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Abstract

The Obnoxious p-Median Problem consists of selecting p locations, considered facilities, in a way that the sum
of the distances from each non-facility location, called customers, to its nearest facility is maximized. This is an
NP-hard problem that can be formulated as an integer linear program. In this paper, we propose the application of
a Variable Neighborhood Search (VNS) method to effectively tackle this problem. First, we develop new and fast
local search procedures to be integrated into the Basic VNS methodology. Then, some parameters of the algorithm
are tuned in order to improve its performance. The best VNS variant is parallelized and compared with the best
previous methods, namely Branch and Cut, Tabu Search and GRASP over a wide set of instances. Experimental
results show that the proposed VNS outperforms previous methods in the state of the art. This fact is finally
confirmed by conducting non-parametric statistical tests.

Keywords: Obnoxious location, Metaheuristics, VNS, Parallel algorithms.

1. Introduction

The Obnoxious p-Median problem, OpM , (Church and Garfinkel, 1978; Erkut and Neuman, 1989),
belongs to the category of facility location problems (Francis and White, 1974). More precisely, it is
derived from the p-median problems (Hakimi, 1964) which, for fixed values of p, they can be solved in
polynomial time. On the other hand, they become strongly NP-hard for variable values of p (Current
et al., 2004).

In OpM , p identifies those facilities that are actually opened, whereas the rest ones are considered as
unopened facilities. In addition, it considers the open facilities to be obnoxious. That is, they correspond
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to those real-world facilities that are usually noisy, dangerous, or disgusting for humans, like waste
disposal facilities or airports, for instance. Therefore, instead of trying to reduce the distance between
open facilities and customers, as it happens in classical location problems, the objective is to maximize
the distance between the facilities and their closer customer.

More formally, we can define the problem as follows. Let I be a set of clients, J a set of facilities, and
dij the distance between the client i ∈ I and the facility j ∈ J . The OpM problem consists in finding
a subset S of the set of facilities with |S| = p, S ⊆ J and p < |J |, such that the sum of the minimum
distance between each client and the set of facilities is maximized. In mathematical terms, if we call f
to the objective function, the problem is defined as:

max f(S) =
∑
i∈I

min{dij : j ∈ S}

subject to
S ⊆ J / |S| = p

The OpM problem was introduced in Belotti et al. (2007) as belonging to the same family of the
p-dispersion and the p-median optimization problems (Shier, 1977; Kuby, 1988). As stated in Belotti
et al. (2007), the OpM problem belongs to the class of maxi-sum (or p-antimedian) problems. In Ting
(1988) it is proven that this problem is polynomially solvable on networks with a O(n) algorithm in the
case of p = 1 (1-maxian problem). However, in Tamir (1991) it is proven that the general and discrete
cases of both maxi-sum and maxi-min problems are NP-hard. Besides, for the simplest cases where
p = 1 and p = 2, they present a polynomial-time algorithm.

Note that the practical need to solve the OpM problem may involve medium and large size instances,
which motivates the use of heuristics. The exact method by Belotti et al. (2007) is able to solve medium
size instances (up to p = 50). For larger instances, their method provides a gap w.r.t. the best upper
bound. Therefore, if we need to know a good solution for instances with p larger than 100, it is useful
to run a heuristic method to complement the information provided by the exact method. For example, in
the well-known example of nuclear plant allocation, we find around p = 150 plants in Europe, which
would require the use of both methodologies, exact and heuristic, to determine a high-quality solution
for such an important problem. The elaboration of rational policies in the European context motivates
the need of efficient methods to this problem

An extensive literature review is given in relation to those kind of problems. In addition, a mathemati-
cal model, a linear programming formulation, and some valid inequalities are provided. These theoretical
results are then used in Belotti et al. (2007) to implement a Branch & Cut (BC) method. Besides, a tabu-
search heuristic (XTS) is also introduced. In order to reduce the executing time, XTS is coupled with
a BC implementation. As it is shown in the associated computational experience, this hybrid algorithm
obtains good results in terms of quality. The study is performed over a set of instances derived from the
p-median problem literature.

A GRASP method has been recently presented in (Colmenar et al., 2016). The authors present two
different constructive methods and two local search algorithms. Additionally, they propose an efficient
strategy to update the objective function value that considerably reduces the running time of GRASP.
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Finally, the authors describe a filtering strategy intended to discard low-quality solutions and to selec-
tively apply the local search only to promising solutions. The experimental results show that the GRASP
method is able to outperform BC and XTS in both, short and long time horizons. The comparison is con-
ducted over a set of larger instances than those used in Belotti et al. (2007). Notice that these instances
are also derived from the p-median literature.

In this paper, we propose a Variable Neighborhood Search (VNS) method to tackle theOpM problem.
Specifically, we propose new and fast local search procedures that explore a reduced neighborhood. In
addition, we propose a parallel VNS method, where we investigate different strategies of exchanging
solutions among parallel executions. Finally, we compare the VNS proposal with the current state-of-the-
art methods over the set of previously reported instances. Our results show that the VNS approach obtains
the best solution in 137 out of the 144 instances in this benchmark. In addition, the VNS algorithm is
faster that the competitors in all the instances where it obtains the best solution.

The rest of the paper is organized as follows. Section 2 describes the VNS proposal. Section 3 shows
how to improve the efficiency of the basic VNS described in Section 2 by using Multiple Markov Chains.
Section 4 shows the details of the parallel implementation of the algorithm described in Section 3. Sec-
tion 5 details the experimentation and the analysis of the results. Section 6 draws the conclusions and
identifies future lines of research. Finally, in the Appendix, a breakdown of the results is presented,
detailing the best cost and execution time obtained for each one of the instances under study.

2. Basic Variable Neighborhood Search

The Variable Neighborhood Search (VNS) metaheuristic is a general purpose optimization methodology
which considers changes of neighborhood in both, the descent phase (to find a local optimum), and the
perturbation phase (to get out of the corresponding basin of attraction) (Hansen and Mladenovic, 2001).
The original metaheuristic has evolved in different ways, giving rise to many extensions: Variable Neigh-
borhood Descent (VND), Reduced VNS (RVNS), Basic VNS (BVNS), Skewed VNS (SVNS), General
VNS (GVNS), Variable Neighborhood Decomposition Search (VNDS) or Reactive VNS, among others.
See (Hansen et al., 2008; 2010) for a recent thorough review. VNS has been successfully applied to a
wide variety of optimization problems such the clustered vehicle problem (Defryn and Sorensen, 2017),
the maximum min-sum dispersion problem (Amirgaliyeva et al., 2016) or the job scheduling problems
with distinct time windows and penalties (Rosa et al., 2017), just to cite several recent works.

In this paper, we consider the Basic VNS variant, as shown in Algorithm 1. It starts by setting the
maximum value of the parameter that controls the perturbation strength of the shaking mechanism kmax.
It is worth mentioning that this stage is tied to a portion β of the number of opened facilities p (step 1).
Then, the algorithm builds a solution through a constructive method (step 2). We apply the procedure
described in (Colmenar et al., 2016), named as C2. It randomly selects a fraction of the facilities to be
included in the solution. Then, it evaluates all of them, computing the greedy function that measures the
contribution to the quality of the solution, and selects the best one. The procedure ends when the solution
contains exactly p facilities.

