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Abstract In the context of simulation-based optimisation, this paper reviews
recent work related to the role of metaheuristics, matheuristics (combinations
of exact optimisation methods with metaheuristics), simheuristics (hybridisa-
tion of simulation with metaheuristics), biased-randomised heuristics for ‘agile’
optimisation via parallel computing, and learnheuristics (combination of sta-
tistical / machine learning with metaheuristics) to deal with NP-hard and
large-scale optimisation problems in areas such as transport & logistics, man-
ufacturing & production, smart cities, telecommunication networks, finance
& insurance, sustainable energy consumption, health care, e-marketing, or
bioinformatics. The manuscript provides the main related concepts and up-
dated references that illustrate the applications of these hybrid optimisation-
simulation-learning approaches in solving rich and real-life challenges under
dynamic and uncertainty scenarios. A numerical analysis is also included to il-
lustrate the benefits that these approaches can offer across different application
fields. Finally, this work concludes by highlighting open research lines into the
combination of these methodologies to extend the concept of simulation-based
optimisation.
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1 Introduction

Combinatorial optimisation approaches can be used to model many real-world
activities in sectors such as transport & logistics, manufacturing & production,
finance & banking, bioinformatics, health care, energy systems, and telecom-
munication networks. Typically, real-life optimisation problems contain rich
and soft constraints, as well as non-smooth objective functions, which makes
many of them NP-hard optimisation problems. In addition, they frequently are
of large size, including hundreds or thousands of variables (e.g., customers,
products, assets, facilities, etc.). In this scenario, exact optimisation meth-
ods are of limited effectiveness, and so metaheuristics provide an excellent
alternative to generate near-optimal solutions in reasonable computing times.
As explained in Fischetti and Fischetti (2018), it is possible — and frequently
convenient — to hybridise metaheuristics with exact methods (matheuristics),
since it can help reach solutions of higher quality without incurring prohibitive
computational times. However, many real-life systems are challenging not only
because of their size but because they also subject to uncertain and dynamic
conditions. Dynamic data, for instance: travel times, customers’ demands, pro-
cessing times, investment returns, etc. are better modelled as random vari-
ables than as constant values. In addition, real world systems are subject to
random events during their operation e.g., random failures of some compo-
nents, unavailability of some customers or items, changes in market condi-
tions, stockouts due to random demands, etc. Simulation-based optimisation
approaches are required (Gosavi et al., 2015; de Sousa Junior et al., 2019)
to account for these stochastic uncertainties. Simulation-based optimisation
approaches combine optimisation algorithms with simulation methods of any
kind, e.g.: Monte Carlo simulation, discrete-event simulation, agent-based sim-
ulation, etc. Some simulation-based optimisation approaches rely on the use
of heuristics or metaheuristics for their optimisation component. In particu-
lar, both biased-randomised heuristics Grasas et al. (2017) and simheuristics
Chica et al. (2020) combine simulation with heuristics and/or metaheuristics.
The former employs random sampling from a skewed probability distribution
to induce a non-symmetric (biased) randomisation effect during the construc-
tive process defined by the logic behind a heuristic procedure. This allows us
to transform a deterministic procedure into a probabilistic algorithm, capable
of generating alternative solutions of ‘good’ quality in extremely short com-
puting times (Juan et al., 2009), which can even be real time (less than a
second) if parallel computing techniques are utilised. Simheuristics integrate
simulation into the metaheuristic framework, so that both components inter-
act and exchange information while searching for an optimal solution in an
environment with stochastic uncertainty. Still, other extensions of metaheuris-
tics are possible and even necessary. For instance, some real-life optimisation
problems also show dynamic behaviour — e.g., travel times might vary ac-
cording to the traffic status, customers’ demands may depend upon manage-
rial decisions, processing times can vary as servers become less efficient due
to intensive use, etc. —, which encourages the combination of metaheuristics



X-Heuristics 3

with machine learning methods (learnheuristics) as a way to deal with non-
static inputs (Calvet et al., 2017). The main contribution of this paper is to
provide an updated overview of all of these extensions of the heuristic concept,
which include: metaheuristic, matheuristics, simheuristics, biased-randomised
heuristics, and learnheuristics. In doing so, the paper proposes the general ter-
minology x-heuristics to cover the aforementioned extensions as well as other
possible combinations among them. Thus, for instance, combinations of biased-
randomised heuristics with metaheuristics (Ferone et al., 2019), simheuristics
(Gonzalez-Martin et al., 2018), and learnheuristics (Bayliss et al., 2020) are al-
ready present in the scientific literature. Likewise, it seems quite obvious that
some real-life problems might require the hybridisation of simheuristics with
learnheuristics to deal with stochastic and dynamic conditions simultaneously.
For a similar reason, the combination of metaheuristics, simulation, and fuzzy
techniques seems to be a good choice to deal with optimisation problems that
consider both stochastic as well as fuzzy uncertainty (Oliva et al., 2020). To
the best of our knowledge, this is the first time that such a complete overview
on x -heuristics is provided in the scientific literature and therefore we are op-
timistic that it can be extremely useful for both researchers and practitioners
working in the areas of metaheuristic optimisation, simulation-based optimi-
sation, and machine learning. Figure 1 presents the time evolution of these
extensions during the last decade, measured by the number of Scopus-indexed
articles that mention them in the title, abstract, or keywords.

Fig. 1 Evolution of Scopus-indexed articles for each methodology.

Notice that matheuristics are the most popular approach, and the one
evolving faster. This reflects the differing strengths of exact methods and meta-
heuristics and the value of a combination between them. It is also due, at least
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in part, to the fact that the combination of exact optimisation methods with
metaheuristic optimisation algorithms is a natural process, which is carried
out by members of the same academic communities in Operations Research /
Management Science (OR / MS) or Computer Science. Other approaches, such
as biased-randomised heuristics and simheuristics, are also becoming quite
popular, despite the fact that they combine different tools (simulation and
optimisation). Finally, learnheuristics is a quite recent concept, but the hy-
bridisation of metaheuristics with machine learning is clearly a very promising
area to explore in the future decade.

When searching in Scopus for “(simulation-based) AND optimisation”, the
first source of documents is the ‘Proceedings of the Winter Simulation Confer-
ence’ (www.wintersim.org), with up to 164 indexed documents. If we restrict
the search to journals in the period 2006-2020 then four distinct clusters of
journals appear. Figure 2 shows the main journals clustered by their citation
relations. On the top left are engineering journals such as Structural and Mul-
tidisciplinary Optimization. On the bottom left is a small cluster of transport
related journals, include Transportation Research Part C: Emerging Technolo-
gies and Transport Research Record. On the lower half of the figure is a cluster
of OR/MS journals, within this the European Journal of Operational Research
and the Annals of Operations Research sit between the transport journals and
the production journals, reflecting citation links to both. On the right of the
figure is a cluster of energy related journals which have limited citation links
with the other fields. This diverse range of applications of simulation in opti-
misation reflects the value of the techniques discussed in this review.

