33.7 5 0.0 1.9 5 

Summary 0.7 591.6 65 0.8 711.7 66 0.0 96.9 75 
Table 2. Linear integer formulations 

 

In the following experiments we test our branch and bound method.  In line with testing 
the effectiveness of the branch and bound procedure, we use a simple heuristic to obtain 
the initial lower bound.  Specifically, we run the D2 method introduced in Glover et al. 
(1998) to obtain the initial solution (its value is used as the initial lower bound) of the 
branch and bound method in all the experiments. 

In our second experiment we test the efficiency of the offline computation of zUnsel(v) 
described in Section 4.  We run the branch and bound method with and without this pre-
calculation on ten Glover2 and ten Silva instances with n=50.  We do not reproduce the 
table of this experiment, but we report that the method without offline pre-calculation 
takes 574.21 seconds, while the method with the pre-calculation only takes 17.12 
seconds on average (and in both cases the method is able to obtain the optimal solution 
in the twenty examples considered).  In this experiment we also compute the percentage 
of nodes in the search tree explored with the algorithm (i.e. we measure the 
effectiveness of the upper bound).  The branch and bound only explores 0.09% of the 
nodes in the search tree, thus fathoming the rest of them.  In the following experiments 
we consider the version with offline pre-calculation in our branch and bound algorithm. 
 
In the third experiment, we compare three different versions of our branch and bound 
algorithm.  The first version, BB, explores the search tree in lexicographical order.  In 
Section 4 we introduce dmin(v) and dmax(v) as the minimum and maximum potential 
contribution of a vertex v to any solution.  The second version of the branch and bound, 
BBmax, explores the search tree in the order given by dmax(v).  In particular, we order 
the vertices according to their dmax-value (where the vertex with the maximum value is 
the first), and the method explores the nodes in the search tree according to this order.  
Similarly, BBmin, explores the search tree in the order given by dmin(v) (visiting first the 
nodes with maximum dmin-value of their vertices).  Table 3 reports the average value of 
the gap, Gap, the CPU time in seconds, CPU, and the number of optima that each 
method is able to match, #Opt, for the fifty Glover2 and fifty Silva instances 



An exact method for the MDP / 16 

 
 BB  BBmax  BBmin 
 Gap CPU #Opt  Gap CPU #Opt  Gap CPU #Opt 
Glover2 6.4 1689.9 27  3.9 1291.3 34  4.8 1505.0 31
Silva 13.2 1760.3 30  12.9 1714.0 30  12.8 1736.5 30

Table 3. Comparison of branch and bound variants 
 
Table 3 shows that the BBmax method performs better than the other two variants 
considered.  This table shows that BB, BBmax and BBmin obtain 27, 34 and 31 optimal 
solutions (out of 50 Glover2 instances) achieved in 1689.9, 1291.3 and 1505.0 seconds 
respectively.  Similarly, in the 50 Silva instances, BB, BBmax and BBmin obtain 30, 30 
and 30 optimal solutions achieved in 1760.3, 1714.0 and 1736.5 seconds respectively.  
Regarding the Gap values, BBmax obtains 8.4% on average over the 100 instances 
considered in Table 3, which compares favorably with 9.8% of the BB and with 8.8% of 
the BBmin.  Therefore, we will use the BBmax variant in the following experiments in 
which we compare our branch and bound method with the linear integer formulation F3 
solved with Cplex.  As in the previous experiments, we limit the execution time on each 
instance to a maximum of 1 hour (3,600 seconds). 
 

   BBmax F3 
Instance n m Gap CPU #Opt  Gap CPU #Opt 

25 2 0.0 0.0 5 0.0 0.2 5 
25 7 0.0 0.0 5 0.0 15.0 5 
50 5 0.0 0.0 5 0.0 462.2 5 
50 15 0.0 0.4 5 27.7 3609.7 0 

100 10 0.0 4.4 5 71.5 3609.0 0 
100 30 8.6 3576.2 1 41.9 3603.8 0 
125 12 0.0 297.9 5 75.2 3600.0 0 
125 37 13.7 3600.0 0 45.3 3600.0 0 
150 15 5.4 1834.4 3 77.7 3600.0 0 

Glover2 

150 45 10.9 3600.1 0 52.7 3600.0 0 
25 2 0.0 0.0 5 0.0 0.1 5 
25 7 0.0 0.0 5 0.0 4.5 5 
50 5 0.0 0.0 5 0.0 265.7 5 
50 15 0.0 22.8 5 25.8 3600.0 0 

100 10 0.0 38.3 5 71.1 3600.0 0 
100 30 31.7 3600.0 0 46.4 3600.0 0 
125 12 0.0 2678.9 5 76.1 3600.0 0 
125 37 34.6 3600.0 0 50.1 3600.0 0 
150 15 26.7 3600.1 0 78.1 3600.0 0 

Silva 

150 45 35.6 3600.1 0 50.8 3600.0 0 
Summary 8.4 1502.7 64 39.5 2558.5 30 

Table 4. Comparison between best solution methods  
 
Table 4 reports the results obtained with both methods, BBmax and F3, over the two 
sets of large instances, Glover2 and Silva.  Each row reports the results on the group of 
five instances (with the same n and m values).  As in previous tables, we report the 
average value of the gap, Gap, the CPU time in seconds, CPU, and the number of 
optima that each method is able to match, #Opt. 
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Table 4 shows that the Cplex solver with the F3 formulation is able to solve the medium 
size instances (up to n = 50 on both set of instances) within 1 hour of CPU time.  On the 
other hand, our branch and bound algorithm outperforms the other method since it is 
able to optimally solve all the medium instances (n = 50) and some of the large size 
instances (n = 100, m = 10).  Moreover, considering the 100 instances reported in Table 
4, BBmax presents an average gap value of 8.4% achieved in 1502.7 seconds, which 
compares favourably with the 39.5% obtained with F3 in 2558.5 seconds on average. 
 

6.  Conclusions 

We have developed an exact procedure based on the branch and bound methodology to 
provide bounds and solutions for the maximum diversity problem.  As far as we know, 
this is the first exact algorithm proposed for this problem.  We have introduced the 
partial solution as the set of solutions that share some vertices, and we have proposed 
several theoretical results to compute upper bounds on partial solutions.  These bounds 
allow us to explore a relatively small portion of the nodes in the search tree of the 
branch and bound procedure (0.09% on average). 
 
We perform extensive preliminary experimentation to study the effect of the elements 
proposed in the solution method, such as the offline pre-calculation of time-consuming 
computations in the upper bounds and the order of node exploration.  The 
experimentation shows that our method is able to solve medium size instances (up to 
n = 100) and obtains an average gap, over all sets of instances, of 8.4%.  We have 
compared our method with the best previous linear integer formulation (Kuo et al., 
1993) solved with the well-known software Cplex.  The comparison favors the proposed 
procedure. 
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