Once a feasible solution is constructed, the algorithm initializes the search within the first neighbor-
hood, by setting k to 1 (step 4). The algorithm then iterates until k reaches its maximum value (steps 5 to
17). At each iteration, the current solution is perturbed by the shake procedure in order to obtain a new
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solution (step 7). The shaking mechanism of the VNS procedure is intended to diversify the search. In
particular, it receives as input argument a feasible solution S, and uses randomly sorted working copies
of the set of facilities J (i.e. the set of opened and unopened facilities). Then, it simply performs k
pairwise exchanges between facilities in both sets.

During preliminary experimentation, we observed that the shake procedure coupled with the local
search method yielded to the same solutions more than once. In order to avoid the application of a
time consuming procedure (i.e, the local search method) to a solution more than once, we developed a
filtering method based on a hash function. Specifically, a hash value is computed and stored for each
solution generated during the search. The hash value of a solution that is candidate for improvement is
checked against the databaseH of previously generated hash values. If a match is found then the solution
under consideration is not subjected to the improvement method. If not, the hash value of the solution is
added to H and the algorithm tries to improve the solution by using the local search (steps 10 and 11).
Then, it checks whether the given solution S′′ improves the best so far S, restoring k to its initial value
(steps 13 to 14); otherwise, the value of k is increased by 1 to perform a neighborhood change (step
16). Finally, steps 4 to 17 are repeated until the computation time exceeds a maximum value of tmax as
termination criteria.

Algorithm 1: VARIABLE NEIGHBORHOOD SEARCH (VNS)
1 kmax ← β · p
2 S ← Constructive()
3 while t < tmax do
4 k ← 1
5 repeat
6 do
7 S′ ← Shake(S, k)
8 h← Hash(S′)

9 while isInHashSet(h,H)
10 H ← H ∪ {h}
11 S′′ ← LocalSearch(S′)
12 if f(S′′) < f(S) then
13 S ← S′′

14 k ← 1

15 else
16 k ← k + 1

17 until k = kmax

18 return S

The local search stage in VNS tries to improve the incumbent solution by exploring the neighborhoods
generated by some move operator. So far, all local search methods designed for the OpM have used an
exchange operator, that basically interchanges a facility j (selected from the set of opened facilities S)
with a different one j′ (selected from the set of unopened facilities J \ S). This move produces a new
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feasible solution S′ = S \ {j} ∪ {j′}. It is possible to efficiently evaluate such a move without recom-
puting the objective function from scratch, following the so-called incremental evaluation. Specifically,
as described in Colmenar et al. (2016), we make use of a list for each client that stores the current best
link to the closest facility. More precisely, these distances are separated in two independent data struc-
tures. The first one contains the distances from all clients to the opened facilities (sorted in ascending
order). Similarly, the distances from clients to unopened facilities are also stored in another sorted data
structure. Considering this implementation, an exchange move value can be incrementally computed in
O(|I| log(|J |)).

In this paper, we consider a reduction of the size of this standard neighborhood to further reduce
the computing time of the associated local search procedure. More precisely, given a solution S, its
corresponding neighborhood (i.e., those solutions that are reached by using the exchange move) has a
size of p×(|J |−p). This number is obtained by considering the interchanges between the p open facilities
with the |J | − p unopened facilities. Given this size, it could be computationally expensive to identify
the best move at each iteration of local search. To overcome this obstacle, we split the corresponding
compound move into two simple operations. Specifically, we first evaluate the effect of removing an
opened facility j, selecting the one that produces the minimum decrement of the objective function. We
then evaluate the effect of including an unopened facility j′, selecting the one that produces the largest
increment in the objective function. The associate size of this neighborhood is then p+ (|J | − p) = |J |,
which is smaller than the classical one.

Algorithm 2 shows the pseudo-code for the first proposed reduced local search, denoted as RLS1.
After setting the improvement flag to false (step 3), it iterates over the open facilities in order to find a
facility jdrop which produces the smallest decrement in the objective function of the resulting unfeasible
solution (steps 5 to 9). Once the selected facility is dropped (step 10), the next step is to bring the solution
back to the feasible region by adding the unopened facility jadd. RLS1, selects the one that produces the
largest increment of the objective function of the resulting feasible solution (steps 12 to 16). Functions
drop() and add() evaluate the variation of the objective function (denoted as 4f ) of a solution when
dropping or adding a facility. These functions are evaluated in an incremental way. Then, RLS1 tests
whether S′ improves upon S, in which case the incumbent solution is updated and the improvement flag
is set to true (steps 19 and 20). The loop (steps 2 to 20) is repeated until no improvement is meet, and
then, the improved solution is returned (step 21).

The second variant of reduced local search is called RLS2, and it works backwards. That is, it firstly
adds the unopened facility which produces the largest increment in the objective function, making the
solution unfeasible. Then, the feasibility is restored by removing the open facility which produces the
smallest decrement of the objective function. We do not provide the pseudo-code for RLS2, since it is
similar to RLS1, with the minor difference of exchanging the order of simple operations. Notice that,
despite the fact that the local search methods seem to be similar, they are not, because the move value
variation when adding of dropping is different, since it is calculated based on an unfeasible solution with
different size in RLS1 and RLS2.
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Algorithm 2: REDUCED LOCAL SEARCH 1 (RLS1)
1 improve← true

2 while improve do
3 improve← false

4 4fdrop ←∞
5 foreach j ∈ S do
6 4f ← drop(j, S)
7 if4f < 4fdrop then
8 jdrop ← j
9 4fdrop ←4f

10 S′ ← S \ {jdrop}
11 4fadd ← 0
12 foreach j ∈ J \ S do
13 4f ← add(j, S′)
14 if4f > 4fadd then
15 jadd ← j
16 4fadd ←4f

17 S′ ← S′ ∪ {jadd}
18 if f(S′) > f(S) then
19 S ← S′

20 improve← true

21 return S

3. Multi-start Variable Neighborhood Search

As described in (Martı́ et al., 2017), the re-start mechanism of multi-start methods can be superimposed
on many different search methods. Once a new solution has been generated, a variety of options can be
used to improve it, ranging from a simple greedy routine to a complex metaheuristic. Multi-start methods
basically provide an efficient framework to achieve global diversification in the search process.

We can consider steps 6 to 16 of Algorithm 1 as an iteration r of the VNS method that, from an solution
S, it returns a new solution S′′. In this way, we can view the entire VNS as an algorithm generating a
sequence S0, S1,..., Sr of solutions that are improving its value. This sequence is generated by iteratively
moving to a neighbor solution, which is accepted under the criteria shown in step 12. Since the choice
of Sr+1 depends only on the current solution Sr but not on the previously visited ones, the search path
of such an algorithm follows a first order Markov Chain (Norris, 1998). These procedures used to be
referenced as Sequential Single Markov Chain algorithms (SSMC). In these methods, the probability
of not getting an optimal solution after r iterations is characterized by Eq.(1), where Smin is a set of
optimal solution points and C and θ are positive constant values associated to a given objective function
and neighborhood generation method respectively. Thus when r →∞, the solution converges to one of
the optimal points in Smin with a probability of 1.
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P (Sr 6∈ Smin) ≈
(
C

r

)θ
(1)

Although many approaches in the literature follow this schema, using a single Markov Chain could be
inefficient from an efficient point of view (Defersha, 2008). To solve this problem, a Sequential Multiple
Markov Chain algorithm (SMMC) performs V independent executions of the SSMC algorithm, using
the same search space and neighborhood exploration method. Each one of these independent versions
is stopped after r iterations to provide V terminal solutions, out of which, the best one is chosen as the
final solution. Now, the probability of not getting an optimal solution after r iterations shown in Eq.(1)
becomes the one shown in Eq.(2). Thus, for 0 < C/r < 1, this probability decreases exponentially as V
increases (Azencott, 1992), while the CPU-time increases only linearly with V . Hence, given a CPU-time
tmax, it is more efficient to run r/V iterations in a SMMC than run r iterations in a SSMC. Following
this schema, we propose a multi-start VNS (instead of the traditional sequential implementation) based
on the theoretical results found in the context of SMMC.