The rest of this document is distributed as follows: Section 2 provides
a short review on metaheuristics, especially in the context of optimisation
problems with stochastic components. Section 3 perform a similar analysis in
the case of matheuristics. Next, Section 4 discusses the concepts of biased-
randomised algorithms and how they can be applied in ‘agile’ optimisation.
Section 5 reviews statistical and machine learning applications in the context
of stochastic optimisation. Section 6 offers an overview of the relatively novel
concepts of learnheuristics and simheuristics, while commenting on how they
are being used to solve stochastic optimisation problems. Section 7 illustrates
some numerical examples using several x -heuristics, while Section 8 discusses
open challenges and research lines in the field. Finally, Section 9 summarises
the main conclusions of the manuscript.

2 Metaheuristics in Stochastic Optimisation

Some well-known decision modelling methods often encounter a great deal of
difficulty when faced with the challenge of solving hard optimisation problems
that abound in the real world. Vitally important applications in business, engi-
neering, economics, and science cannot be tackled with any reasonable hope of
success, within practical time horizons, using exact solution methods that have
been the predominant focus of academic research throughout the past three
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Fig. 2 Main journals in Scopus publishing articles on ‘simulation-based optimisation’ from
2006-2020 clustered in Vosviewer.

decades. In this context, heuristics have become a very popular family of so-
lution methods for optimisation problems because they are capable of finding
acceptable solutions in a reasonable amount of time. In recent decades, algo-
rithmic advances as well as hardware and software improvements have provided
an excellent environment on which to build heuristic-based decision support
systems based on new and effective methodologies called metaheuristics.

Metaheuristic approaches are dramatically changing our ability to solve
problems of practical significance and are extending the frontier of problems
that can be handled effectively, yielding solutions whose quality often signifi-
cantly surpasses that obtained by methods previously applied. In this paper,
we target a class of optimisation problems that are especially difficult to solve,
in which uncertainty adds an extra layer of complexity to problems that are
very hard to solve even in their standard deterministic versions, thus resulting
in true challenges for optimisation solvers. It is well documented in the sci-
entific literature that it is difficult to obtain good solutions to many families
of combinatorial optimisation problems, such as routing, scheduling or pro-
duction in their deterministic versions. It is therefore expected that when we
include uncertainty in the model definition that the resulting stochastic model
is especially difficult to solve.
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At its core, a metaheuristic algorithm is a search methodology that at-
tempts to find the best (optimal) — or at least a “good” — feasible solution
in the solution space defined by the problem representation and the set of con-
straints in the problem. One metaheuristic methodology differs from another
in the way in which it goes about searching the solution space. What they have
in common is that they provide the user with a set of rules to guide the design
of a heuristic for a specific problem. In this sense, we say that metaheuristics
are problem independent, and that it is possible to customise them to solve a
particular problem and end up with a heuristic. Recently, Mart́ı et al. (2018),
in their three-volume Handbook of Heuristics, compiled 8 search strategies, 4
simple local search based methods, and 14 complex metaheuristics method-
ologies. Clearly it is not possible to cover all of them in this review, but this
study offers an overview of some of them that can be considered representative
of a class of methods.

In this paper, we consider a classification of the most commonly applied
methodologies in three groups: local search based methods, adaptive memory
programming, and evolutionary computation approaches. Local search based
methods, as their name indicates, include the methodologies in which one of
the main elements is a local search that explores the solution space by suc-
cessively altering solutions locally. Adaptive memory programming comprises
methods that are based on the use of memory, which means that they use
past information to make strategic choices in the search process. Finally, evo-
lutionary algorithms, which are possibly now the most popular class of meta-
heuristics, are adaptive search procedures based on principles derived from the
dynamics of natural population genetics. We now highlight three well-known
methodologies in each category, although we want to make it clear that this
list, far from being exhaustive, only contains some illustrative cases. However,
in our opinion, they are the most representative ones.

– Local Search based: GRASP, Variable Neighbourhood Search, Iterated
Local Search.

– Adaptive Memory Programming: Tabu Search, Scatter Search, Ant
Colony Optimisation.

– Evolutionary Methods: Genetic Algorithms, Evolutionary Strategies,
Memetic Algorithms.

In this section, we consider one methodology in each group according to
the classification above, to show their implementation in the case of stochastic
optimisation. In particular, we consider GRASP, Tabu Search, and Genetic
Algorithms. We recommend that the reader further consult the excellent re-
view on metaheuristics for stochastic optimisation by Bianchi et al. (2009)
in which four metaheuristic methodologies are considered: Ant colony opti-
misation, evolutionary computation, simulated annealing, and tabu search.
The authors perform an exhaustive review of the previous approaches of each
method — see also Brabazon et al. (2015). We limit ourselves to briefly de-
scribing the methods chosen, and illustrate them on a classic combinatorial
problem, the vehicle routing problem.



X-Heuristics 7

2.1 GRASP

The GRASP methodology, greedy randomised adaptive search procedures, was
developed by Feo and Resende (1995). It was first used to solve computation-
ally difficult set covering problems. Each GRASP iteration consists of con-
structing a trial solution and then applying a local search procedure to find
a local optimum (i.e., the final solution for that iteration). The construction
phase is iterative, greedy and adaptive. It is iterative because the initial solution
is built considering one element at a time. It is greedy because the addition of
each element is guided by a greedy function. It is adaptive because the element
chosen at any iteration in a construction is a function of those chosen previ-
ously and thus relevant information is updated from one construction step to
the next. The local search complements the construction phase by improving
the constructed solution performing consecutive moves.

Local search methods, such as GRASP, have been applied to many different
stochastic optimisation problems. We consider the vehicle routing problem
(VRP) to illustrate how to adapt these methodologies to the stochastic case.
In the VRP with stochastic demands a fleet of limited capacity vehicles, located
at the depot, has to deliver a product to a set of customers with uncertain
demands, which are only known upon the vehicle’s arrival. The standard way
to approach this problem is called two-stage programming: it first builds a set
of routes and then evaluates them, which includes testing their feasibility. If
there is a capacity constraint violation (failure), a corrective action (recourse)
is taken to recover feasibility, which typically entails adding the extra cost
of travelling back to the depot, therefore changing the total duration of the
route. In the first stage, a deterministic version of the problem is considered by
replacing the random demands by their expected values. In the second stage,
many scenarios are simulated (generating values of the random demands) to
evaluate the solution in terms of the stochastic data. The approach minimises
the cost of the routes including the expected recourse actions.

Mendoza et al. (2016) apply GRASP to the VRP with stochastic demands.
The method uses a set of randomised route-first, cluster-second heuristics to
generate starting solutions, and a variable neighbourhood descent procedure
for the local search phase. For the routing phase, this GRASP implementation
applies randomised versions of standard TSP constructive methods. The clus-
tering phase is performed with an adaptation of the classic splitting procedure
in routing problems. An interesting implementation detail is the efficient route
evaluation using a profile tree that is maintained incrementally.

Ferone et al. (2019) also apply GRASP to the VRP with stochastic de-
mands. The authors implement an advanced design in which the selection of
the elements in the construction phase is guided by a probability function in-
stead of the traditional uniform distribution in the restricted candidate list.
Their implementation handles the stochastic environment in a two-stage pro-
cess. In the first stage, the local optima obtained in all GRASP iterations are
evaluated by means of short term simulations (to keep the computational effort
moderate). Then, only the best local optima according to this fast evaluation



8 Angel A. Juan et al.

(elite solutions) are submitted to a complete evaluation, which discloses the
best solution returned by the method.

