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ABSTRACT 
This paper presents extensive computational experiments to compare 10 heuristics and 20 
metaheuristics for the maximum diversity problem (MDP). This problem consists of 
selecting a subset of maximum diversity from a given set of elements. It arises in a wide 
range of real-world settings and we can find a large number of studies, in which heuristic 
and metaheuristic methods are proposed.  However, probably due to the fact that this 
problem has been referenced under different names, we have only found limited 
comparisons with a few methods on some sets of instances. 
 
This paper reviews all the heuristics and metaheuristics for finding near-optimal solutions 
for the MDP.  We present the new benchmark library MDPLIB, which includes most 
instances previously used for this problem, as well as new ones, giving a total of 315.  
We also present an exhaustive computational comparison of the 30 methods on the 
MDPLIB.  Non-parametric statistical tests are reported in our study to draw significant 
conclusions. 
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1 Introduction  
The maximum diversity problem (MDP) consists of selecting a subset of m elements 
from a set of n elements in such a way that the sum of the distances between the chosen 
elements is maximized.  The MDP presents a challenge to heuristic methods and it has 
appeared in previous studies under many different names, such as: 
 
 maxisum, or max-avg, dispersion (Kuby 1987; Ravi et al., 1994), 
 p-dispersion, or p-dispersion-sum (Erkut, 1990; Kincaid and Yellin, 1993), 
 edge-weighted, or remote clique (Macambira and Souza, 2000; Chandra and 

Halldorsson, 2001), 
 maximum edge-weighted subgraph (Macambira 2002), 
 dense k-subgraph (Feige et al., 2001), 
 p-defense, or p-defense-sum (Moon and Chaudhry, 1984; Cappanera, 1999), or 
 equitable dispersion (Prokopyev et al., 2009). 

 
A large number of heuristics and metaheuristics have been proposed for this problem; 
however, probably due to its different names, only partial comparisons with a few 
methods have been previously published.  The most recent one is presented in Aringhieri 
and Cordone (2011), where the authors also proposed different metaheuristics based on 
the Tabu Search and Variable Neighborhood Search methodologies and compare them 
with the 4 previous algorithms identified to be the best.  As mentioned by the authors, the 
use of different computers makes a fair comparison a very hard task.  In this paper we 
present extensive computational comparison with 10 heuristics and 20 metaheuristics 
previously published in which all of them are executed in the same computer for the same 
CPU time.  Furthermore, we propose new large instances that are hard to solve by recent 
metaheuristics. Our experimental study establishes the state-of-the-art methods for this 
problem, and identifies the key search elements and strategies that permit them to obtain 
high quality solutions. Table 1 summarizes some of the main applications of this 
problem. 
 
Context Reference Description 
Location Erkut and Neuman 

(1991) 
Locating facilities according to distance, 
accessibility or impacts 

Ecological systems Pearce (1987) Establishing viable systems relies crucially on 
considerations of diversity maximization 

Medical treatments Kuo et al. (1993)  Combating diseases is enhance by programs 
with mote diverse lines of defense  

Genetics Porter et al. (1975) In animal and plant genetics to obtain new 
varieties by controlled breeding  

Ethnicity Swierenga (1977) Historical perspective 
 McConnell (1988) Promotion of ethnic diversity among 

immigrants 
Product design Glover et al. (1998) Maximizing product diversity 

Table 1. MDP applications 
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Kuo et al. (1993) introduced the following straightforward formulation of the MDP as a 
quadratic binary problem and proposed several improvements to tackle small sized 
instances.  In this formulation, the binary variables xi take the value 1 if element i is 
selected and 0 otherwise, i = 1, ..., n.  The distance values between elements i and j is 
represented with dij,  i, j = 1, …, n.  The authors show with this formulation that the 
clique problem, which is known to be NP-hard, is reducible to the MDP. 
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Martí et al. (2010) showed that the three linear integer formulations proposed in Kuo et 
al. (1993) are only able to solve small problems with Cplex 8.0 (n ≤ 15, and 15 ≤ n ≤ 30 
for some values of m).  This is why they proposed a branch and bound algorithm to 
provably solve medium sized problems (n ≤ 50, and 50 ≤ n ≤ 150 for some values of m).  
Independently, Erkut (1990) and Pisinger (2006) also proposed branch and bound 
algorithms: the former is limited to solve small problems while the latter is also able to 
solve medium sized problems.  
 
We have identified two categories on the MDP methods. Early procedures, called 
heuristics, are based on simple selection rules, implemented as constructive procedures 
coupled, in some cases, with local search methods.  These procedures reflect the goal of 
researchers of quickly obtaining solutions of reasonable quality.  Recent developments, 
however, have shown that complex metaheuristic approaches can be successfully applied 
to the MDP.  These methods usually outperform the simple heuristics, obtaining solutions 
with a significant better quality, although they require longer running times.  An 
alternative approach to combinatorial optimization problems is given by Discrete 
Hopfield Neural Networks.  Wang et al. (2009) hybridized this methodology with an 
Estimation of Distribution Algorithm for the MDP.  We do not include this method in our 
comparison because we restrict it to heuristics and metaheuristics, which on the other 
hand, outperform this kind of procedures in terms of solution quality and CPU time. 
 
In this paper we undertake to explore the behavior of the heuristic and metaheuristics 
developed for the MDP. With this goal in mind, we have collected all the previous 
instances reported for this problem (discarding the trivial ones) and we have generated 
some new ones (large and hard instances).  The entire set of instances, which will be 
called the MDPLIB (http://www.optsicom.es/mdp), includes 315 cases with a wide 
range of sizes and characteristics. In the following sections we first provide short 
descriptions of the 10 heuristics proposed for the MDP. We then go on to present a 
summarized description of 20 metaheuristics. These sections are followed by results of 
our computational testing on the MDPLIB including statistical analysis.  The paper 
finishes with the associated conclusions. 
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2 Heuristics 
In this section we review 8 construction and 2 improvement heuristics for the MDP. The 
construction methods obtain a solution (i.e., a selection of m elements) from scratch, 
adding or removing iteratively one element at each step. The improvement heuristics start 
from the solution obtained with a construction method and iteratively improve it by 
performing exchanges usually referred to as moves. The different types of selection 
strategies characterize the various heuristics. 
 
To describe these methods we will use the following notation. Let S = {si : i ∈ N} be a 
set of elements where N = {1, 2,.., n} is the set of indexes.  Let dij be the distance 
between elements si and sj, and let m < n be the desired size of the diverse set. 
 
2.1 ErkC - Erkut and Neuman construction method 
In Erkut (1990) a constructive and an improvement method are proposed. The 
constructive heuristic, ErkC, generates a solution by first selecting the two elements with 
the largest distance between them. Then, in the following iterations, the element that 
increases the objective function the most is added to the partial solution. 
 
2.2 GhC - Ghosh construction method 
Ghosh (1996) proposed a multi-start algorithm.  It basically consists of a construction 
phase and a local search post-processing.  The construction phase, GhC, performs m 
iterations to obtain a solution.  In each iteration, one element is selected according to an 
estimation of its contribution to the final value of the solution.  As mentioned by other 
authors (see for instance Silva et al., 2004) this multi-start method produces results of 
relatively low quality.  However, as will be shown, the local search phase has been used 
in several algorithms. 
 