P (Sr 6∈ Smin) =
∏
v

P (Sr,v 6∈ Smin) ≈
(
C

r

)θV
<

(
C

r

)θ
(2)

An additional advantage of this strategy is that iterations of single VNS methods are completely inde-
pendent. Therefore, this kind of algorithms are suitable to be implemented in parallel. In the context of
metaheuristics, distributed algorithms are those in which V independent algorithms are partitioned into
G groups of V/G single algorithms each, communicating them at every R iterations in order to further
improve the solution quality. This kind of algorithms have been extensively studied by the Genetic Algo-
rithms community (Alba and Troya, 1999). Alba and Troya (2000) highlights that the best performance
of using this strategy is attributed to the following characteristics: (1) their decentralized search which
allows more specialization; (2) the larger diversity levels, since many search regions are sought at the
same time; and (3) the exploitation inside each group by refining its best partial solution found.

The communication among groups is based on a migration operator, where the best solutions of one
group are sent to another according to different interaction topologies. The most commonly used are:
Fully Connected (FC), Ring (RG), and Master Slave (MS). We illustrate these topologies in Figure 1
for G=4 and V =20. See (Nowostawski and Poli, 1999) for further details. In the FC topology, the best
solution found in each group is sent to all others. The RG scheme is similar to FC but only sending the
best solution found in each group g to its neighbors (g−1 and g+1). In the MS scheme, the best solution
so far (found among all groups) determines the master group, and then, this solution is sent to all of the
remaining ones, the slaves. In all the topologies, each time a group receives a solution, it is only accepted
if it improves the worst solution of all the V/G single algorithms running within it. We call our VNS
version that follows this schema Distributed Multi-start VNS.

As discussed above, multi-start versions of VNS may result in an exponential reduction of the error
probability with a linear increasing of computational time as the number of independent V single VNS
runs increases. As a direct consequence, convergence behavior and the robustness of the algorithm are
improved by using multiple short runs in a VNS instead of one long run of a single VNS executed during
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Fig. 1. Different communication topologies: (a) Fully-Connected, (b) Ring, and (c) Master-Slave.

the same total CPU-time. Indeed, considering that VNS runs are independent, a promising technique to
achieve this exponential reduction of the error probability with less or no increment of computational
time is to use parallel computing.

4. Parallel Variable Neighborhood Search

Modern commodity-computers are now able to execute different programs simultaneously, since they
have several processors (cores). Computer scientists have been using this capability to increase the per-
formance of their algorithms. This fact might be particularly effective in the case of metaheuristics.
However, this task is far for being trivial since, in general, it implies algorithmic redesign to be adapted
to the specific architecture.

The first attempt to parallelize VNS was presented in Garcı́a-López et al. (2002). In particular, three
different approaches were described: synchronous parallel VNS (SPVNS), replicated parallel VNS
(RPVNS), and replicated shaking VNS (RSVNS). The idea behind the first approach, SPVNS, is to
parallelize the local search method of a sequential VNS. The second approach, RPVNS, explores a
wider portion of the solution space by using a multi-start strategy. The last variant, RSVNS, follows a
classical master-slave scheme, where the master executes the VNS, and each slave executes the shake
and local search methods.

The authors in Crainic et al. (2004) proposed a new parallel VNS approach called cooperative neigh-
borhood VNS (CNVNS), which also uses the master-slave scheme. CNVNS considers the cooperative
exploration of different neighborhoods by different threads. The master is responsible for maintaining,
updating, and communicating the current overall best solution. It also initiates and terminates the al-
gorithm executed in each thread. Each slave performs the exploration of a different neighborhood and
communicates its local best solution to the master process. Then, the master communicates the best so-
lution found to the slaves every time it is updated, making the slaves to continue the search from the new
best solution.

In Duarte et al. (2016), three different strategies to parallelize VNS were described. The first one
is oriented to parallelize the whole VNS method. The second one parallelizes the shake and the local
search procedures. Finally, the third one explores in parallel the set of predefined neighborhoods. The
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authors illustrate the performance of these strategies by considering a previous state-of-the-art algorithm
designated for the cutwidth minimization problem (Pardo et al., 2013).

A parallel VNS strategy for the min-max order batching problem was also presented in Menéndez
et al. (2017). This optimization problem involves two main actions: on the one hand, to group orders
into feasible batches and, on the other hand, to retrieve the items in each order from their location,
satisfying some constraints. The objective function consists in minimizing the maximum retrieving time
for all the generated batches. These authors analyze all previous parallel strategies concluding that the
Replicated Shaking VNS scheme is the most adequate one for the tackled problem.

A different parallel VNS method to solve the dynamic memory allocation problem was proposed in
Sánchez-Oro et al. (2015) and Sánchez-Oro et al. (2017). This problem consists of determining the mem-
ory state (i.e., location of data structures in memory banks) of a device during the time. The evaluation
considers the cost of moving a data structure from a memory bank to another and the cost for executing
each instruction of the program. As in the aforementioned work, (Sánchez-Oro et al., 2015), the authors
also follow the Replicated-Shaking methodology.

In this paper, we propose a Distributed parallel VNS algorithm (DVNS) which consists of multiple
sequential VNS algorithms distributed among G groups concurrently running on the available proces-
sors/cores. Algorithm 3 shows a pseudo-code of DVNS following the parallel schema described above.
After setting the same kmax parameter for all single VNS algorithms (step 1), DVNS constructs an ini-
tial solution and sets the initial value of k for each single VNS in each group (steps 2 and 5). Then, the
algorithm sets r to 1 (step 6), and repeats the main loop (steps 8 to 13) until the termination criterion
is meet. This loop includes the iteration of all the solutions included in each group (step 10), and the
communication between these groups at every R iterations (step 12).

The IterateVNS() procedure performs steps 6 to 16 of Algorithm 1 for each available solution, while
the Communicate() procedure shares the best solution found in each group according to some of the
migration policies described above (i.e. FC, RG, or MS). Then, the iteration number r is increased by
1 (step 13), testing the termination criterion. Most common finalization criteria include a maximum
number of iterations, CPU-time, or finishing the algorithm when all the single VNS of this distributed
version reach the maximum value of k. The algorithm ends by returning the best solution found among
the G groups (step 15).