2.2 Tabu Search

The term tabu search (TS) was coined in the same paper that introduced the
term metaheuristic (Glover, 1986). It is based on artificial intelligence princi-
ples, such as memory structures and learning mechanisms. To introduce the
methodology, we compare a simple version of TS with a standard descent
method for minimising an objective function. Such a method only permits
moves to neighbouring solutions that improve (reduce or increase) the current
objective function value, and the process ends when no further improvement
is possible. The final solution is a local optimum value, since it is at least
as good or better than all solutions in its neighbourhood. TS may start in
the same way as a descent method, but instead of stopping at the local op-
timum, the search continues. To perform this process, it has to select moves
that cause the objective function value to deteriorate, and therefore it incor-
porates a mechanism to prevent cycling when alternating between improving
and non-improving moves. This is implemented in an efficient way by means
of a dynamic neighbourhood definition.

Gendreau et al. (1996), address stochastic demands and customers in a
classic paper on TS for vehicle routing. The authors pointed out that in the
stochastic VRP, the shape of optimal solutions is quite often counter-intuitive
from a geometric standpoint, thus making it particularly hard to solve. One of
the major contributions of that paper is the development of an easily-computed
proxy for the objective function, to be used in the evaluation of potential
moves, and also the elaboration of a series of mechanisms aimed at efficiently
managing that proxy. Regarding the exploration, the neighbourhood definition
is based on insertions, and the tabu tenure is randomly set in an interval
depending on the problem size. The quality of the method can be assessed
using empirical results on instances with a known optimum for deterministic
values.

Li and Li (2020) propose a tabu search for a stochastic VRP with time win-
dows. Starting from a greedy solution, the method implements three standard
neighbourhoods in routing problems: 2-opt, swap, and reallocate. Vehicle travel
time, service time, and arrival time are normally-distributed random variables;
therefore, the objective function is comprised of three parts: vehicle travel cost,
penalty cost for earlier arrival, and penalty cost for later arrival. Their com-
putational experience shows that the greater the variance, the stronger the
randomness of vehicle travel time and service time, and the worse the optimal
solution and average solution obtained by the algorithm.
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2.3 Genetic Algorithms

Holland (1975) introduced genetic algorithms (GAs) and the notion of imitat-
ing nature and the “survival of the fittest” paradigm inspired by Darwin’s the-
ory. In GAs, a population of candidate solutions, called chromosomes, evolves
over successive generations using three genetic operators: selection, crossover,
and mutation. First of all, based on some criteria, every chromosome is as-
signed a fitness value, and then the selection mechanism is invoked to choose
relatively fit chromosomes to be part of the reproduction process. Then, new
chromosomes are created through the crossover and mutation operators. The
crossover generates new individuals by recombining the characteristics of ex-
isting ones, whereas the mutation operator is used to maintain population
diversity with the goal of avoiding premature convergence. The mutation op-
eration diversifies the search process to explore the candidate solution on the
solution space in a random way. Advanced GA designs include the application
of local search methods to improve solutions, speeding up the convergence pro-
cess. GAs coupled with local search are sometimes called Memetic Algorithms.

In the context of the stochastic VRP, Mak and Guo (2004) proposed a
variant of the standard genetic algorithm, called Age-GA, in which individu-
als are not replaced in each generation by their respective offspring. Instead,
they continuously may generate new offspring. The survival period of poten-
tial individuals therefore becomes longer. Then more useful information and
properties can be inherited by their offspring. The number of chromosomes
generated by and surviving in each age-group is determined by two sets of
parameters, birth rate and survival rate respectively. In this way, the popu-
lation contains individuals of different ages. The mutation process, as well as
the crossover process, may change the number of subroutes in a solution and
the customer sequence in a service route.

In terms of the stochastic model considered, Mak and Guo (2004) follow
the standard scheme from Gendreau et al. (1996), in which the objective is to
design a first stage solution so as to minimise the expected cost of the second
stage solution. Eighteen randomly generated problems comprise the bench-
mark instances used to evaluate the effectiveness of the proposed algorithm. A
canonical genetic algorithm is also applied to solve the same group of numer-
ical problems, and it exhibits worse performance than the Age-GA proposed
here. The results show that optimal or near-optimal solutions can be obtained
by using Age-GA with a reasonable computational time.

This section cannot be complete without briefly describing a very interest-
ing approach presented by Bianchi et al. (2004) on different metaheuristics for
the Stochastic VRP, including a GA. As the authors state, they focus on an
important aspect of designing metaheuristics for the VRPSD (and for stochas-
tic combinatorial optimisation problems in general): the objective function is
computationally demanding, and effective approximations of it should be em-
ployed. In particular, they test the impact on the metaheuristic’s performance
(GAs, ant colony optimisation, or TS) of using the tour length of the a priori
tour as a fast approximation of the objective function.



10 Angel A. Juan et al.

An important contribution of Bianchi et al. (2004) is the speedup due to
the use of a fast approximation of the objective in the local search, when
many potential moves must be evaluated before one is chosen. The use of this
ad-hoc approximation permits a straightforward application of metaheuristics
originally designed for deterministic problems. As a matter of fact, the liter-
ature on metaheuristics for stochastic optimisation can be divided into those
approaches using ad-hoc approximations — such as this one —, and those
applying Monte-Carlo simulation — such as the ones reviewed above. We may
consider these improvements in the implementation of metaheuristics as a first
step in the design of hybrid methods, as the simheuristics and learnheuristics
covered in the following sections.

3 Exact Methods and Matheuristics in Stochastic Optimisation

As demonstrated in Section 2, heuristics generally offer good solutions in low
computational times, but it is difficult to quantify the quality of the solu-
tion. Mathematical Programming exact approaches guarantee finding global
optimal solutions. Mixed Integer Linear Programming (MILP) solvers have
demonstrated massive gains in computational speed becoming 1,250,000 times
faster over the period 1990 to 2016. This has been accompanied by significant
improvements in hardware making MILP solvers more than 2 trillion times
faster than the 1990’s (Bertsimas et al., 2016). However, a continuing draw-
back of using exact methods to solve NP-complete problems is that the com-
putational needs increase exponentially with the problem size. Therefore, only
small instances of the most challenging real world problems can be solved in
a reasonable time.

Some of the limitations of exact approaches such as scalability and de-
terminism point to gaps that can be addressed by augmenting and adapting
existing techniques. Matheuristics aim to combine the advantages of exact ap-
proaches and heuristics: a combination of heuristics and metaheuristics with
exact methods in a matheuristic framework can improve both solution quality
and run times (Fischetti and Fischetti, 2018).

3.1 Overview of Exact Mathematical Programming Approach

A brief overview of exact mathematical programming approaches for VRPs
appears in Carroll and Keenan (2019). Linear programming (LP) maximises
(or minimises) a linear function over real-valued decision variables subject to



X-Heuristics 11

a set of linear constraints. The typical mathematical formulation is:

max

n∑
i=1

cixi (1)

subject to
n∑

i=1

ajixi ≤ bj ∀ j = 1, . . .m (2)

xi ∈ R+ ∀ i = 1, . . . n (3)

where xi are the decision variables, ci are the objective function cost coeffi-
cients, bj are the resource limits or constraint bounds, and aji are the elements
of an m×n matrix representing the usage of resource j by decision activity i.

An optimal solution is found at a vertex of the LP solution space. Since the
feasible solution space is bounded by the linear constraints of the problem, the
solution space is convex and the optimal solution is guaranteed to be globally
optimal.