2.3 C2 and D2 - Glover et al. construction methods 
In Glover et al. (1998) four constructive heuristics are proposed.  The constructive 
methods C1 and D1, only applicable in Euclidean sets, are based on the concept of the 
center of gravity of a set.  The authors also proposed C2 and D2, applicable in any set, in 
which the distance between an element si and a set X = {sj : j ∈ I} is defined as: 

∑
∈

=
Ij

jii ssdXsd ),(),(  

C2 first randomly selects an initial element. Then, it selects at each step, the element with 
the maximum distance to the already selected elements Sel. The method finishes when m 
elements have been selected.  (Note that C2 is the same method as the ErkC described 
above except for the selection of the first element.)  Symmetrically, starting with all the 
elements selected, D2 unselects the element with the minimum distance to the set Sel of 
selected elements at each step.  It concludes when n-m elements have been unselected. 
 
 
 



Heuristics and Metaheuristics for the Maximum Diversity Problem — 5 

2.4 STA - Palubeckis construction method 

Palubeckis (2007) proposed STA, a constructive heuristic based on the idea of performing 
a steepest ascent from a point within the n-dimensional unit cube.  The procedure fixes 
one variable xi at either 0 or 1 at each step, defining a trajectory through the vertices in 
the cube.  The method finishes when it reaches a feasible solution of the MDP. 
 
2.5 KLD, KLDv2 and MDI - Silva et al. construction methods 

In Silva et al. (2004) we can find three constructive methods: KLD, KLDv2 and MDI. 
KLD initially estimates the contribution of an element to any solution. This estimation is 
obtained as the sum of the k larger distances between the element and the other non-
selected elements. At each iteration, a restricted candidate list RCL is formed with the k 
best-estimated elements, and the algorithm randomly selects one to be added to the partial 
solution under construction. The method finishes when m elements have been selected. 
The parameter k is set with a reactive mechanism to avoid its offline tuning.  
 
KLDv2 is an improved version of KLD in which the RCL is built using an adaptive 
procedure. MDI is similar to KLDv2 with the only difference in the way that the 
estimation of contribution is calculated. The estimation in KLDv2 is calculated with the k 
larger distances between an element and the other non-selected elements. In MDI, the 
estimation is calculated as the sum of the largest distances between an element and the 
other non-selected elements and the distances with the selected elements.  
 
2.6 BLS - Best improvement local search 

The local search method BLS proposed first in Erkut (1990) and later in Ghosh (1996). It 
implements a straightforward local search heuristic based on performing the best 
available exchange.  Exchanges in this context consist of replacing one selected element 
with an unselected one.  The procedure scans the set of selected elements Sel (|Sel|=m) in 
search of the exchange that gives the largest increase of the objective function (i.e., thus 
maximizing the diversity).  The method performs the best available exchange in each 
iteration until no further improvement is possible. 
 
2.7 I_LS - Improved local search 
Duarte and Martí (2007) adapted the so-called first strategy to the local search method for 
the MDP.  Their improved local search, I_LS, is also based on exchanges, like the BLS 
method above; however, instead of searching for the best exchange at each iteration, it 
performs two stages.  In the first one, I_LS selects the element si* with the lowest 
contribution to the value of the current solution.  Then, in the second stage, the method 
performs the first improving move to replace si* (i.e., instead of scanning the whole set of 
unselected elements searching for the best exchange associated with si*, it performs the 
first improving exchange without examining the remaining unselected elements).  If there 
is no improving move exchanging si*, the method resorts to the next element with the 
lowest contribution and so on. This improved local search method performs iterations 
until no further improvement is possible. 
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3 Metaheuristics 
In the last two decades a series of methods have appeared under the name of 
metaheuristics, which aim to obtain better results than those obtained with traditional 
heuristics. The term metaheuristic was coined by Glover (1986) to refer to a set of 
methodologies conceptually ranked above the heuristics in the sense that they guide their 
design. Thus, facing an optimization problem, we can employ any of these methodologies 
to design a specific algorithm for computing an approximate solution.  Some of the most 
promising metaheuristic methodologies have been applied to the MDP totalizing 20 
different algorithms. We shall review them in the following section. 
 
3.1 SA – Simulated Annealing 
Simulated annealing (Kirkpatrick et al. 1983) proceeds in the same way as ordinary local 
search but incorporates some randomization in the move selection to avoid getting 
trapped in a local optimum by means of non-improving moves. These moves are accepted 
according to probabilities taken from the analogy with the annealing process. 
 
Kincaid (1992) presented the SA algorithm for the MDP. In a given iteration, the SA 
method generates a random move (an exchange between a selected and an unselected 
element). If it is an improving move, it is automatically performed; otherwise, it may still 
be made with a certain probability (according to the Boltzmann distribution) using a 
parameter called temperature. The algorithm starts with an initial temperature equal to 
the largest distance value and this is reduced according to the factor tfactr = 0.89. For 
each temperature value, sample_size=10n moves are generated, evaluated and performed 
if this is the case. The SA method terminates when a maximum number of iterations 
max_it = 80 is reached. 
 
3.2 GRASP – Greedy Randomized Adaptive Search Procedure 
GRASP is a multi-start method (Feo and Resende, 1995) in which at each iteration we 
first apply a construction method and then an improvement method to find a local 
optimum (i.e., the final solution for that iteration).  Silva et al. (2004) proposed three 
GRASP methods for the MDP formed respectively with the construction methods KLD, 
KLDv2 and MDI, described above, and the BLS as the improvement method.  We will 
simply denote them as KLD+BLS, KLDv2+BLS and MDI+BLS. 
 
Duarte and Martí (2007) proposed two GRASP methods randomizing the C2 and D2 
construction methods (Glover et al. 1998) respectively.  Both GRASP algorithms apply 
I_LS as the improvement method.  We will call them as GRASP_C2+I_LS and 
GRASP_D2+I_LS respectively. 
 
Santos et al. (2005) presented a hybrid method, GRASP_DM, combining GRASP with 
data mining techniques. The GRASP phase, based on the KLD method (Silva et al., 
2004), is executed a certain number of iterations. Then, the data-mining process extracts 
patterns from an elite set of solutions that guide the following GRASP iterations. 
Solutions are represented by sets of items and patterns are defined as subsets of items that 
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occur in a relative large number of solutions. The process of mining these patterns is the 
well-known problem called frequent item set mining (Han and Kamber, 2000).  
 
Silva et al. (2007) presented a hybrid method, GRASP_PR, combining GRASP with Path 
Relinking (Laguna and Martí, 1999). As in the hybrid method above, an elite set is 
populated with the solutions obtained with the application of a GRASP algorithm.  Then, 
path relinking is applied from each solution in the elite set (initial solution) to the local 
optimum obtained in each new GRASP iteration (guiding solution).  In this way, we 
create a path by adding elements in the guiding solutions to the initial solution (and 
dropping those not present in the guiding solution. The path relinking procedure 
terminates when the guiding solution is reached. 
 
3.3 TS – Tabu Search  
Tabu Search is a metaheuristic that guides a local search heuristic to explore the solution 
space beyond local optimality (Glover and Laguna, 1997). One of the main components 
of Tabu Search is its use of adaptive memory, which creates more flexible search 
behavior.  This method is the core of what has been recently called as Adaptive Memory 
Programming. 
 