Since steps 8 to 10 of the DVNS depicted in Algorithm 3 performG ·V independent iterations of each
available solution, they could be executed in parallel if several processors/cores are available. There
exist different technologies for the implementation of parallel algorithms, such as Threads (Butenhof,
1997), OpenMP (Dagum and Menon, 1998), or CUDA (NVIDIA Corporation, 2017). In this paper, we
use OpenMP, which is a set of compiler directives and library routines that can be used to implement
parallel algorithms. The algorithm designer then includes these compiler directives within a sequential
method in order to inform the compiler which part of the code must be concurrently executed. The
main advantage of this technology is the simplicity of its implementation. In other words, transforming
a sequential algorithm to the parallel version can be performed by including only compiler directives,
without modifying the original sequential code. Therefore, we consider that OpenMP is adequate if the
algorithm follows a data parallel model. In our case, we can parallelize the Algorithm 3 just by including
the correct compiler directives to run step 10 in parallel.

Hence, the parallel version of the DVNS described above has a master process, created by the main
algorithm, that follows the fork-join model (McCool et al., 2012). This strategy is illustrated in Figure 2.
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Algorithm 3: DISTRIBUTED VNS (DVNS)
1 kmax ← β · p
2 for g = 1 to G do
3 for v = 1 to V do
4 Sg,v ← Constructive()
5 kg,v ← 1

6 r ← 1
7 repeat
8 for g = 1 to G do
9 for v = 1 to V do

10 IterateVNS(Sg,v, kg,v);

11 if mod(r,R) = 0 then
12 Comunicate(S)

13 r ← r + 1

14 until TerminationCondition()
15 return Best(S)

Fig. 2. Fork-Join model followed by the parallel implementation of the DVNS algorithm.

Each time the program enters in the parallel section, it creates a set of processes to run them in parallel
across all the available processors (fork). Once the parallel section ends, they are synchronized (join)
and the execution continues in the master thread until it reaches again the next parallel section. The
algorithm finally ends when the stopping condition is met, returning the best solution found during the
whole search process.
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5. Experimental Results

The performance of the algorithm presented in this paper will be illustrated by experimenting with a set
of 144 instances, where the number of nodes ranges from 400 to 900. Table 8 in the Appendix reports
the main characteristics of each instance, where n indicates the number of nodes, |I|/|J | represents the
number of clients/facilities, and p the number of required facilities. These instances were originally
introduced in Colmenar et al. (2016), generated with the method described in (Belotti et al., 2007). All
these instances are publicly available at www.optsicom.es/opm to facilitate future comparisons.

In order to avoid the over-fitting of our methods, we consider in the preliminary studies a representative
subset of 16 instances (i.e., 11%) of the whole set of instances, with different sizes and properties. Notice
that the remaining 128 out of 144 instances (89%) are reserved for the final comparison with the state-
of-the-art procedures. Table 8 shows in bold font the 16 instances that form the representative subset.

We test the performance of the proposed VNS variants by comparing them with state-of-the-art meth-
ods, i.e., XTS and GRASP procedures described in (Belotti et al., 2007) and Colmenar et al. (2016)
respectively. All our VNS variants were coded in C++ and the experiments were conducted on an Intel
i5 660 processor running at 3.3 GHz with 8 Gb of RAM using GNU/Linux. In order to provide a fair
comparison we also executed algorithms XTS (Belotti et al., 2007) and GRASP (Colmenar et al., 2016)
in the same computer.

5.1. Preliminary study

In the first preliminary experiment, we analyze the performance of local search methods, RLS1 and
RLS2, when they explore the reduced neighborhoods described in Section 2. To this purpose, we run
multi-start versions of each local search, starting each one from random feasible solutions. We also
include in this comparison previous methods. In particular, the ones presented in Colmenar et al. (2016),
denoted as Local Search Best (LSB) and Local Search First (LSF). Instead of running all the algorithms
for a fixed number of restarts, we first run the slower approach (LSB) with 100 restarts. Then, the
remaining approaches (LSF, RLS1, and LS2) are executed for the same CPU-time. To test the robustness
of the compared methods, we have executed them for 10 independent iterations. Results are shown in
Table 1, where the first three columns report the instance identifier, the average running time (in seconds)
of each method over each instance (tmax, determined by running LSB with 100 restarts) and the best
cost (objective function value) found in this experiment for each instance (Best). The following four main
columns, show the results of each local search based method. To analyze the effectiveness and efficiency,
we report for each method the number of restarts and the best cost (#Exe, Cost) in each instance. Last
two rows of this table summarize the results averaged over the subset of 16 test instances (Avg. Values)
and the average percentage deviation with respect to the best solution found in this experiment, Dev.(%).
As we can see RLS1 and RLS2 are considerable faster (i.e., larger number of #Exe) than LSB and LSF
without losing too much quality. Both strategies, based on the exploration of the reduced neighborhood,
are even better than LSB approach and slightly worse than LSF. For the sake of brevity we select the
local search methods that obtain the best results in terms of quality (LSF) and speed (RLS2).

In the next experiment, we study the performance of the Basic VNS method when using different
values of kmax and different local search algorithms (LSF and RLS2). In order to adapt the explored
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Table 1
Performance of Reduced Local Search (RLS1 and RLS2) against standard Best (LSB) and First (LSF) neighborhood exploration
methods over the full set of test instances.

LSB LSF RLS1 RLS2

Test Instance tmax Best #Exe Cost #Exe Cost #Exe Cost #Exe Cost

pmed17-p25A 7.2 7317 100 7314.3 104 7317.0 480 7314.0 494 7315.8
pmed20-p50A 9.7 5872 100 5858.9 119 5870.2 398 5861.6 402 5866.8
pmed22-p62A 34.0 5995 100 5995.0 159 5995.0 725 5995.0 731 5995.0
pmed28-p75A 36.4 5681 100 5663.4 122 5672.5 471 5667.4 474 5666.6
pmed33-p87A 64.0 5790 100 5773.6 136 5781.5 527 5773.4 537 5776.3
pmed36-p100A 89.7 6461 100 6457.5 119 6461.0 478 6461.0 486 6460.6
pmed39-p112A 200.5 5935 100 5922.7 144 5930.7 752 5925.6 756 5926.2
pmed40-p225A 310.9 4567 100 4533.4 174 4552.5 738 4542.6 729 4540.0
pmed17-p25B 6.2 6905 100 6905.0 112 6905.0 427 6905.0 437 6905.0
pmed20-p50B 10.1 5665 100 5647.8 123 5662.0 420 5643.1 426 5658.1
pmed22-p62B 25.9 6259 100 6259.0 123 6259.0 564 6259.0 572 6259.0
pmed28-p75B 39.0 5642 100 5639.6 123 5642.0 507 5639.6 509 5641.3
pmed33-p87B 88.5 5840 100 5827.7 148 5831.9 704 5831.0 657 5831.0
pmed36-p100B 111.7 6219 100 6210.6 132 6212.8 591 6212.6 587 6212.6
pmed39-p112B 154.8 6198 100 6196.6 136 6197.7 561 6197.4 583 6197.7
pmed40-p225B 309.4 4502 100 4462.1 173 4487.8 717 4485.0 709 4483.8