VRPs, team orienteering problems (TOPs), and arc routing problems (ARPs)
are discrete optimisation problems which fall into the class of NP-complete
problems. Decisions have to be made on the order in which to visit customers
or locations. VRP-like problems are naturally modelled by graphs with nodes
representing (warehouse) depots, customers — locations to be visited —, and
edges or arcs representing roads or links in transport networks. Graph models
are suitable supports for Integer Programming formulations, which opens the
opportunity to apply well developed MILP techniques. For example, a route
can be defined as a sequence of road network segments. The road network can
be modelled as a graph G = (V,E), where each edge ij can then be associated
with an integer decision variable, xi,j , indicating the number of times the edge
should be traversed in the recommended solution.

Unfortunately, the addition of the integrality constraints means that the
optimal Integer Programming (IP) solution may no longer be located at a
vertex of the LP relaxation (i.e., the LP problem with real valued decision
variables). Hence we have to resort to algorithms that methodically search
for feasible integer solutions, such as branch-and-bound. This search approach
does not scale well, and Integer Programming is itself an NP-Hard problem.

Advanced techniques, such as branch-and-cut, are used to improve perfor-
mance (Naddef and Rinaldi, 2002). This approach identifies additional valid
inequalities (called cuts) which are added during the branch-and-bound search
to cut off parts of the LP search space that does not contain valid integer so-
lutions. An alternative approach is to consider a subset of the decisions, and
only add the decision variables (columns) to the matrix if they add value to the
objective function. This type of search is called branch-and-price or column
generation.

The branch-and-cut approach adds rows to the matrix. In contrast, the
branch-and-price approach adds columns. Finding the best cuts to add to the
problem is called the separation problem. Some types of cuts can be separated
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exactly in polynomial time, but the cut separation problem for some types of
cuts is NP-Hard. Such cuts are often separated heuristically. Deciding which
cuts to separate, and how and when to separate them, is part of the branch-
and-cut algorithm design space.

3.2 Overview of Matheuristcs

Heuristics can be used throughout the IP search, starting from simple ap-
proaches such as variable fixing or rounding an LP relaxation, i.e., omitting
the integer constraints in the model. This can be useful in finding an initial
feasible integer solution and so reducing the integrality gap, the gap between
the LP relaxation and the best integer solution.

Puchinger and Raidl (2005) discuss the integration of exact and heuristic
methods. They suggest that combinations can be classified into loosely coupled
collaborative combinations, or more tightly integrated integrative combina-
tions. The simplest form of collaboration is sequential execution, for instance
where a heuristic approach is used to establish the value of an upper bound.
Parallel or intertwined execution might take advantage of modern multiproces-
sor computers and allow a heuristic approach to work in parallel with an exact
method, again perhaps calculating an upper bound. However, an integrative
combination of methods is needed to achieve substantial benefit. This has led
to a new class of algorithms known as a matheuristics, which closely combine
heuristic and exact approaches. Boschetti et al. (2009) describe matheuris-
tics as “heuristic algorithms made by the interoperation of metaheuristics and
mathematical programming (MP) techniques”. Matheuristic approaches may
exploit exact techniques within metaheuristic frameworks or may use heuris-
tics to improve the performance of exact approaches.

Archetti and Speranza (2014) propose an alternative taxonomy of matheuris-
tics for routing problems with three main approaches: decomposition, improve-
ment heuristics, and branch-and-price/column generation-based approaches.
Using a decomposition approach, the problem is decomposed into sub-problems,
some or all of which are solved to near optimality using exact approaches. Im-
provement heuristics apply exact approaches to enhance a sub-optimal solution
that has been created using a heuristic. Finally, the Integrated Approach in-
corporates appropriate heuristics into the branch-and-cut or branch-and-price
MILP frameworks.

Fischetti and Fischetti (2018) focus on this last category, and describe
matheuristics not as a rigid paradigm but as a concept framework. They de-
scribe local branching as being in the spirit of local search metaheuristics,
where the k-opt neighbourhood of a reference binary solution vector x is
searched to find a better nearby solution by flipping (complementing) a small
number of the binaries. In what they call a relaxation induced neighbourhood
search, decision variables that have integer values at specified nodes in the
branch-and-bound search are fixed at those integer values. This effectively re-
duces the number of columns of the matrix, making the remaining MILP easier
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to solve. They next describe a polishing algorithm, which invokes a genetic al-
gorithm evolutionary heuristic at selected nodes of the branch-and-bound tree.
Members of a fixed size population of feasible solutions are combined, and a
similar integer fixing approach for good solutions is used to reduce the search
space: if the decision variable value in the parents is the same, the decision
variable is fixed to that integer value. Lastly, they describe proximity search,
which addresses the issue of fixing the local branching search to a k neighbour-
hood. An iterative search of varying values of k is conducted using a tolerance
limit, which specifies a minimum improvement required as a stopping criterion.

3.3 Applications of Matheuristics

Matheuristics have been applied in many areas of application, but notably in
vehicle routing problems and transport scheduling problems, as there is real
difficulty in solving many real world problems in these domains. Complex rout-
ing problems are often compound in nature. This is the case, for example, of
location-routing problems or inventory-routing problems. The partitioning or
clustering of customers would seem to make the problems suitable for divide-
and-conquer approaches, so that optimal routes only need to be found for
the customer clusters. Unfortunately, this decomposition yields sub-optimal
solutions in general. The customer clustering acts to compound the combi-
natorial nature of VRP-like problems, which makes them some of the most
challenging optimisation problems. Their compound nature make them very
difficult to solve, but can facilitate their solution by a combination of different
methods. Other routing and transportation problems are stochastic in nature,
which proves challenging for exact methods, and matheuristics can often make
a useful contribution here.

Schermer et al. (2019) and Oliveira et al. (2018) describe matheuristics,
which can be classed as Decomposition matheuristics. Schermer et al. (2019)
discuss VRP for Drones (VRP-D) and propose a matheuristic that decomposes
the problem into an allocation component and a sequencing component. The
allocation component is solved using traditional VRP heuristics and drone
assignment, while scheduling is subsequently determined by a MILP. For larger
problems, they further decompose the assignment and scheduling phase into
several smaller problems. The matheuristic was shown to be superior to a
purely LP based approach in many cases. This approach approximately fits
in the Decomposition class of Archetti and Speranza (2014), with some of the
sub-problems solved heuristically and some solved exactly.

Oliveira et al. (2018) discuss the use of a matheuristic approach to solve
a challenging stochastic problem in car rental fleet management. They pro-
pose a MILP model and decompose the decisions of the original MILP model,
with some of the integer decisions made by a genetic algorithm. These partial
solutions are fixed and the MILP model is solved for the remaining decisions.