Kincaid (1992) proposed a Tabu Search algorithm, K_TS, based on exchanging a 
selected element si with an unselected element sj. The algorithm starts from a random 
solution and improves it by exchanging elements. At each iteration, 10n randomly 
generated exchanges are evaluated and the best admissible (non-tabu) move is performed. 
When a move is performed, the unordered pair (si, sj) is labeled tabu for tenure=20 
iterations. A selected move is admissible if it is not labeled tabu, or if its value improves 
upon the best-known solution (aspiration criterion). The method runs during max_it=65 
iterations. 
 
Macambira (2002) proposed a similar implementation of the tabu search methodology, 
called M_TS, to solve the MDP. The algorithm starts from a solution constructed with a 
method similar to C2 (Glover et al., 1998). Then, as in K_TS, it performs iterations 
exchanging elements.  Specifically, at each iteration, M_TS performs the best admissible 
exchange between a selected and unselected element (even if it does not improve the 
solution). The tabu status is active during tenure=m iterations. The procedure stops after 
num_iterations without improvement with respect to the best solution found. Note that 
K_TS starts with a random solution while M_TS starts with a greedy constructed 
solution. 
 
Duarte and Martí (2007) proposed a multi-start method, LS_TS, based on the tabu search 
methodology in both construction and improvement phases. The initial solution is 
obtained with a constructive heuristic Tabu_D2 derived from D2 (Glover et al., 1998) by 
adding memory structures to obtain diverse solutions as initial points.  Once an initial 
solution has been constructed, LS_TS performs exchanges as the previous tabu search 
procedures.  An iteration begins by randomly selecting a selected element si.  The 
probability of selecting element si is inversely proportional to the contribution of this 
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element to the objective value. The first improving move associated with si is performed. 
(Note that if there is no improving move associated with si, the method performs the best 
one available, even if it is a non-improving move.)  The selected elements become tabu-
active for sTenure=0.28m iterations and the unselected ones become tabu-active for 
uTenuere=0.028m.  The method performs iterations until the best solution found cannot 
be improved upon in MaxIter=0.1n consecutive iterations.  Then, the search is re-initiated 
from a new initial solution.  It is obtained by using the long-term memory information 
recorded during the search. 
 
Palubeckis (2007) proposed an Iterated Tabu Search, ITS, that alternates tabu search 
with perturbation procedures. The algorithm is applied to the solution constructed with 
the STA method.  The tabu search phase is similar to K_TS with tenure = 30. If the tabu 
search step finds a better solution than the previous best solution, a local search is applied 
to the new solution.  The perturbation phase is applied in the last step of the method and 
basically consists of selecting (unselecting) a random number of unselected (selected) 
elements. 
 
Aringhieri et al. (2008) presented XTS, a tabu search algorithm for the maximum 
diversity problem.  It implements short and long term memory functions like LS_TS.  
Specifically, XTS first constructs a solution with a greedy algorithm similar to ErkC 
(Erkut, 1990). Then, in each iteration, it explores all possible exchanges between selected 
and unselected elements and performs the best one (this is different to K_TS and M_TS 
that only explores a subset of the neighborhood solutions).   Regarding the tabu status 
XTS, like LS_TS, it labels the two exchanged elements as tabu independently, while 
K_TS and M_TS label the unordered pair as tabu (formed with both elements).  The tabu 
tenure parameter is dynamically set during the execution of the algorithm (i.e., it is 
increased if the solution value has steadily improved and is reduced if the solution value 
has steadily worsened). The long-term memory maintains a set of good solutions that did 
not qualify for selection. The search restarts from one of these solutions when the 
currently explored region does not seem to contain high-quality solutions. 
 
Finally, Aringhieri and Cordone (2011) proposed a random re-start method, RR, which 
constructs an initial solution with a greedy procedure similar to ErkC.  Then, the 
constructed solution is improved by means of a simplified version of XTS.  Specifically, 
in this simple tabu search, it is only considered the short-term memory and a constant size 
tabu list of selected and unselected elements. Then, for a pre-specified maximum number 
of iterations, the method periodically re-starts from a random solution, improving it with 
this tabu search procedure. 
 
3.4 VNS – Variable Neighborhood Search 
Variable neighborhood search (Hansen and Mladenovic, 2003) (VNS) is based on a 
simple and effective idea: a systematic change of the neighborhood within a local search 
algorithm.  
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Silva et al. (2004) proposed a simple VNS algorithm, SOMA, for the MDP.  The method, 
based on two neighborhoods, first applies BLS (Ghosh, 1996) until no further 
improvement is possible. Then, a local search based on an expanded neighborhood is 
executed. The new neighborhood is defined as the set of all solutions obtained by 
replacing two elements in the solution (selected elements) by another two that are not 
present in the current solution (unselected elements). 
 
Brimberg et al. (2009) proposed several VNS procedures originally devoted to the 
heaviest k-subgraph problem, which is a generalization of the MDP in which the 
distances are replaced with weights (that can take arbitrary values, including 0). 
Therefore, any algorithm designed to the k-subgraph is able to solve the MDP.   The 
authors presented different VNS versions, including skewed VNS, basic VNS and a 
combination of a constructive heuristic followed by VNS.  The best overall method 
according to their experimentation is the basic VNS, B_VNS, which consists of three 
main elements.  The first one, called Data Structure, allows the algorithm to efficiently 
update the value of the objective function; the second one, Shaking, generates solutions in 
the neighborhood of the current solution by performing random vertex swaps; and third 
one is a local search procedure based on exchanges.  
 
Aringhieri and Cordone (2011) presented four implementations of the VNS methodology 
to solve the MDP.  They are called Basic VNS, Guided VNS, Accelerated VNS and 
Random VNS. In all of them, the initial solution is constructed with a greedy method 
similar to ErkC (Erkut, 1990). Given a solution, each iteration in any of the four 
methods consists of generating a new solution by replacing k elements in the current 
solution with k elements out of it (Shaking procedure). The new solution is improved 
with a basic Tabu Search. Only if the new solution is better or sufficiently distant than the 
previous one, it becomes the current solution; otherwise it is discarded and a new solution 
is generated with the same replacement mechanism in which k is augmented by one unit. 
The methods finish when a maximum number of iteration is reached or k reaches a pre-
established value kmax.  
 
In the Basic VNS, the Shaking procedure randomly unselects k elements in the current 
solution and randomly selects another k.  In the Guided variant, the shaking procedure is 
deterministic and the elements are selected/unselected according to a frequency value, 
which records the number of times that each element has been included in previous 
solutions. The accelerated VNS modifies the basic variant by setting kmax = min(m, n – 
m). This strategy makes re-starts much less frequent because kmax is considerably larger 
than the values used in the Basic and Guided variants. Finally, the Random VNS sets kmin 
=kmax= min(m, n - m), which means that the procedure always re-starts the search in the 
largest neighborhood, instead of gradually enlarging the neighborhood used. This 
approach corresponds to a nearly random restart, which only forbids the elements 
belonging to the current best-known solution. Experimental results show that the random 
VNS outperforms the other three variants. Consequently, we select this method, denoted 
as A_VNS, to be included in our own comparison. 
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3.5 SS – Scatter Search 
Scatter search (SS) is an evolutionary or population based method (Laguna and Martí, 
2003) that explores the solution space by evolving a set of reference solutions stored in 
the reference set (RefSet).  The evolution of the reference set is induced by the 
application of four methods: subset generation, update, combination and improvement, 
where the first two have standard implementations but the last two must be designed for 
each specific problem. 
 