Avg. Values 93.6 5928.0 100 5916.7 134 5923.7 566 5919.6 568 5921.0
Dev. (%) 0.191 0.073 0.142 0.118

neighborhood to the specific size of the problem, we set kmax = β · p, with β ranging from 0.1 to 0.4.
Small values of β promote intensification, while the larger ones favor diversification. As in the previous
experiment, we first run the slower VNS version (LSF, β = 0.4), and then we use its CPU-time as
the stopping criterion for the other variants. We show in Table 2 the results of each method averaged
over the set of 16 test instances. The average execution time of all of them is 79.8 seconds. Again, last
two rows summarize the results of the whole table. We report the average cost, Avg. Cost., the average
percentage deviation, Dev.(%), computed with respect to the best solutions found in this experiment, and
the averaged success rate, Avg. Succ., calculated as the number of runs (out of 10) in which the algorithm
reaches the best solution found in all the experiments for each instance.
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The first interesting result of this experiment is that, although LSF produces better results than RLS2
when both of them are executed in isolation, once they are included in a VNS template, the associated
performance changes. Specifically, independently of the value of β, VNS variants that consider RLS2
as local search consistently produce better results than those variants that consider LSF. It is worth
mentioning that all VNS strategies were executed for the same CPU-time. We can then conclude that the
new proposed strategies present a good compromise between quality of solutions and computing time,
which makes them as suitable strategies to be integrated into other metaheuristic schemes such as VNS.
Among all VNS variants that use RLS2, the one with β = 0.3 is able to reach the maximum values for
Avg. Cost. (5928.6) and Avg. Succ. (8.13/10), together with the minimum Dev. (0.024 %).

We complement this experiment by studying the average convergence of all the VNS variants shown
in Table 2 during the first 125 seconds of execution. In order to get useful information, we restrict our
attention to the 4 largest test instances, i.e., those with n equal to 112 and 225 (see Table 8). Small
ones were not included since the differences among compared methods were imperceptible. As we can
observe in Figure 3, all the VNS-RLS2 variants outperform the corresponding VNS-LSF variants. More-
over, in short-term time horizons all VNS-RLS2 variants present similar performance. However, when
considering middle or large CPU-times, variants with higher values of β emerge over the lower ones.
Specifically, we select the variant with β = 0.3 for the remaining experiments.

We also tested the effect of the filtering method based on a hash function described in Section 2. This
strategy tries to avoid the application of the most computational-demanding procedure (i.e, the local
search method) to a solution more than once. To this purpose, we run the best VNS variant (i.e. VNS-
RLS2 with β = 0.3) without this filtering getting an average success rate of 7.88 instead of 8.31 (out of
10) when using this strategy. Hence, we conclude that this filtering method is a good strategy to improve
the solution quality avoiding revisiting solutions in a VNS template.

As it was discussed in Section 3, Multi-start VNS may result in an exponential reduction of the error
probability with a linear increasing of computational time as the number of independent runs increases.
More precisely, we experimentally test if it is better to run a multi-start versions of VNS or a classical
implementation of a VNS (starting from a feasible solution and ending when it reaches the termination
condition).

In order to test the influence of parameter V over the algorithm performance, different multi-start
versions have been executed with values ranging from V = 1 to V = 20. Since our purpose is to
compare the previous best VNS variant with the corresponding multi-start variants (those with V > 1),
we run them over the test instances for the same tmax used in the previous experiment (i.e., the one
shown in Table 2). Table 3 shows the results of this experiment by considering V = {1, 5, 10, 20}. To
favor the direct comparison among variants, we replicate again the values of V = 1 which correspond
to VNS-RLS2 with β = 0.3 in Table 2. As it can be seen, the success rate increases with V (from
8.13 to 8.81) as the averaged value over all the test instances for V = 20. These results show how the
convergence behavior and the robustness of the algorithm are improved by using multiple short runs of
VNS instead of one long run of a single VNS executed during the same total CPU-time.

Figure 4 shows the average convergence when running all these VNS variants over the largest test
instances for different values of V . This figure shows how multi-start VNS methods seems to have
slower convergence for higher values of V . Hence, it is necessary to have enough CPU-time to let the
algorithm to converge to high quality solutions. In particular, the VNS version with V = 20 needs more
than 125 seconds to outperform the other ones.
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Fig. 3. Average convergence when running the VNS-LSF and VNS-RLS2 algorithms over the larger test instances for
different values of β.

Table 3
Performance of Multi-start VNS for several values of V .

V=1 V=5 V=10 V=20

Test Instance Best Succ. Cost Succ. Cost Succ. Cost Succ. Cost

pmed17-p25A 7317 9 7316.2 9 7316.7 10 7317.0 10 7317.0
pmed20-p50A 5872 10 5872.0 10 5872.0 10 5872.0 10 5872.0
pmed22-p62A 5995 7 5990.8 10 5995.0 10 5995.0 10 5995.0
pmed28-p75A 5681 8 5677.4 8 5678.2 9 5679.8 10 5681.0
pmed33-p87A 5793 8 5791.2 10 5793.0 10 5793.0 10 5793.0
pmed36-p100A 6461 10 6461.0 10 6461.0 10 6461.0 10 6461.0
pmed39-p112A 5935 10 5935.0 10 5935.0 10 5935.0 10 5935.0
pmed40-p225A 4572 4 4570.1 4 4570.2 3 4570.5 3 4571.1
pmed17-p25B 6905 9 6903.8 10 6905.0 10 6905.0 10 6905.0
pmed20-p50B 5665 10 5665.0 10 5665.0 10 5665.0 10 5665.0
pmed22-p62B 6259 10 6259.0 10 6259.0 10 6259.0 10 6259.0
pmed28-p75B 5642 10 5642.0 10 5642.0 10 5642.0 10 5642.0
pmed33-p87B 5840 8 5838.6 6 5838.7 7 5839.1 10 5840.0
pmed36-p100B 6219 5 6215.0 8 6217.6 7 6217.5 6 6216.8
pmed39-p112B 6198 10 6198.0 10 6198.0 10 6198.0 10 6198.0
pmed40-p225B 4532 2 4523.1 1 4525.9 4 4528.4 2 4527.8

Avg. Values 5930.4 8.13 5928.6 8.50 5929.5 8.75 5929.8 8.81 5929.9
Dev. (%) 0.029 0.014 0.009 0.008
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Fig. 4. Average convergence when running the Multi-start VNS algorithm over the larger test instances for different values of
V .

In the next experiment, we compare the sequential implementation of multi-start VNS with the paral-
lel versions. Each algorithm was run using the same value of tmax as in the previous experiments. We
consider an additional method, denoted Multi-start VNS? executed for a computing time proportional to
the number of cores used in parallel versions. Specifically, we run it for a computing time 4 (number of
cores in our computer) times larger than the one used in parallel versions. Results are shown in Table
4, where we report the same metrics than before (i.e., Avg. Cost, Dev.(%), and Avg. Succ.). We addi-
tionally include the average number of iterations (Avg. It.) performed by each algorithm over all the test
instances. Note that, for the sake of simplicity, we only report summarized results. In this table, Parallel
VNS is the straightforward parallelization of the multi-start versions (without any kind of communi-
cation among iterations). Then, as expected, Parallel VNS will perform a larger number of iterations
(2926.4 on average) than the sequential version (1473.3), finding better results in terms of average cost
(5930.0 vs. 5929.9), average deviation (0.0056 % vs 0.0077 %), and success rare (9.31 vs 8.81). When
considering the sequential version executed for longer computing times (Multi-start VNS?), we observe
that it presents similar results than Parallel VNS. It is worth mentioning that most of modern processors
have several cores that, if algorithms do not use them, they are completely wasted. It is interesting to see
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that Multi-start VNS? performs more iterations than Parallel VNS (3236.6 vs. 2926.4). This behavior is
probably due to the time overhead needed to manage the threads.