Examples of Improvement Heuristics include those from Archetti et al.
(2017), Penna et al. (2019), and Keskin and Çatay (2018). The first authors
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use a matheuristic to solve the multi-vehicle inventory routing problem. In
this approach, an initial solution is found using a LP relaxation. Then, a tabu
search is employed to refine the initial solution, and a further IP formula-
tion is solved using information from the tabu search to fix some variables
and focus the search on the most promising part of the solution space. This
matheuristic allowed larger problems to be solved to optimality than had been
possible in previous work using IP alone. Penna et al. (2019) also use an Im-
provement Heuristic approach and show that their matheuristic approach is
not only effective at finding solutions, but also stable in that good solutions
were found in almost all cases. This is an important result, as maximising the
worst case performance is sometimes more important than maximising the
best case. They combine a multi-start Iterated Local Search with a Set Par-
titioning IP approach. The heuristic builds a pool of initial routes, which are
are then finalised in a restricted IP model. Keskin and Çatay (2018) describe
the Electric Vehicle Routing Problem with Time Windows and three different
recharging strategies. They couple an Adaptive Large Neighbourhood Search
(ALNS) approach with an exact mathematical programming approach to solve
large problem instances. They use a two-phase matheuristic approach, which
falls in to the Improvement class of Archetti and Speranza (2014). In the first
phase, an ALNS is used to find an initial good solution, which is improved
in the second MIP phase. Fischetti and Fischetti (2018) also use an Improve-
ment Heuristic to tackle a distance-constrained capacitated vehicle routing
problem. As noted, the combinatorial nature of VRPs creates an additional
layer of optimisation to find a balanced distribution of the nodes between the
routes. An ad-hoc heuristic is used to create and recombine solutions with a
MIP deployed to reallocate some solution components.

Fischetti and Fischetti (2018) describe two further applications that can
be classed as an Integrated Approach. They address a wind farm layout op-
timisation problem using the proximity search approach. These authors use a
heuristic to fix some of the variables in a multi-start branch-and-bound search,
so that they can solve a challenging packing problem that arises in inventory
allocation applications. In this problem, the operational cost for packing the
bins is relatively high, and even calculating the LP relaxation for this prob-
lem turns out to be computationally expensive. They exploit the structure of
the MIP model and design a heuristic to iteratively solve a restricted problem
— where a subset of variables are fixed — and report good results using the
matheuristic. Fischetti and Fischetti (2018) note that designing an effective
heuristic is an art that cannot be framed into strict rules. Our brief survey of
applications shows the diversity of matheuristic approaches that can be useful
to solve challenging combinatorial optimisation problems. The ways in which
heuristics are incorporated into the MILP framework impacts the computa-
tional speedup and the degree to which the integrality gap can be closed.
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3.4 Further Limitations of MILP

A final concern for Integer and Linear Programming is that the parameters
ci, aj,i and bj from Equations. 1 and 2 must be known with certainty. The focus
on the electrification of transport to mitigate climate change and the increased
availability of data from Intelligent Transport applications open opportunities
to use the new data sources to address advanced vehicle routing and emerging
vehicle routing problem variants (Vidal et al., 2020). This requires us to adapt
deterministic exact techniques and explore stochastic variants to allow us ex-
plore the stochastic nature of the real world, rather than relying on simple
expected values of the parameters. Techniques such as Chance Constrained
Programming, Stochastic Programming, and Robust Optimisation are used to
address uncertainty in the data.

4 Biased-Randomized Heuristics & Agile Optimisation

Biased-randomisation techniques allow us to transform a constructive heuris-
tic, which follows a certain (problem-dependant) logic, into a probabilistic
algorithm, which introduces minor deviations from the aforementioned logic.
This is achieved by simply introducing a “light” randomness into the heuris-
tic procedure, i.e., a randomness that does not modify the original logic in a
significant way. As explained in Grasas et al. (2016), there are many ways to
generate such an effect, but one of the most efficient ones — in terms both of
computational efficiency and results quality — is by employing skewed (non-
symmetric) probability distributions to select the next step, from a candidate
list sorted according to a logical criterion, during the solution-building process.
In other words, the skewed probability distribution assigns higher probabili-
ties of being selected to building steps located at the top of the list, and
lower probabilities to those located near the bottom. Then, Monte Carlo sim-
ulation (random sampling) is employed to sequentially select these building
steps, which introduces some random but relatively small deviations from the
original heuristic (the actual size of these deviations is typically defined by a
parameter). As a consequence, this biased-randomised algorithm can be exe-
cuted multiple times, thus generating alternative solutions of similar quality.
As depicted in Figure 3, biased-randomised algorithms fall somewhere in be-
tween heuristics and metaheuristics in terms of the quality of the solutions they
can generate. The relevant aspect is that they offer the possibility of reaching
these intermediate solutions with virtually the same wall-clock time as the
one employed by the heuristic — as will be discussed later, this is achieved by
executing different threads in parallel.

From a computational point of view, one of the most effective ways to
introduce biased randomisation into a heuristic is by employing the Geometric
probability distribution. This arises because this distribution has only one
parameter, α ∈ (0, 1), and an analytical expression exists to quickly generate
random observations from a Geometric distribution — thus eliminating the
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Fig. 3 A classification of x-heuristics based on agility and quality of solutions.

need for time-consuming loops. On the one hand, as the value of α approaches
1, the probabilistic algorithm performs more greedily (i.e., more similarly to
the original heuristic). On the other hand, values of α close to 0 emulate the
behaviour of a uniform randomisation (i.e., larger deviations from the logic
behind the heuristic). It is the use of intermediate values that allows us to
explore different regions of the solution space while, at the same time, keeping
in mind the logical criterion employed to sort the list of building steps.

Biased-randomisation strategies can be used to extend and enhance the
performance of classical metaheuristics (Ferone et al., 2019), and they have
been used recently in solving multiple optimisation problems, such as facil-
ity location problems (Quintero-Araujo et al., 2017), vehicle routing problems
(Fikar et al., 2016; Belloso et al., 2019), or inventory management problems
(Quintero-Araujo et al., 2019a). In addition, biased-randomisation strategies
can easily be combined with simheuristics to deal with optimisation problems
with stochastic components. This form of hybridisation can be found, for in-
stance, in Gruler et al. (2020) for addressing the multi-period inventory routing
problem with stochastic demands, or in Guimarans et al. (2018) for solving
the two-dimensional vehicle routing problem with stochastic travel times.

One interesting aspect of biased-randomised algorithms is that they can
be naturally executed in parallel, i.e., we can use multiple CPU / GPU cores
to simultaneously run a large number of threads of the biased-randomised
version of the heuristic. Notice that each of these threads will execute in vir-
tually the same time as the original heuristic, which typically means much less
than a second on a modern CPU — except maybe for exceptionally large-scale
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problems that might require a few seconds of computation. Thus, these paral-
lelised biased-randomised algorithms constitute an efficient tool when perform-
ing “agile optimisation”, where: (i) the best possible solution to a large-scale
NP-hard optimisation problem is required in real time; and (ii) the underlying
system or process needs to be re-optimised every few minutes (or even less)
as the inputs and constraints are dynamically modified due to the arrival of
new data or to changes in environmental conditions. This is the case, for in-
stance, with ride-sharing operations in smart cities (Martins et al., 2021), or
when solving two-echelon vehicle routing problems in real time (Martins et al.,
2020).

5 Statistical & Machine Learning in Stochastic Optimisation

Statistical learning (SL) and machine learning (ML) can be combined with
stochastic optimisation from different points of view. One of them is the al-
gorithmic approach in which the methods help each other for training, or
to estimate different internal control parameters. The second point of view is
related to the use of SL and ML to handle stochastic problems. Here, the learn-
ing tools play an important role, since they permit one to estimate, predict,
and generate different variables that directly affect the problem formulation.
Figure 4 presents a classification of the approaches that use SL and ML in
stochastic optimisation.