Aringhieri and Cordone (2006) presented a scatter search procedure, A_SS, to solve the 
maximum diversity problem in which the RefSet is divided into two subsets.  Subset B 
contains the best solutions computed during the search and subset D contains solutions, 
which largely differ from each other and from the best ones. The initial RefSet is 
populated by first applying a greedy algorithm similar to ErkC (Erkut, 1990) and then 
improved with a basic Tabu Search procedure similar to K_TS (Kincaid, 1992).  The 
improved solutions are evaluated to enter in the RefSet. Only those solutions with a 
relatively good value or different enough from those already in the RefSet are admitted. 
The combination method applies the constructive method D2 to the union of the elements 
in the solutions being combined. After creating all possible combinations, the algorithm 
tries to insert them in the RefSet. If it succeeds and the RefSet is modified, the 
combination process is applied again to the pairs containing newly added solutions. 
When the RefSet is no longer modified, the current iteration terminates, a new subset D is 
generated in the same way as described before and a new iteration starts. The algorithm 
stops after ISS iterations. 
 
Gallego et al. (2009) proposed an alternative scatter search algorithm, G_SS, for the 
MDP.  In their approach, the distance between solutions is used to measure how diverse 
one solution is with respect to a set of solutions (measured as the inverse of the number 
of times that each selected element in a solution appears in the solutions of the set). The 
diversification generation and the improvement methods of G_SS are respectively the 
constructive method Tabu_D2 and the local search method LS_TS, proposed in Duarte 
and Martí (2007). The combination of solutions is performed by applying the 
constructive method Tabu_D2 to the union of the elements in the solutions being 
combined.  Once the initial RefSet has been created, the method performs iterations as 
long as the combination method is able to generate new and good solutions that enter the 
RefSet.  When this is no longer possible, as customary in scatter search, a re-starting is 
applied by rebuilding the RefSet by again applying the diversification generation method.  
The method stops after a certain number of RefSet rebuilding steps.   
 
If we compare both scatter search approaches for the MDP we can observe that they 
implement different generation, improvement and combination methods: A_SS applies 
ErkC, K_TS and D2 are respectively, while G_SS employs Tabu_D2, TS_LS and 
Tabu_D2 respectively. Moreover, A_SS implements two reference sets (to tackle 
quality and diverse solutions separately), while G_SS uses a single reference set.  
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3.6 MA - Memetic Algorithm 
Memetic Algorithms (MA) was introduced in the late 80s to denote a family of 
metaheuristics that have as central theme the hybridization of different algorithmic 
approaches for a given problem (Moscato, 1999).  They basically combine a population-
based approach, which consists of a set of cooperating and competing agents, with a local 
search approach, in which those agents are individually improved while they sporadically 
interact. 
 
Katayama and Narihisa (2005) presented a population based method called memetic 
algorithm (MA) for the MDP. It basically consists of a randomized greedy method that 
creates initial solutions, a crossover operator that combines solutions, a repair method to 
reach feasibility from unfeasible solutions, and a local search method. The randomized 
greedy method is similar to GRASP_C2 (Duarte and Martí, 2007). The local search is a k-
flip method based on the variable depth search (VDS) (Kernighan, 1970), which consists 
of creating new solutions exchanging k elements from the selected to the unselected state 
and vice versa. The crossover operator is the well-known uniform crossover. Finally, the 
repair method consists of unselecting the elements with lower contribution to the solution 
(if there is more than m selected elements) or selecting the elements with larger 
contribution (if there is less than m selected elements). 
 
 
4 Instance Sets 
We have compiled a comprehensive set of benchmark instances representative of the 
collections previously used for computational experiments in the MDP. We call this 
benchmark MDPLIB and it is available at http://www.optsicom.es/mdp. 
Furthermore we have included new hard instances. A brief description of the origin and 
the characteristics of the set of instances follows. 

 SOM: This data set consists of 70 matrices with random numbers between 0 and 9 
generated from an integer uniform distribution.  

• SOM-a These 50 instances were generated by Martí et al. (2010) with a 
generator developed by Silva et al. (2004). The instance sizes are such that for 
n = 25, m = 2 and 7; for n = 50, m = 5 and 15; for n = 100, m = 10 and 30; for 
n = 125, m = 12 and 37; and for n = 150, m = 15 and 45. 

• SOM-b: These 20 instances were generated by Silva et al. (2004) and used in 
most of the previous papers (see for example Aringhieri et al. 2008). The 
instance sizes are such that for n = 100, m = 10, 20, 30 and 40; for n = 200, 
m = 20, 40, 60 and 80; for n = 300, m = 30, 60, 90 and 120; for n = 400, m = 40, 
80, 120, and 160; and for n = 500, m = 50, 100, 150 and 200. 

 GKD: This data set consists of 145 matrices for which the values were calculated as 
the Euclidean distances from randomly generated points with coordinates in the 0 to 
10 range. 
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• GKD-a: Glover et al. (1998) introduced these 75 instances in which the number 
of coordinates for each point is generated randomly in the 2 to 21 range.  The 
instance sizes are such that for n = 10, m = 2, 3, 4, 6 and 8; for n = 15, m = 3, 4, 
6, 9 and 12; and for n = 30, m = 6, 9, 12, 18 and 24. 

• GKD-b: Martí et al. (2010) generated these 50 matrices for which the number of 
coordinates for each point is generated randomly in the 2 to 21 range and the 
instance sizes are such that for n = 25, m = 2 and 7; for n = 50, m = 5 and 15; for 
n = 100, m = 10 and 30; for n = 125, m = 12 and 37; and for n = 150, m = 15 and 
45. 

• GKD-c: Duarte and Martí (2007) generated these 20 matrices with 10 
coordinates for each point and n = 500 and m = 50. 

 MDG: This data set consists of 100 matrices with real numbers randomly selected 
between 0 and 10 from a uniform distribution. 

• MDG-a: Duarte and Martí (2007) generated these 40 matrices, 20 of them with 
n = 500 and m = 50 and the other 20 with n = 2000 and m = 200. These instances 
were used in Palubeckis (2007). 

 MDG-b: This data set consists of 40 matrices generated by Duarte and Martí 
(2007). 20 of them have n = 500 and m  = 50, and the other 20 have n = 2000 and 
m  = 200.  These instances were used in Gallego et al. (2009) and Palubeckis 
(2007). 

 MDG-c: We are proposing here this data set with 20 matrices with n = 3000 and 
m = 300, 400, 500 and 600.  These are the largest instances reported in our 
computational study.  They are similar to those used in Palubeckis (2007). 

To sum it up, the MDPLIB contains 315 instances.  We refer the reader to our web site 
http://www.optsicom.es/mdp where these instances and their best-known solution 
values (according to our experimentation below) are available.  We include here an 
appendix with the best values on the largest instances (MDG-c). 
 