As we described in Section 4, the solution quality of VNS could be further improved by distributing
the V solutions into smaller G groups of V/G elements each and allowing the communication between
them at everyR iterations. To compare the performance of the parallel implementation of the Distributed
VNS with the previous sequential multi-start VNS and parallel VNS with V = 20, we distribute the 20
solutions into G = 4 groups with V = 5 solutions each, communicating through FC (DVNS1), RG
(DVNS2), and MS (DVNS3) migration topologies every R = p/5 iterations. The general conclusion is
that all parallel variants improve the results achieved by the sequential VNS, being DVNS3 the best one.
It presents the largest average success (9.63/10), averaged cost (5930.2) and lowest average deviation
(0.0033%). It is worth mentioning that the migration allows the algorithm to intensify the search around
promising regions. Perhaps, for that reason, FC topology used by DVNS1 gets the worst results among
them. It may be due to an excess of intensification over the broadcasted solutions to all groups.

Table 4
Performance of Parallel VNS and DVNS against Multi-start VNS.

VNS G V Topology Avg. It. Avg. Cost Dev.(%) Avg. Succ.

Multi-start VNS 1 20 None 1473.3 5929.9 0.0077 8.81
Multi-start VNS? 1 20 None 3236.6 5930.1 0.0046 9.31
Parallel VNS 4 5 None 2926.4 5930.0 0.0056 9.31
DVNS1 4 5 FC 2773.0 5929.9 0.0073 9.25
DVNS2 4 5 RG 2786.0 5930.1 0.0048 9.50
DVNS3 4 5 MS 2813.8 5930.2 0.0032 9.63

5.2. Comparison with state-of-the-art algorithms.

In this section, our best variant, i.e., VNS with RLS2, β = 0.3 and MS communication topology with
R = p/5, is compared with previous methods in the state of the art for the OpM in all the 144 available
instances. The stopping condition for this experimentation is a time horizon given by a maximum number
of iterations. After some testing, it has been set to 20·p for each instance. We have observed that this
value is sufficient to get high quality results. We also tested 100·p and a larger parallel version with
V = 25 instead of V = 4, but these variants produce marginal improvements with a considerably larger
computing time.

The best identified procedures in the related literature include two variants of Branch & Cut, one stan-
dard (BC) and another one coupled with the Tabu Search method (XTS), both presented in (Belotti et al.,
2007); and a recent Greedy Randomized Adaptive Search Procedure (GRASP) presented in (Colmenar
et al., 2016). The BC is an exact procedure that, executed for unlimited time, guarantees the optimality
of the solution found. However, considering that we are proposing heuristic procedures, we set the max-
imum computing time of this exact method to 3600 seconds. If after that time the BC has not found the
optimal solution, we interrupt its execution, returning the best solution found. The XTS is configured
with the best parameters described in Belotti et al. (2007). We also include in the comparison the best
GRASP variant reported in Colmenar et al. (2016), i.e., constructive C2 with α = 0.75, local search
LSF , incremental computation of the cost, and filter strategy with q = 2, executed for a time horizon of
1000 iterations.
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Table 5 reports the results showing the merit of the VNS approach over the previous state-of-the-art
procedures. Again, we report similar metrics than the ones used in previous experiments. Results of BC
method have been also included as a baseline for the comparison (i.e., not to compare the BC itself
with other heuristics). VNS clearly outperforms previous algorithms in all the considered metrics. It
obtains the best results in 137 instances (out of 144), while the competitors obtain 23 (XTS) and 92
(GRASP). In addition, VNS obtains these results by employing only 10% the total CPU-time consumed
by the previous heuristics. In order to facilitate the direct comparison among methods, results are divided
according to the number of facilities of the instances used in the experimentation, p. Specifically, we
identify the sets Small (p = n/16), Medium (p = n/8), and Large (p = n/4), containing 48 instances
each one. We can see that in the Small, the best performing methods (i.e., GRASP and VNS) achieve the
same results in terms of quality. Therefore, in our opinion this set should not be considered for future
comparisons since the only perceptible challenge seems to be the reduction of the computing time.

In Medium and Large sets we can observe relevant differences among the compared methods. VNS
emerges as the best method since it does not match the best solution in only 5 and 2 instances, respec-
tively. In addition, it employs short computing times to obtain those results. It is worth mentioning that
OpM instances used in this experimentation have large values of the objective function (see the column
Avg. Cost). Therefore, improving the value of the cost in hundreds barely affects to the value of the
average deviation. It is also important to remark that the OpM problem consists in maximizing a mini-
mum value. Then, these problems become in an actual challenge for heuristics methods. Therefore, the
reduction from 1.84% (XTS) and 0.05% (GRASP) to 0.001 % (VNS) can be considered as a success.

Table 5
Comparison of VNS against the previous state of the art for OpM .

Size Algorithm Avg. Cost Dev. (%) Avg. Time #Best

Small BC 7452.0 1.7195 1800.0 9
XTS 7463.0 1.5747 272.4 16
GRASP 7582.4 0.0000 247.7 48
VNS 7582.4 0.0000 8.4 48

Medium BC 5784.8 1.2296 6915.7 6
XTS 5814.5 0.7220 397.2 6
GRASP 5855.5 0.0208 406.0 35
VNS 5856.6 0.0025 28.6 43

Large BC 4090.3 2.9134 7301.1 1
XTS 4169.8 1.0265 331.7 1
GRASP 4205.0 0.1913 642.4 9
VNS 4213.1 0.0002 108.9 46

Full set BC 5775.7 1.8425 5338.9 16
XTS 5815.8 1.1615 333.8 23
GRASP 5881.0 0.0532 432.0 92
VNS 5884.0 0.0013 48.7 137

In order to support the previous assessments, we applied a Friedman test to the results obtained by all
the heuristics analyzed in this paper (XTS, GRASP and VNS) over the full set of instances. This non-
parametric statistical test is similar to the repeated measures of ANOVA test, and it is usually used to
detect differences in algorithm performance across the same set of instances. The test ranks each method
on each instance, and finally considers the values of the ranks obtained by each algorithm. These results
were: 2.56 (XTS), 2.25 (GRASP), and 1.19 (VNS). The average ranking for our VNS method (close
to 1) reflects that it generally obtains higher-quality solutions. Finally, the obtained p-value (< 0.0001)
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clearly indicates that there is enough statistical evidence to confirm that there are differences among the
three algorithms.

Having confirmed the existence of differences between the methods, we conducted two well-known
non-parametric tests for pairwise comparisons, the Wilcoxon test and the Sign test, in order to detect
consistent differences between VNS and the two previous methods. The Wilcoxon test answers the
question: Do the two samples (solutions obtained with both methods in our case) represent two different
populations? The resulting p-value < 0.0001 clearly indicates that the values compared come from
different methods (using a typical significance level α = 0.05 as the threshold for rejecting the null
hypothesis). On the other hand, the Sign test computes the number of instances in which an algorithm
outperforms the competitor (sign). Table 6 summarize the results of the tests. Given the low p-values,
the statistical tests clearly support the superiority of VNS over the XTP algorithm described in Belotti
et al. (2007), and the GRASP procedure proposed in Colmenar et al. (2016).