This section studies the most recent advances in the two directions and
permits an understanding of how the methodologies can be combined.

5.1 Merging Statistical Learning and Machine Learning with Stochastic
Optimisation Algorithms

Statistical / machine learning algorithms and stochastic optimisation com-
monly help each other to solve the drawbacks that each one presents for solving
complex problems. The fields of ML and SL are wide, and there exist numer-
ous methods for different tasks like regression, classification, clustering, data
exploration, prediction, etc. Such methods have a training phase in which the
information is presented to the algorithm and it can be adapted to the data
set by the modification of internal parameters. This process is vital for both
ML and SL, since the algorithm learns from the sample(s) and a good training
is reflected in the final use of the approach. In most learning algorithms, the
training process can be seen from an optimisation point of view, and different
methodologies of stochastic optimisation can be applied. Some open problems
in this direction are presented by Gambella et al. (2020).

An important example is in the supervised training of neural networks,
including deep nets, where the parameters to be trained or estimated are
hidden layer weights on arcs within the network. A common objective function
is the total squared error, a measure of cost, defined as:
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Fig. 4 Different approaches of ML and SL in stochastic optimisation.

E =

N∑
k=1

M∑
q=1

(ykq − ŷkq )2, (4)

where N — the training set size — is the number of input data vectors (and
also output vectors), M is the number of output neurons, and ykq and ŷkq are the
target and predicted values of component q of the kth output vector, respec-
tively. Then, the objective is to minimise this “sum-of-squares” (quadratic)
error function. If this were a convex objective, a gradient descent approach
could be used to find an exact optimum. However, it is in general a multi-
modal objective surface. Yet, gradient descent methods are still commonly
used. For instance, the backpropagation algorithm reduces the total error E
by calculating the gradient of the error surface E at its current point (cor-
responding to the current weight vector for the network) and adjusting the
weights in the network to descend the error surface.

In ML, especially when using deep nets, a major issue is the large training
sets needed for good generalisation, as these are inevitably more computa-
tionally costly. Stochastic gradient descent (SGD, an adaptation of gradient



X-Heuristics 19

descent) is used for almost all deep learning training. As above, the error
function of a learner is typically written as a sum of per-item error (the loss
function) over all training data items, or as a mean of these per-item errors.
If there are N training items, then an epoch of backpropagation training with
gradient descent requires computing partial derivatives of the loss function for
each, at a computational cost of O(N). For a training set of billions of items,
each descent step becomes unacceptably long. SGD interprets the gradient as
an expectation, which can be estimated using a small set (called a minibatch)
of training examples. The minibatch size is typically between one and a few
hundred, and is not changed even as the training set size N increases. The
minibatch of examples is drawn either systematically or uniformly randomly
from the training set. Using SGD, a model can be fitted to a training set of
billions of examples, even though using updates computed on only a few hun-
dred examples from the minibatch. Sun et al. (2020) give a useful overview of
SGD and related optimisation methods in ML parameter optimisation.

Moreover, ML and SL are able to enhance different aspects of optimisation
algorithms (including heuristics). In stochastic optimisation, the methodolo-
gies of ML and SL can be used not only to estimate and configure different
parameters and variables of the algorithm, but also to find some values of
the objective function. The implementation directly depends on the nature of
the problem to be solved. In general terms, the optimisation algorithm col-
lects information about the search space by using different operators. Then,
using ML / SL, the collected information is analysed. By including ML /
SL approaches, it is then possible to improve the search procedure and find
more accurate solutions. Corne et al. (2012) present an study of the syner-
gies between data mining algorithms with optimisation algorithms for specific
multiobjective problems. This work provides an overview of how ML / SL ap-
proaches can be incorporated into optimisation algorithms. In particular, the
article explains how data mining can help in the field of OR/MS. Essentially,
the authors cover three different ways to hybridise these methods. The first
one is to speed up the search process, the second is to improve the quality
of the obtained results, and the third is to tune the optimisation algorithm.
In the same way, Zhang et al. (2011) present an interesting survey related to
evolutionary algorithms and ML. The authors mention different ways of incor-
porating the two fields. Here, the most important remarks are how ML could
help to learn the structure of the problem and also how it is able to predict
prominent regions of the search space. It is possible to find several interesting
approaches related to the application of hybrid optimisation algorithms. For
example, the use of a ML rule called Opposition-Based Learning (OBL) with
a stochastic version is considered to improve the differential evolution algo-
rithm in Choi et al. (2019). The idea behind OBL is to evaluate a solution and
its opposite at the same time, and then decide which one of them is better.
This permits a wide exploration of the solution space with a better chance of
finding the optimal solution, while avoiding sub-optimal regions.

Recently, researchers have begun to explicitly combine the fields of SL / ML
together with OR / MS. For example, Bertsimas and Kallus (2020) “combine
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ideas from ML and OR / MS in developing a framework, along with specific
methods, for using data to prescribe optimal decisions in OR / MS problems
that leverage auxiliary observations”. These authors introduce the concept of
a predictive prescription: a function z(x) that prescribes a decision in anticipa-
tion of the future, given the observation X = x. The authors provide construc-
tions for predictive prescriptions, including constructions based on empirical
risk minimisation, and show that these are computationally tractable under
mild conditions. They further show that asymptotically the prescriptions con-
verge to true full information optimisers, and they extend their work to the
case where some decision variables may affect the uncertain variable in un-
known ways not captured in the cost function. Analogously to the SL concept
of coefficient of determination R2, they introduce a metric called the coeffi-
cient of prescriptiveness to measure efficacy of predictive prescriptions. The
authors conclude by applying the approach to a real-world inventory manage-
ment problem. Related work has been carried out on the so-called “Predict-
then-Optimise Framework”. For example, El Balghiti et al. (2019) derive gen-
eralisation bounds on a loss function that considers the cost of the decisions
induced by the predicted parameters, rather than the prediction error of the
parameters themselves. The fields of SL and stochastic programming are ex-
tremely interesting. Their merge allows the use of more robust algorithms for
solving complex problems, for example in big data. The Learning Enabled
Optimisation (LEO) proposed by Sen and Deng (2018) is part of the suite of
hybrid methods in which the SL is combined with stochastic optimisation. The
idea is to use any SL to analyse the information of the data set and with the
optimisation step it is possible to adopt different paths while the algorithm is
running.

5.2 Statistical and Machine Learning for Solving Stochastic Optimisation
Problems

SL and ML techniques can help to identify and model different variables of
stochastic problems. Since such problems are hard and complex they include
values that are constantly updated or that came from different sources. The
use of SL / ML methods is then extended to handle the special conditions
of stochastic optimisation. We will now analyse the different applications in
which ML are used for solving stochastic problems. Donti et al. (2017) discuss
learning probabilistic ML models in the context of stochastic programming
and examine three real-world applications: an inventory stock problem, an
electrical grid scheduling problem, and an energy storage arbitrage task. In
energy, Crespo-Vazquez et al. (2018) propose the use of a ML mechanism for
multivariate clustering and recurrent neural networks. Such approaches are
used to handle the uncertainty in energy price. The goal of this is to find
patterns in the daily prices, then extract information out of the sequence in
which those patterns appear. In the field of manufacturing, the use of rein-
forcement learning in stochastic optimisation is proposed by Mosadegh et al.
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(2020). The authors incorporate Q-Learning for solving the mixed-model se-
quencing problem with stochastic processing times (MMSPSP). The goal is to
minimise expected total work-overload and idleness (WnI). Since MMSP is an
NP-hard combinatorial optimisation problem, it is necessary to have power-
ful algorithms that permit finding the optimal (or near-optimal) solutions. In
ML it is possible to find algorithms that work with mathematical and statisti-
cal distributions. Gaussian process regression (GPR) is a supervised machine
learning method that is able to approximate functions with prominent local
features. A combination of GPR with the exploitation of active subspaces (AS)
is proposed by Scheidegger and Bilionis (2019) to solve high-dimensional dy-
namic economic problems. GPR and AS help to estimate the parameters of
the value and policy function that are part of the model’s problem. The au-
thors report that, by using machine learning techniques, they are able to solve
problems of more than 500 dimensions.