 
5 Computational experiments 
To perform the experiments reported in this section, we run the original codes of A_SS 
(Aringhieri and Cordone, 2006), A_VNS (Aringhieri and Cordone, 2011), B_VNS 
(Brimberg et al., 2009), ITS (Palubeckis, 2007), RR (Aringhieri and Cordone, 2011), 
STA (Palubeckis, 2007) and XTS (Aringhieri et al., 2008). As acknowledge in Section 7, 
we thank these authors for sending us the executable codes of their algorithms. The 
remaining methods were implemented in Java 6. All experiments were performed on an 
Intel Core 2 Quad CPU Q 8300 with 6 GiB of RAM and Ubuntu 9.04 64 bits OS. We 
have divided our experimentation into three parts, according to the classification of the 
instances and methods introduced in the previous sections. 
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In the first experiment we consider the simple heuristics described in Section 2. In this 
experiment, for each instance and each method, we compute the relative deviation Dev 
(in percent) between the best solution value, Value, obtained with the method and the 
best-known value of this instance, BestValue. The BestValue of an instance is the best 
value obtained with all the methods in all the experiments reported in this paper (i.e., the 
best known value overall, and available at http://www.optsicom.es/mdp).  For each 
method, we also report the number of instances #Best for which the method obtains the 
best value. In addition, we calculate the so-called Score (Ribeiro et al., 2002) associated 
with each method. For each instance, the nrank of method M is defined as the number of 
methods that found a better solution than the one found by M. In the event of ties, the 
methods receive the same nrank, equal to the number of methods strictly better than all of 
them. The value of Score is the sum of the nrank values for all the instances in the 
experiment, thus, the lower the Score the better the method. 
 
    GKD-a GKD-b GKD-c MDG-a MDG-b SOM-a SOM-b Summary 

C2 

Dev 2.18% 2.26% 0.27% 1.84% 1.66% 2.95% 2.08% 2.07% 
#Best 28 2 1 0 0 5 0 36 
Score 196 186 67 46 42 85 38 660 
Time 0.00 0.01 0.00 0.00 0.00 0.34 0.35 0.09 

D2 

Dev 0.10% 0.08% 0.01% 1.81% 1.88% 2.26% 1.49% 1.02% 
#Best 61 31 5 0 0 7 0 104 
Score 62 35 10 51 65 65 22 310 
Time 0.00 0.00 0.00 0.00 0.01 0.10 0.10 0.03 

ErkC 

Dev 0.52% 0.19% 0.02% 2.16% 2.20% 4.70% 2.57% 1.73% 
#Best 47 22 6 0 0 5 0 80 
Score 80 62 15 101 110 167 65 600 
Time 0.00 0.01 0.00 0.00 0.01 0.46 0.47 0.13 

GhoC 

Dev 1.28% 1.16% 0.18% 3.75% 3.51% 6.15% 3.99% 2.83% 
#Best 35 6 0 0 0 6 0 47 
Score 162 181 69 200 198 197 94 1101 
Time 0.02 0.07 0.00 0.00 0.11 2.06 1.92 0.56 

KLD 

Dev 6.85% 11.67% 9.65% 14.72% 14.11% 25.12% 14.14% 13.50% 
#Best 7 0 0 0 0 0 0 7 
Score 411 313 124 278 273 323 128 1850 
Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

KLDv2 

Dev 9.85% 13.14% 10.97% 13.37% 13.13% 25.05% 15.15% 14.34% 
#Best 0 0 0 0 0 0 0 0 
Score 501 335 136 242 247 326 132 1919 
Time 0.00 0.20 0.00 0.00 0.23 5.06 5.02 1.40 

MDI 

Dev 0.31% 0.18% 0.24% 2.39% 2.22% 1.29% 1.28% 1.05% 
#Best 63 26 0 0 0 10 1 100 
Score 14 50 83 132 122 23 22 446 
Time 0.03 1.30 0.00 0.02 1.69 82.11 83.99 22.73 

STA 

Dev 0.83% 1.39% 0.08% 1.96% 1.88% 3.54% 2.02% 1.71% 
#Best 35 9 0 0 0 4 0 48 
Score 155 132 50 70 63 117 57 644 
Time 0.17 0.19 0.15 0.14 0.22 0.52 0.86 0.30 

 
Table 2 – Constructive methods 
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Tables 2 and 3 report the results for 8 constructive and 2 improving heuristics 
respectively. Table 2 shows results for GhoC (Ghosh, 1996), C2, D2 (Glover et al., 
1998), ErkC (Erkut, 1990), STA (Palubeckis, 2007), KLD, KLDv2 and MDI (Silva et al., 
2004).  Similarly, Table 3 reports the results of BLS (Ghosh, 1996) and I_LS (Duarte 
and Martí, 2007) applied from random initial solutions as well as I_LS applied from the 
solution obtained with D2 (represented as D2+I_LS).  
 
Table 2 shows that constructive methods D2 and MDI obtain better results than the other 
competing methods, since they present relative percentage deviations very close to 1% 
(while the other methods are all above 1.5%).  On the other hand, KLD and KLDv2 
provide low quality results with deviations larger than 10%.  We applied the non-
parametric Friedman test for multiple correlated samples to the best solutions obtained by 
each of the 8 constructive methods. This test computes, for each instance, the rank value 
of each method according to solution quality (where rank 8 is assigned to the best method 
and rank 1 to the worst one). Then, it calculates the average rank values of each method 
across all the instances solved. If the averages differ greatly, the associated p-value or 
significance will be small. The resulting p-value of 0.000 obtained in this experiment 
clearly indicates that there are statistically significant differences among the eight 
methods tested. Specifically, the rank values produced by this test are 6.46 (D2), 5.98 
(MDI), 5.52 (ErkC), 5.49 (C2), 5.46 (STA), 3.49 (GhoC), 1.66 (KLD) and 1.49 (KLDv2). 
 

  
GKD-a GKD-b GKD-c MDG-a MDG-b SOM-a SOM-b Summary 

BLS 

Dev 0.19% 0.45% 0.00% 1.72% 1.74% 1.98% 1.68% 1.04% 
#Best 67 36 16 0 0 10 0 129 
Score 6 11 6 75 72 45 33 248 
Time 0.019 4.394 0.00 0.02 0.84 283.38 282.87 77.14 

D2+I_LS 

Dev 0.34% 0.03% 0.00% 0.87% 0.89% 1.45% 0.91% 0.64% 
#Best 67 41 13 0 0 9 3 133 
Score 6 13 10 14 14 34 10 101 
Time 0.003 0.653 0.00 0.00 0.04 118.57 142.77 35.48 

I_LS 

Dev 0.43% 0.57% 0.00% 1.05% 1.13% 1.93% 1.25% 0.91% 
#Best 66 32 12 0 0 13 2 125 
Score 5 19 12 31 34 40 16 157 
Time 0.047 16.143 0.00 0.08 5.08 1325.29 1489.00 383.06 

Table 3 – Improvement methods 
 
The first and third main rows in Table 3 show the results of BLS and I_LS respectively, 
running from random initial solutions. The second main row (D2+I_LS) shows the 
results obtained when I_LS is applied to the solution obtained with D2 (the best 
constructive method according to the previous experiment). Results in Table 3 show that 
the two improvement methods, BLS and I_LS, provide good solutions, since both 
present average percentage deviations from the best-known solution close to 1% (where 
I_LS is slightly better than BLS).  Moreover, comparing I_LS with D2+I_LS we 
observe that, as expected, D2+I_LS obtains better solutions than I_LS (0.64% versus 
0.91%) in shorter running times (35.48 versus 383.06 CPU seconds).  We apply the 
Wilcoxon test to compare I_LS with D2+I_LS.  (This test measures whether the 
solutions come or not from different methods.) The p-value of 0.000 obtained with this 
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nonparametric test for pairwise comparisons confirms that the there are differences 
between the results of both methods. 
 