Table 6
Results of the non-parametric Wilcoxon and Sign test applied to results given by XTS, GRASP and VNS heuristics.

Wilcoxon Sign test

Compared algorithms p-value sign p-value

VNS vs XTS < 0.0001 120 < 0.0001
VNS vs GRASP < 0.0001 52 < 0.0001

Finally, in order to contribute to a further research in this problem, we detail in Table 7 the results of
our experiments breaking down them into the instance level. Table 7 shows the best cost found for each
one of the 144 instances we have dealt with. In addition, it is also indicated the algorithm/s that obtained
the best solution, as well as the time spent to reach it. In the cases where two or more algorithms found
the same best solution, the reported time corresponds to the faster one, which is shown in bold font.

6. Conclusions

In this work we have studied the application of a VNS approach to solve the OpM problem. In particu-
lar, we have developed two local search algorithms based on the exploration of a reduced neighborhood
which gives a good compromise between the quality of solutions and the computation time, making
these strategies suitable to be integrated into a higher level metaheuristic such as VNS. The performance
of the local search stage in the VNS algorithm has been compared with previous approaches, showing an
increase in the quality of solutions of 50% and 25% in short and large computing times. We have devel-
oped a parallel version of the VNS algorithm that executes multiple single VNS algorithms distributed
among several processors, communicating to each other at certain iterations according to three different
exchanging topologies, which we have been also compared among them.

Before engaging into competitive testing, we performed a series of preliminary tests to determine the
contribution of the various elements that we have designed, as the perturbation depth of the shaking
mechanism or the best interaction schema in the parallel version. Therefore, a final configuration for the
VNS scheme has been defined according to the results of these experiments.

The extensive final comparison between the proposed parallel VNS algorithm and the two best meth-
ods identified in the literature, XTS and GRASP, reveals that our algorithm is able to outperform the
current state-of-the-art methods in both short and long time horizons. In particular, our approach finds
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Table 7
Best cost obtained by each one of the instances, algorithms that obtained the value, and time (in seconds) spent by the faster
algorithm (in bold).