Transportation systems are another interesting line of research and sev-
eral important problems are open to solution with modern methods. Ying
et al. (2020) handle the problem of trains scheduling with stochastic passen-
gers demand. Here, the use of deep reinforcement learning is introduced to
help minimise the passenger waiting cost and train operating cost over the
service runs. The proposal incorporates two artificial neural networks. One is
used as a critic, and the second one is the actor. The critic is used to param-
eterise the state space, while the actor is in charge of the decision space. The
critic estimates the states and costs that are used by the actor to generate
the schedule decisions. In general terms, the approach is efficient compared to
other methods used for comparison.

Statistical learning is another tool that could be applied for solving stochas-
tic problems. SL involves different methodologies such as as logistic regression,
Gaussian process regression, quantile regression, Bayesian networks and sup-
port vector machines, among others. Regarding such methods, Chen and Wang
(2019) propose the inclusion of a Bayesian network into two-stage stochastic
programming, and then apply this method for blood bank location-inventory
in case of disasters. The authors propose a Bayesian network that uses the
interdependence of different uncertain factors to generate practical scenarios
and incorporate them in an optimisation model. Regarding electrical power
systems, Balata et al. (2019) present the use of SL for stochastic control
in microgrid management. The authors employ state-dependent probabilis-
tic constraints represented by an expectation constraint at each system state.
SL helps to estimate the admissible set as a function of the system state.
In general terms, the authors conclude that using logistic or Gaussian pro-
cess regression to estimate the admissibility probability outperforms the other
options.
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6 Learnheuristics and Simheuristics for Dynamic and Uncertain
Scenarios

Learnheuristics integrate machine learning techniques with metaheuristic al-
gorithms (Calvet et al., 2017). The main concept here is that some problem
inputs (e.g., travel times, customers’ demands, processing times, etc.) might
depend upon the specific configuration of the solution being built (e.g., assign-
ing a customer to one facility or another might change his / her demand value,
choosing a path for a vehicle might modify travel times for other vehicles in the
city, selecting an asset to be included in a portfolio might modify the monetary
return of other assets due to a substitution effect, etc). In general, even when
these dependencies can be identified, they might follow complex patterns that
also depend upon many other factors (e.g., the system status at any given
time). Hence, these unknown patterns constitute a ‘black box’ that influences
the results of our decisions and so they cannot be ignored by the metaheuris-
tic search. Accordingly, a learning ‘white box’ mechanism is needed in order
to emulate the unknown behaviour and make accurate predictions about the
real results of our decisions while building a solution. Learnheuristics have
been employed in solving multi-depot vehicle routing problems with market
segmentation (Calvet et al., 2016), in vehicle routing problems with dynamic
inputs (Arnau et al., 2018), or in team orienteering problems with stochastic
rewards (Bayliss et al., 2020).

As already described in Section 1, simheuristics refer to a particular type
of simulation-based optimisation that relies on the combination of simulation
— of any type — with metaheuristics to solve optimisation problems with
stochastic components in their objective function or constraints (Juan et al.,
2018). Simheuristic algorithms assume that high-quality solutions to deter-
ministic versions of the optimisation problems are likely to be high-quality
solutions to their stochastic counterparts, at least up to a certain degree of
variability in the random elements of the problem. In practice, this is usually
a reasonable assumption to make, since if the level of variability in the random
elements is extraordinarily high, then we might be close to a chaotic scenario in
which comparing the quality of two different solutions makes no sense. Observe
that the fact that one solution outperforms another under a deterministic sce-
nario does not necessarily imply that the former will be better than the latter
under an uncertainty scenario. For instance, a tight vehicle routing plan that
performs optimally when travel times and customers’ demands are determin-
istic, might suffer from route failures (and, hence, additional costs) during the
execution stage whenever any of the aforementioned elements are modelled as
random variables (Gruler et al., 2018). Based on these principles, simheuristic
algorithms use the metaheuristic component to generate high-quality solutions
for the deterministic version of the problem, and then run a simulation on the
most promising deterministic solutions to estimate their real performance in
a stochastic scenario. Rabe et al. (2020) provide an example of simheuristic
in which a genetic algorithm is combined with a discrete-event simulation.
Since simulation — and especially discrete-event simulation — can be time-
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demanding, the authors also provide some useful recommendations to speed up
the computational times requested to obtain high-quality stochastic solutions.
Also, in de Armas et al. (2017) the authors explain how the output provided
by the simulation component can be utilised to better guide the search process
carried out by the metaheuristic component.

Simheuristic approaches have been compared to other stochastic optimi-
sation methods, such as sample average approximation (Pagès-Bernaus et al.,
2019). One of the main advantages of using simheuristics is that the simulation
component offers additional random observations on the solution performance.
Hence, we are not limited to obtaining just an estimate of the expected cost of
the solution but we can also compute many statistics that can be very valuable
in performing risk (Gruler et al., 2017) or reliability analysis (Cabrera et al.,
2014; Hatami et al., 2018). Recently, simheuristics have been combined with
fuzzy techniques in order to address more general optimisation problems in
which both stochastic and non-stochastic uncertainty is present (Oliva et al.,
2020). This is the case, for instance, for last-mile distribution problems in
which some travel times can be modelled as random variables while others
show a fuzzy nature. Likewise, combinations of simheuristics with Petri net
predictors have been explored to account for possible correlations between
random variables (Latorre-Biel et al., 2020). All in all, as stated in Chica
et al. (2020) simheuristics constitute a ‘first-resort’ method when addressing
large-scale and NP-hard optimisation problems under stochastic scenarios.

7 Cross-Problem Analysis of Computational Results

This section presents a summary of results previously published in different
papers. They have been selected to illustrate the effectiveness of the presented
approaches. Specifically, this article focuses on the aspects related to the use
of such algorithms to solve different well-known NP-hard and large-scale real-
life optimisation problems. Table 1 presents the obtained average results for
a set of optimisation problems with scenarios under uncertainty. The first
column identifies the references where the results were obtained, while the
second column specifies the exact type of problem to be solved. Notice that
seven different problems have been selected in order to cover a wide range of
real-life optimisation problems. The next column identifies the type of objec-
tive function, i.e., maximisation or minimisation. Subsequently, the next three
columns display the obtained results considering the different scenarios. The
our-best deterministic (OBD) column shows the best solution found without
considering stochasticity. This column refers to the deterministic version of the
problem. Notice that this value can be seen as a reference lower bound value
in a scenario with perfect information. The next column (OBD-S) shows the
expected cost obtained when the best deterministic solution is evaluated in a
stochastic scenario, with the corresponding level of uncertainty. A simulation
process is applied to the OBS solution to compute the expected cost of this
solution, Similarly, the column our-best stochastic (OBS) shows the expected
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cost obtained using a simheuristic approach for the stochastic version of the
problem.