  
GKD-c MDG-a MDG-b SOM-b Summary 

GRASP_C2+I_LS 
Dev 0.00% 7.97% 7.53% 1.77% 5.46% 
#Best 15 0 0 5 20 
Score 29 183 184 71 467 

GRASP_D2+I_LS 
Dev 0.00% 1.81% 1.79% 0.29% 1.25% 
#Best 19 2 1 7 29 
Score 5 14 9 26 54 

GRASP+DM 
Dev 0.00% 5.02% 4.66% 0.25% 3.27% 
#Best 20 0 0 7 27 
Score 0 82 69 30 181 

GRASP+PR 
Dev 0.00% 5.84% 5.57% 0.58% 3.90% 
#Best 20 0 0 7 27 
Score 0 126 141 40 307 

KLD+BLS 
Dev 0.00% 5.13% 4.81% 0.34% 3.37% 
#Best 20 0 0 7 27 
Score 0 114 104 39 257 

KLDv2+BLS 
Dev 0.00% 5.57% 5.22% 0.62% 3.70% 
#Best 19 0 0 5 24 
Score 6 140 157 68 371 

MDI+BLS 
Dev 0.00% 50.40% 50.43% 0.20% 33.64% 
#Best 20 0 0 6 26 
Score 0 181 176 20 377 

Table 4 – GRASP metaheuristics running for 10 seconds 
 
In our second experiment we consider the 20 metaheuristics described in Section 3 to 
solve most of the larger instance sets: SOM-b, GKD-c, MDG-a, MDG-b. We have 
executed each method for 10 seconds per instance.  We have divided this experiment into 
three groups, in the first one we consider the seven GRASP methods, in the second one 
the ten methods based on trajectories and in the third one the three methods based on 
populations.  
 
Table 4 reports the values Dev, #Best and Score obtained with the following seven 
GRASP methods executed for 10 seconds in each instance: KLD+BLS, MDI+BLS, 
KLDv2+BLS (Silva et al., 2004) GRASP_C2+I_LS, GRASP_D2+I_LS (Duarte and 
Martí, 2007), GRASP+PR (Silva et al., 2007), and GRASP+DM (Santos et al., 2005). 
 
Results in Table 4 show that, according to the average deviation, the GRASP_D2 coupled 
with I_LS is the best method (with a value of 1.25%), while the KLD variants and 
MDI coupled with the BLS improvement obtain lower quality results.  The ranking of the 
Friedman statistical test is in line with these deviation values, obtaining: 
GRASP_D2+I_LS (5.38), GRASP+DM (4.39), GRASP+PR (4.28), MDI+BLS (4.34), 
KLD+BLS (3.76), KLDv2+BLS (2.97) and GRASP_C2+I_LS (2.88).  The associated p-
value of 0.000 indicates that there are significant differences among the results obtained 
with these methods. 
 



Heuristics and Metaheuristics for the Maximum Diversity Problem — 16 

 

  
GKD-c MDG-a MDG-b SOM-b Summary 

A_VNS 
Dev 0.00% 0.16% 0.14% 0.00% 0.10% 
#Best 20 20 20 20 80 
Score 0 43 44 0 87 

B_VNS 
Dev 0.00% 0.09% 0.08% 0.00% 0.06% 
#Best 20 16 15 20 71 
Score 0 20 25 0 45 

ITS 
Dev 0.00% 0.17% 0.16% 0.03% 0.12% 
#Best 20 16 17 18 71 
Score 0 63 55 12 130 

K_TS 
Dev 0.00% 6.51% 6.02% 0.67% 4.29% 
#Best 20 0 0 7 27 
Score 0 322 326 109 757 

M_TS 
Dev 0.00% 1.19% 1.10% 0.22% 0.80% 
#Best 20 0 0 8 28 
Score 0 284 283 82 649 

RR 
Dev 0.00% 0.17% 0.17% 0.00% 0.11% 
#Best 20 20 20 20 80 
Score 0 51 57 0 108 

SA 
Dev 0.00% 0.69% 0.61% 0.05% 0.44% 
#Best 20 1 2 9 32 
Score 0 217 215 59 491 

SOMA 
Dev 0.00% 7.02% 6.62% 1.09% 4.73% 
#Best 12 0 0 3 15 
Score 72 350 348 147 917 

Tabu_D2+LS_TS 
Dev 0.00% 0.43% 0.38% 0.10% 0.29% 
#Best 20 0 0 4 24 
Score 0 208 210 101 519 

XTS 
Dev 0.00% 0.23% 0.18% 0.00% 0.13% 
#Best 20 12 14 20 66 
Score 0 91 75 0 166 

Table 5 – Local search based metaheuristics running for 10 seconds 
 
Table 5 reports the results obtained with the following ten local search based 
metaheuristics executed for 10 seconds per instance: A_VNS (Aringhieri and Cordone, 
2011), B_VNS (Brimberg et al., 2009), ITS (Palubeckis, 2007), K_TS (Kincaid, 1992), 
M_TS (Macambira, 2002), RR (Aringhieri and Cordone, 2011), SA (Kincaid, 1992), 
SOMA (Silva et al., 2004), Tabu_D2+LS_TS (Duarte and Martí, 2007), and XTS 
(Aringhieri et al., 2008).  Results in Table 5 show that all the local search based 
metaheuristics tested, with the exception of K_TS and SOMA, are able to obtain high 
quality solutions, since they present low average percentage deviations.  In particular 
B_VNS and A_VNS present 0.06% and 0.10% deviation values and 71 and 80 best-
known solutions respectively out of 120 instances, which compare favorably with the rest 
of the methods.  They also present the lowest scores (45 for B_VNS and 87 for A_VNS), 
therefore we conclude that they are best methods in this group (although closely followed 
by some of the other methods).  The ranking of the Friedman test confirms this evaluation 
(and also provides a p-value of 0.000): B_VNS (7.94), A_VNS (7.53), RR (7.35), ITS 
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(7.24), XTS (7.00), Tabu_D2+LS_TS (4.99), SA (4.85), M_TS (3.60), K_TS (2.73) and 
SOMA (1.78). 
 
Considering that the differences between B_VNS and A_VNS are small, we have applied 
two statistical tests for pairwise comparisons, the Wilcoxon test and the Sign test.  The 
former tests if the two samples (the solutions of both methods) come from different 
populations, while the latter computes the number of instances on which an algorithm 
improves upon the other.  The resulting p-values of 0.000 and 0.004 respectively, indicate 
that there are significant differences between the results of both methods, resulting 
B_VNS as the best method of this experiment.  However, the pairwise comparison 
between A_VNS and any other method with a Friedman rank value greater than or equal 
to 7.0 (RR, ITS and XTS) produces a p-value larger than 0.05, indicating that there are 
no significant differences among these four methods. 
 
In the third group of this experiment, we considered the population-based metaheuristics.  
Specifically, Table 6 reports the results obtained with A_SS (Aringhieri and Cordone, 
2006), G_SS (Gallego et al., 2009) and MA (Katayama and Narihisa, 2005) executed in 
10 seconds per instance. 
 