Instance Best Method Time Instance Best Method Time

pmed17-p25.A.txt 7317 GRASP; VNS 1.9 pmed17-p25.B.txt 6905 GRASP; VNS 1.7
pmed17-p50.A.txt 5411 VNS 5.8 pmed17-p50.B.txt 5563 BC; XTS; GRASP; VNS 5.0
pmed17-p100.A.txt 4054 GRASP; VNS 18.6 pmed17-p100.B.txt 3992 GRASP; VNS 18.0
pmed18-p25.A.txt 7432 GRASP; VNS 1.7 pmed18-p25.B.txt 7662 BC; XTS; GRASP; VNS 1.7
pmed18-p50.A.txt 5746 BC; XTS; GRASP; VNS 5.0 pmed18-p50.B.txt 5852 BC; XTS; GRASP; VNS 4.8
pmed18-p100.A.txt 4220 BC; XTS; VNS 17.3 pmed18-p100.B.txt 4122 VNS 16.8
pmed19-p25.A.txt 7020 GRASP; VNS 1.7 pmed19-p25.B.txt 6816 BC; XTS; GRASP; VNS 1.7
pmed19-p50.A.txt 5387 GRASP; VNS 4.8 pmed19-p50.B.txt 5423 GRASP; VNS 4.9
pmed19-p100.A.txt 4033 GRASP; VNS 17.6 pmed19-p100.B.txt 4016 GRASP; VNS 16.7
pmed20-p25.A.txt 7648 GRASP; VNS 1.6 pmed20-p25.B.txt 7349 XTS; GRASP; VNS 1.6
pmed20-p50.A.txt 5872 GRASP; VNS 4.8 pmed20-p50.B.txt 5665 BC; XTS; GRASP; VNS 4.8
pmed20-p100.A.txt 4063 VNS 18.0 pmed20-p100.B.txt 4067 VNS 16.4
pmed21-p31.A.txt 7304 GRASP; VNS 3.1 pmed21-p31.B.txt 7331 BC; XTS; GRASP; VNS 3.2
pmed21-p62.A.txt 5784 GRASP; VNS 9.9 pmed21-p62.B.txt 5870 GRASP; VNS 9.7
pmed21-p125.A.txt 4155 VNS 38.4 pmed21-p125.B.txt 4033 GRASP; VNS 35.8
pmed22-p31.A.txt 7900 GRASP; VNS 3.2 pmed22-p31.B.txt 7695 BC; XTS; GRASP; VNS 3.2
pmed22-p62.A.txt 5995 GRASP; VNS 9.9 pmed22-p62.B.txt 6259 GRASP; VNS 10.1
pmed22-p125.A.txt 4358 VNS 35.6 pmed22-p125.B.txt 4338 VNS 39.2
pmed23-p31.A.txt 7841 GRASP; VNS 3.0 pmed23-p31.B.txt 7137 BC; XTS; GRASP; VNS 3.2
pmed23-p62.A.txt 5785 GRASP; VNS 10.2 pmed23-p62.B.txt 5724 GRASP; VNS 9.7
pmed23-p125.A.txt 4114 VNS 36.7 pmed23-p125.B.txt 4095 VNS 37.4
pmed24-p31.A.txt 7425 GRASP; VNS 3.1 pmed24-p31.B.txt 7190 GRASP; VNS 3.1
pmed24-p62.A.txt 5528 GRASP; VNS 10.3 pmed24-p62.B.txt 5752 GRASP; VNS 10.1
pmed24-p125.A.txt 4091 VNS 37.0 pmed24-p125.B.txt 4072 VNS 36.4
pmed25-p31.A.txt 7552 GRASP; VNS 3.2 pmed25-p31.B.txt 7552 GRASP; VNS 3.2
pmed25-p62.A.txt 5767 GRASP; VNS 9.7 pmed25-p62.B.txt 5692 GRASP; VNS 10.0
pmed25-p125.A.txt 4155 VNS 35.5 pmed25-p125.B.txt 4233 VNS 40.4
pmed26-p37.A.txt 8112 GRASP; VNS 5.5 pmed26-p37.B.txt 7643 XTS; GRASP 5.5
pmed26-p75.A.txt 5789 GRASP; VNS 17.9 pmed26-p75.B.txt 5923 GRASP; VNS 18.3
pmed26-p150.A.txt 4341 VNS 76.7 pmed26-p150.B.txt 4173 VNS 70.3
pmed27-p37.A.txt 7556 GRASP; VNS 5.8 pmed27-p37.B.txt 7448 BC; XTS; GRASP; VNS 5.4
pmed27-p75.A.txt 5668 GRASP; VNS 18.4 pmed27-p75.B.txt 5844 VNS 19.6
pmed27-p150.A.txt 4062 VNS 68.7 pmed27-p150.B.txt 4144 VNS 67.1
pmed28-p37.A.txt 7366 GRASP; VNS 5.8 pmed28-p37.B.txt 7388 XTS; GRASP; VNS 5.5
pmed28-p75.A.txt 5681 VNS 18.7 pmed28-p75.B.txt 5642 GRASP; VNS 19.2
pmed28-p150.A.txt 4099 VNS 69.7 pmed28-p150.B.txt 4069 GRASP; VNS 82.1
pmed29-p37.A.txt 7404 GRASP; VNS 5.5 pmed29-p37.B.txt 7529 GRASP; VNS 5.6
pmed29-p75.A.txt 5880 BC; XTS; GRASP; VNS 18.7 pmed29-p75.B.txt 5709 GRASP; VNS 19.2
pmed29-p150.A.txt 4141 VNS 62.5 pmed29-p150.B.txt 4157 GRASP; VNS 65.5
pmed30-p37.A.txt 7704 GRASP; VNS 5.7 pmed30-p37.B.txt 8048 BC; XTS; GRASP; VNS 5.4
pmed30-p75.A.txt 6189 GRASP; VNS 19.3 pmed30-p75.B.txt 6041 GRASP; VNS 18.5
pmed30-p150.A.txt 4385 VNS 69.6 pmed30-p150.B.txt 4313 VNS 75.3
pmed31-p43.A.txt 7424 GRASP; VNS 9.0 pmed31-p43.B.txt 7320 XTS; GRASP; VNS 9.1
pmed31-p87.A.txt 5905 BC; XTS; GRASP; VNS 32.1 pmed31-p87.B.txt 5618 VNS 31.3
pmed31-p175.A.txt 4135 VNS 124.7 pmed31-p175.B.txt 4138 VNS 124.4
pmed32-p43.A.txt 7794 GRASP; VNS 9.4 pmed32-p43.B.txt 7899 BC; XTS; GRASP; VNS 8.8
pmed32-p87.A.txt 5925 VNS 32.3 pmed32-p87.B.txt 5852 GRASP; VNS 31.7
pmed32-p175.A.txt 4242 VNS 111.6 pmed32-p175.B.txt 4244 VNS 126.9
pmed33-p43.A.txt 7598 GRASP; VNS 9.1 pmed33-p43.B.txt 7611 GRASP; VNS 8.7
pmed33-p87.A.txt 5793 VNS 29.6 pmed33-p87.B.txt 5840 GRASP; VNS 32.1
pmed33-p175.A.txt 4105 VNS 129.8 pmed33-p175.B.txt 4156 VNS 112.5
pmed34-p43.A.txt 7725 GRASP; VNS 8.9 pmed34-p43.B.txt 7514 BC; XTS; GRASP; VNS 9.2
pmed34-p87.A.txt 5849 GRASP; VNS 31.2 pmed34-p87.B.txt 5857 GRASP; VNS 30.9
pmed34-p175.A.txt 4287 VNS 69.5 pmed34-p175.B.txt 4270 GRASP; VNS 136.5
pmed35-p50.A.txt 7155 GRASP; VNS 15.8 pmed35-p50.B.txt 7570 XTS; GRASP; VNS 16.0
pmed35-p100.A.txt 5845 GRASP; VNS 54.1 pmed35-p100.B.txt 5639 VNS 52.8
pmed35-p200.A.txt 4007 GRASP; VNS 167.0 pmed35-p200.B.txt 4109 VNS 206.6
pmed36-p50.A.txt 8179 GRASP; VNS 15.2 pmed36-p50.B.txt 8144 GRASP; VNS 14.9
pmed36-p100.A.txt 6461 GRASP; VNS 52.9 pmed36-p100.B.txt 6219 VNS 54.7
pmed36-p200.A.txt 4319 VNS 202.1 pmed36-p200.B.txt 4319 VNS 199.0
pmed37-p50.A.txt 7830 GRASP; VNS 15.5 pmed37-p50.B.txt 8379 GRASP; VNS 14.8
pmed37-p100.A.txt 6203 GRASP; VNS 50.8 pmed37-p100.B.txt 6209 VNS 49.9
pmed37-p200.A.txt 4593 VNS 184.1 pmed37-p200.B.txt 4609 VNS 201.8
pmed38-p56.A.txt 7432 GRASP; VNS 23.4 pmed38-p56.B.txt 7535 GRASP; VNS 24.5
pmed38-p112.A.txt 5913 VNS 86.1 pmed38-p112.B.txt 5949 GRASP; VNS 84.5
pmed38-p225.A.txt 4428 VNS 291.1 pmed38-p225.B.txt 4446 VNS 319.1
pmed39-p56.A.txt 7712 GRASP; VNS 22.7 pmed39-p56.B.txt 7625 XTS; GRASP; VNS 23.6
pmed39-p112.A.txt 5935 GRASP; VNS 78.0 pmed39-p112.B.txt 6198 GRASP; VNS 78.7
pmed39-p225.A.txt 4369 VNS 322.2 pmed39-p225.B.txt 4266 VNS 328.5
pmed40-p56.A.txt 8211 GRASP; VNS 22.8 pmed40-p56.B.txt 8022 XTS; GRASP; VNS 24.4
pmed40-p112.A.txt 6272 GRASP; VNS 79.0 pmed40-p112.B.txt 6200 VNS 72.5
pmed40-p225.A.txt 4571 VNS 285.0 pmed40-p225.B.txt 4524 VNS 271.6
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the best known results in previously used instances in considerably shorter computing times. The supe-
riority of our method is further supported by the low p-values associated with non-parametric tests for
detecting statistical significant differences between the algorithms.

Future research on the problem will examine other complex metaheuristics such as Simulated Anneal-
ing or any other hybrid approaches as variants of the VNS proposed here. Besides, the VNS approach
could be applied to a multi-objective optimization scenario in the OpM problem.

7. Appendix

We have used a set of instances previously described in (Colmenar et al., 2016). In particular, they were
generated by considering 24 instances (from pmed17 to pmed40) of the well know p-median problem1,
where the number of nodes ranges from 400 to 900. In order to transform a p-median instance into an
obnoxious p-median one, (Belotti et al., 2007) described the following procedure. Given the original
instance with n nodes, this method selects n/2 nodes at random to be the set of clients. The remaining
n/2 become the set of facilities. Additionally, for each original instance, (Belotti et al., 2007) derived
three new instances for the OpM by considering three values of p: bn/4c, bn/8c and bn/16c. Table 8
reports the main characteristics of the new set of of 144 instances, where |I|/|J | represents the number
of clients/facilities, and p the number of required facilities.
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Table 8
Instances generated from the OR-Library (Beasley, 1990).

N◦ Instance n |I|/|J | p N◦ Instance n |I|/|J | p
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22 pmed24-p31.A.txt 500 250 31 94 pmed24-p31.B.txt 500 250 31
23 pmed24-p62.A.txt 500 250 62 95 pmed24-p62.B.txt 500 250 62
24 pmed24-p125.A.txt 500 250 125 96 pmed24-p125.B.txt 500 250 125
25 pmed25-p31.A.txt 500 250 31 97 pmed25-p31.B.txt 500 250 31
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32 pmed27-p75.A.txt 600 300 75 104 pmed27-p75.B.txt 600 300 75
33 pmed27-p150.A.txt 600 300 150 105 pmed27-p150.B.txt 600 300 150
34 pmed28-p37.A.txt 600 300 37 106 pmed28-p37.B.txt 600 300 37
35 pmed28-p75.A.txt 600 300 75 107 pmed28-p75.B.txt 600 300 75
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43 pmed31-p43.A.txt 700 350 43 115 pmed31-p43.B.txt 700 350 43
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