  
GKD-c MDG-a MDG-b SOM-b Summary 

A_SS 
Dev 0.00% 0.41% 0.36% 0.00% 0.26% 
#Best 20 14 17 20 71 
Score 0 49 41 0 90 

G_SS 
Dev 0.00% 0.28% 0.25% 0.00% 0.18% 
#Best 20 17 16 18 71 
Score 0 20 19 3 42 

MA 
Dev 0.00% 0.27% 0.24% 0.02% 0.17% 
#Best 20 3 10 15 48 
Score 0 34 25 10 69 

Table 6 – Population based metaheuristics running for 10 seconds 
 
Results on Table 6 show that the three methods are able to provide good solutions. MA 
and G_SS are the best, with 0.17% and 0.18% average deviations and 48 and 71 best-
known solutions respectively.  The ranking of the Friedman test is G_SS (2.28), MA 
(2.00) and A_SS (1.72) with a p-value of 0.000, confirming that G_SS emerges as the 
best method.  However, if we apply the Wilcoxon and the Sign tests to compare G_SS 
with MA, we obtain a p-value of 0.374 and 0.15, respectively. The associated p-value 
indicates that there are no statistical differences between both methods. On the other 
hand, if we apply these tests to compare G_SS with A_SS we obtain in both of them a 
p-value of 0.000 indicating that G_SS outperforms A_SS. 
 
In the previous experiment, we have measured the ability of 20 metaheuristics to obtain 
good solutions in a short-term period of time (10 seconds).  In our next experiment we 
undertake to compare these methods on a long-term scenario (600 seconds).  Tables 7, 8 
and 9 show, respectively, the results of the seven GRASP methods, the ten local search 
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based methods and the three population-based methods when running for 600 seconds on 
each instance. 

 

  
GKD-c MDG-a MDG-b SOM-b Summary 

GRASP_C2+I_LS 
Dev 1.04% 3.77% 3.63% 0.06% 2.65% 
#Best 7 3 2 10 22 
Score 78 186 192 46 502 

GRASP_D2+I_LS 
Dev 0.00% 0.53% 0.54% 0.02% 0.36% 
#Best 20 10 11 11 52 
Score 0 59 71 18 148 

GRASP+DM 
Dev 0.00% 0.61% 0.56% 0.05% 0.40% 
#Best 20 7 4 10 41 
Score 0 95 112 29 236 

GRASP+PR 
Dev 0.00% 0.51% 0.46% 0.02% 0.33% 
#Best 20 1 5 11 37 
Score 0 81 72 24 177 

KLD+BLS 
Dev 0.00% 0.65% 0.58% 0.03% 0.42% 
#Best 19 4 4 11 38 
Score 4 117 119 31 271 

KLDv2+BLS 
Dev 0.00% 0.68% 0.63% 0.08% 0.45% 
#Best 19 1 1 8 29 
Score 4 156 133 54 347 

MDI+BLS 
Dev 0.00% 0.55% 0.50% 0.03% 0.35% 
#Best 15 2 2 12 31 
Score 25 107 92 14 238 

Table 7 – GRASP metaheuristics running for 600 seconds 
 
Results of Tables 7, 8 and 9 are in line with those reported in Tables 4, 5 and 6, although, 
as expected, after 600 seconds of CPU time, the differences between the methods are 
small in most cases (as compared with the differences obtained in the 10-seconds runs).  
Specifically, GRASP_D2+I_LS emerges again as the leading GRASP based method 
(with the best values of #Best and Score and with a competitive Dev. value).  Regarding 
the local search based methods (Table 8), B_VNS, ITS and A_VNS are the best of them 
in terms of deviation, number of best and score.  Although in the short runs (10 sec.) 
tested in Table 5 B_VNS is the clear winner, in the long runs tested in Table 8 (600 sec.) 
these three methods produce very similar results. As a matter of fact, the p-value of 
pairwise statistical tests between any pairs of them are larger than 0.05, indicating that 
there are not significant differences among them. With respect to the population based 
procedures shown in Table 9, the three methods exhibit again a similar performance. 
Nevertheless, the Friedman ranking establishes the following ordering: G_SS (2.09), 
A_SS (2.04) and MA (1.87) and a p-value 0.03, indicating statistical significant 
differences.  As a conclusion, we will consider these five best methods, 
GRASP_D2+I_LS, B_VNS, ITS, A_VNS and G_SS in the final experiment. 
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GKD-c MDG-a MDG-b SOM-b Summary 

A_VNS 
Dev 0.00% 0.02% 0.02% 0.00% 0.02% 
#Best 20 31 23 20 94 
Score 0 23 34 0 57 

B_VNS 
Dev 0.00% 0.01% 0.02% 0.00% 0.01% 
#Best 20 31 27 20 98 
Score 0 19 21 0 40 

ITS 
Dev 0.00% 0.02% 0.01% 0.00% 0.01% 
#Best 20 20 23 19 82 
Score 0 28 18 5 51 

K_TS 
Dev 0.00% 2.67% 2.44% 0.32% 1.76% 
#Best 20 1 0 9 30 
Score 0 330 334 89 753 

M_TS 
Dev 0.00% 0.55% 0.52% 0.04% 0.36% 
#Best 20 3 2 12 37 
Score 0 244 252 53 549 

RR 
Dev 0.00% 0.04% 0.04% 0.00% 0.03% 
#Best 20 21 21 20 82 
Score 0 50 51 0 101 

SA 
Dev 0.00% 0.27% 0.24% 0.00% 0.17% 
#Best 20 20 19 20 79 
Score 0 118 121 0 239 

SOMA 
Dev 0.00% 1.55% 1.42% 0.49% 1.07% 
#Best 20 0 0 4 24 
Score 0 338 339 140 817 

Tabu_D2+LS_TS 
Dev 0.00% 0.28% 0.27% 0.07% 0.20% 
#Best 20 0 1 5 26 
Score 0 238 234 108 580 

XTS 
Dev 0.00% 0.12% 0.13% 0.00% 0.09% 
#Best 20 12 15 20 67 
Score 0 122 106 0 228 

Table 8 – Local search based metaheuristics running for 600 seconds 
 
 

  
GKD-c MDG-a MDG-b SOM-b Summary 

A_SS 
Dev 0.00% 0.10% 0.12% 0.00% 0.07% 
#Best 20 20 20 20 80 
Score 0 8 17 0 25 

G_SS 
Dev 0.00% 0.14% 0.13% 0.00% 0.09% 
#Best 20 20 19 20 79 
Score 0 29 23 0 52 

MA 
Dev 0.00% 0.13% 0.13% 0.00% 0.09% 
#Best 20 20 20 20 80 
Score 0 23 22 0 45 

Table 9 – Population based metaheuristics running for 600 seconds 
 
In our final experiment we compare the methods identified to be the best in the previous 
experiments.  Specifically we consider the best algorithms in each category (GRASP 
based, local search based and population based) identified above: 
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• GRASP based: GRASP_D2+I_LS (Duarte and Martí, 2007). 
• Local Search based: B_VNS (Brimberg et al., 2009), A_VNS (Aringhieri 

and Cordone, 2011) and ITS (Palubeckis, 2007). 
• Population based: G_SS (Gallego et al., 2009). 

 
Instances in the GKD set seem to be very easy for these methods, even the largest in the 
GKD-c set, since most of them are able to match all the best known solutions.  Therefore, 
they will no longer be considered in the final experimentation. On the other hand, we 
shall include the largest instances reported in our study, MDG-c with n=3000.  Table 10 
reports the Dev, #Best and Score values obtained with these five methods executed for 10 
seconds on the SOM-b, MDG-a, MDG-b and MDG-c instances.  Table 11 reports the 
results obtained when these methods are left to run for 600 seconds. 
 

Methods  MDG-a  MDG-b  MDG-c  SOM-b  Summary 
GRASP based  

GRASP_D2+I_LS 
Dev 1.81% 1.79% 1.97% 0.29% 1.57% 
#Best 2 1 0 7 10 
Score 152 156 80 52 440 

Local Search based  

A_VNS 
Dev 0.16% 0.14% 0.37% 0.00% 0.16% 
#Best 20 20 0 20 60 
Score 30 28 42 0 100 

B_VNS 
Dev 0.09% 0.08% 0.13% 0.00% 0.08% 
#Best 16 15 0 20 51 
Score 14 14 2 0 30 

ITS 
Dev 0.17% 0.16% 0.33% 0.03% 0.17% 
#Best 16 17 0 18 51 
Score 42 36 35 7 120 

Population based  

G_SS 
Dev 0.28% 0.25% 0.35% 0.00% 0.24% 
#Best 17 16 0 18 51 
Score 65 70 41 6 182 

Table 10 – Best metaheuristics running for 10 seconds 
 
Table 10 shows that the five methods under comparison are able to obtain high quality 
solutions within a short period of time (10 seconds of CPU).  The GRASP based method 
is probably the worse one in this group of best methods, since it obtains average 
percentage deviations larger than 1% (while the other four methods present values below 
1%).  On the other hand B_VNS and A_VNS seem to be the best ones with deviations of 
0.08% and 0.16% and number of best solutions of 51 and 50, respectively. The Friedman 
test obtains a ranking in line with these observations: 4.08 (B_VNS), 3.45 (A_VNS), 3.33 
(ITS), 2.97 (G_SS), and 1.17 (GRASP_D2+ILS).  The Wilcoxon and Sign tests 
comparing the best two methods, B_VNS and A_VNS, obtain both a p-value of 0.000 
indicating that there are significant differences between them. We can therefore conclude 
that B_VNS is the best method on the short runs (10 seconds). 
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Methods  MDG-a  MDG-b  MDG-c  SOM-b  Summary 
GRASP based        
GRASP_D2+I_LS 

Dev 0.53% 0.54% 1.64% 0.02% 0.63% 
#Best 10 11 0 11 32 
Score 120 116 80 36 352 

Local search based  

A_VNS 
Dev 0.02% 0.02% 0.07% 0.00% 0.03% 
#Best 31 23 1 20 75 
Score 18 27 29 0 74 

B_VNS 
Dev 0.01% 0.02% 0.04% 0.00% 0.02% 
#Best 31 27 5 20 83 
Score 16 17 10 0 43 

ITS 
Dev 0.02% 0.01% 0.06% 0.00% 0.02% 
#Best 20 23 0 19 62 
Score 24 15 21 3 63 

Population based  
     

G_SS 
Dev 0.14% 0.13% 0.27% 0.00% 0.13% 
#Best 20 19 0 20 59 
Score 60 62 60 0 182 

Table 11 – Best metaheuristics running for 600 seconds 
 
As expected, the average percentage deviations of the methods are lower in Table 11, in 
which they are run for 600 seconds, than in Table 10 in which they are run for 10 
seconds.  In this way, after 600 seconds of CPU time, the five methods under comparison 
present deviations lower than 1%.  In line with this, the number of best solutions found 
increases as the running time increases.  The ranking of the Friedman test on the results 
of Table 11 is very similar to the one obtained with the results of Table 10 with the same 
p-value of 0.000 (although now ITS seems to be the second method).  Specifically, the 
rank values are: 3.68 (B_VNS), 3.53 (ITS), 3.42 (A_VNS), 2.88 (G_SS), and 1.49 
(GRASP_D2+ILS).  The Wilcoxon and Sign tests comparing the best two methods in 
this experiment, B_VNS and ITS, obtain both a p-value of 0.000 indicating that there are 
significant differences between them. We can therefore conclude that B_VNS is also the 
best method on the large runs (600 seconds). 
 
To complement this analysis, Figure 1 shows the typical search profile for the best 
methods that we compared (average percentage deviations are reported in this diagram).  
It is designed to show how the average value of the best solution found improves over 
time.  This execution corresponds to the five largest instances (n=3000, m=600) in the 
MDG-c set with a time limit of 30 minutes (recording the average deviation values every 
5 minutes). 
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Figure 1. Search profile for a 30-minute run of the largest instances 
 
The average percentage deviations shown in Figure 1 reveal a different behavior of the 
methods when considering only large instances and 30 minutes run than the one exhibited 
in the previous experiment.  In this case, ITS consistently produces better solutions than 
the other methods (note that results in Table 11 show that B_VNS produces slightly better 
outcomes than ITS).  This behavior can be partially explained by the fact that in the 
experiment reported in Table 11 we consider 20 matrices with n = 3000 and m = 300, 
400, 500 and 600, while in the experiment shown in Figure 1 we only consider the largest 
5 instances (n = 3000 and m = 600). We can then consider that both methods are the best 
overall, where B_VNS can be considered more robust and ITS more suited for largest 
instances.  Regarding the rest of methods, A_VNS appears as the third best method with 
very good results, closely followed by G_SS.  GRASPD2+I_LS produces average 
percent deviation above 1.0%. 
 
Table 12 in the Appendix contains the best-known solutions for the 20 largest (and 
apparently hardest) instances in our study to set a benchmark for future comparisons.  
The Best Value has been obtained running the B_VNS and ITS methods for 2 hour on 
each instance. 
 
6 Conclusions 
A computational comparison of 30 methods, 10 heuristics and 20 metaheuristics, for the 
maximum diversity problem has been presented.  Experiments with 315 instances were 
performed to compare the procedures when solving this NP-hard problem.  Our extensive 
experimentation reveals that even the simplest heuristics provide good solutions to this 
combinatorial optimization problem.  However, to obtain high-quality solutions, local 
search based metaheuristics seem better suited for this problem than GRASP or 
population based methods.  Specifically, the Variable Neighborhood Search (Brimberg et 
al., 2009) emerges as the best overall except for the five largest problems where the 
Iterated Tabu Search (Palubeckis 2007) is the leader. When including the smaller 
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problems, Iterated Tabu Search comes in as a close second in overall standing, followed 
by the VNS procedure (Aringhieri and Cordone, 2011). 
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Appendix 
 

Instance Best Value Method 

MDG-c_1_n3000_m300.txt 24924685 B_VNS 
MDG-c_2_n3000_m300.txt 24909199 B_VNS 
MDG-c_3_n3000_m300.txt 24900820 ITS 
MDG-c_4_n3000_m300.txt 24904964 B_VNS 
MDG-c_5_n3000_m300.txt 24899703 ITS 
MDG-c_6_n3000_m400.txt 43465087 ITS 
MDG-c_7_n3000_m400.txt 43477267 B_VNS 
MDG-c_8_n3000_m400.txt 43458007 B_VNS 
MDG-c_9_n3000_m400.txt 43448137 B_VNS 
MDG-c_10_n3000_m400.txt 43476251 ITS 
MDG-c_11_n3000_m500.txt 67009114 B_VNS 
MDG-c_12_n3000_m500.txt 67021888 ITS 
MDG-c_13_n3000_m500.txt 67024373 B_VNS 
MDG-c_14_n3000_m500.txt 67024804 B_VNS 
MDG-c_15_n3000_m500.txt 67056334 B_VNS 
MDG-c_16_n3000_m600.txt 95637733 B_VNS 
MDG-c_17_n3000_m600.txt 95645826 ITS 
MDG-c_18_n3000_m600.txt 95629207 ITS 
MDG-c_19_n3000_m600.txt 95633549 ITS 
MDG-c_20_n3000_m600.txt 95643586 ITS 

 
Table 12 – Best known values for MDG-c instances 
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