Figure 5 depicts an overview of the results in Table 1, where the vertical
axis represents the gap obtained for the stochastic solutions (OBD-S and OBS)
with respect to the deterministic solution (OBD). The results show that the
solutions provided by the simheuristic (OBS) clearly outperform the solutions
for the deterministic version of the problem when these are simulated (OBD-S)
for all the considered problems. On average, an improvement of about 5.8%
is observed, in terms of expected cost, for the OBS solutions. Hence, this
confirms that near-optimal solutions for the deterministic version of the prob-
lem might be sub-optimal solutions for the stochastic version. For instance,
the solutions obtained for the stochastic team orienteering problem (STOP)
perform optimally when all the elements of the problem are deterministic,
but they are sub-optimal when they are applied in scenarios with a degree
of variability in the elements of the problem, increasing the expected cost up
to 10.8% with respect to the OBS. This is due to route failures, which occur
during the execution stage that penalise the entire route. In this case, using
the OBS-D solution could lead to inefficient decisions, causing an extra cost
to the companies. Hence the importance of integrating simulation methods
during the searching process when dealing with stochastic optimisation prob-
lems. As a counterpart, when the level of uncertainty does not have too much
influence on the elements of the problem, the OBD-S solution could still be
competitive, providing results close to the OBS ones. A clear example could be
the distributed permutation flow-shop problem (DPFSP), where although the
OBS solution outperforms the OBD-S in about 0.45%, the latter still provides
competitive results.

Table 1 Summary of results of different optimisation problems with scenarios under un-
certainty.

Reference Problem Type of OBD OBD-S OBS
Problem [1] [2] [3]

Panadero et al. (2018) SPOP Max. 3,377.73 3,250.20 3,314.62
Panadero et al. (2020) STOP Max. 528.28 359.11 468.80
Guimarans et al. (2018) 2L-VRPST Min. 1,549.28 1,874.68 1,825.65
Gonzalez-Martin et al. (2018) ARPSD Min. 5,412.75 6,223.00 5,669.25
Quintero-Araujo et al. (2019b) CLRPSD Min. 98,587.08 111,545.99 111,246.35
Hatami et al. (2018) DPFSP Min. 4,822.96 4,964.81 4,944.81
Reyes-Rubiano et al. (2019) EVRPST Min. 16,490.13 19,995.73 19,339.89

Table 2 reports the obtained results for a set of problems which have been
solved using different optimisation methods. As in the previous table, the first
three columns show the following: the reference where the results were ob-
tained, the type of problem to solve, and the type of objective function, respec-
tively. Subsequently, the next four columns correspond to previously published
results, which include: (i) the best-known solution (BKS) for the problem; (ii)
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the provided results using a constructive heuristic; (iii) the obtained results
when the heuristic is turned out into a biased-randomised heuristic (BRA);
and (iv) the results when a metaheuristic is used to solve the problem. Figure 6
illustrates a summary of the presented results for the different problems, with
the vertical axis representing the gap obtained for the different optimisation
methods with respect to the BKS. The results show that constructive heuris-
tics give the highest gaps for all the considered problems, because they are
simple methods that are intended to be flexible and they are used for quick
decisions. On average, heuristic methods give a gap of about 4% with respect
to the BKS, varying from about 2.1% for the permutation flow-shop problem
(PFSP) up to 7.4% for the arc routing problem (ARP). Notice that the bench-
marks commonly used to solve the ARP contain large-scale instances, so the
heuristics are not sufficiently powerful methods to explore all of the search
space. When these constructive heuristics are turned into a probabilistic ones,
applying biased-randomisation techniques, the gap with respect to the BKS
is reduced, improving the solutions provided by the constructive heuristic for
all the problems. Thus, on average, the obtained gap is about 1.8%, with
a highest gap of about 1.9% for the uncapacitated facility location problem
(UFLP). In general, it can be observed that the gap is very similar for all the
considered problems, demonstrating the efficiency of this type of algorithm
— which might provide solutions below 2% of gap with respect to the BKS.
Finally, metaheuristic methods provide the best quality solutions for all the
problems — at the cost of requiring much higher computing times —, with
an average gap of about 0.7% with respect to the BKS. This is because they
are the most powerful methods, comprising a set of mechanisms and opera-
tors capable of exploring large search space. Notice that, although for some
problems — such as the UFLP or the PFSP — the use of a metaheuristic
enhances significantly the results provided by the BRA method, in other cases
— such as the permutation flow-shop Problem with delivery dates and cumu-
lative payoffs (PFSPDP) —, the BRA method is capable of providing very
high-quality solutions, very near to that provided by the metaheuristic. Thus,
the use of one or the other will depend on the level of accuracy needed at each
moment and, specially, on the computational time available.

8 Insights, Open Challenges & Research Lines

Heuristic and metaheuristic approaches are important tools widely used for
solving complex problems. When they are modified or hybridised, they be-
come more powerful and permit the handling of a wide range of problems.
X -heuristics comprises the different variants and families of heuristic optimisa-
tion algorithms. This field is still growing and open challenges arise in multiple
domains. Moreover, they could generate open research lines. One of the most
important challenges is to decide when to use a specific methodology. In this
case, it is important to analyse the nature of the problem and to identify the
different decision variables. Figure 7 shows a classification of x -heuristics based
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on the type of problem that they can address in a more natural way. In the end,
all x -heuristics are extensions of the concepts of heuristics and metaheuristics.
Depending on the specific requirements of the problem (e.g., problems with
uncertainty, dynamism, real-time requirements, etc.), these extensions include
different combinations with exact methods, simulation, machine learning, and
even fuzzy sets.
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Fig. 7 A classification of x -heuristics based on the type of problem addressed.

Based on Figure 7, it is possible to understand when the “x” in x -heuristic
changes its value depending on the problem to be solved. From the previous
analysis, one can reach the following conclusions on each methodology and
when it can be employed:

– Metaheuristics: The methods in this class are able to find near-optimal
solutions in a reasonable computing time. They include the use of differ-
ent rules that permit applying different operators according to the search
process evolution.

– Exact methods and matheuristics: The main feature is that they permit
to combine exact approaches with the capabilities of heuristics, in order
to speed up the search for near-optimal solutions. While exact methods
perform specific tasks — such as enumerating the solutions —, heuristics
apply bounds to the search space to carry out the search only in prominent
areas.

– Biased-Randomised Heuristics & Agile Optimisation: Biased-randomised
techniques allow us to transform constructive heuristics into probabilistic
algorithms. This process helps to introduce some typically random external
information to the heuristic approach. On the other hand, agile optimisa-
tion permits execution of the biased-randomised method on parallel, using
hardware as multiple cores or even graphical process units (GPUs). This
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allows for real-time decision making even in the case of many large-scale
optimisation problems.

– Statistical & Machine Learning: The advantages of this hybridisation give
two branches. One is the algorithmic branch, where ML / SL methods help
to improve the search process and vice-versa. The second branch is related
to employing ML / SL methods in order to estimate different variables
and parameters of the optimisation problem. By doing this, it is possible
to have more realistic solutions.

– Learnheuristics: These basically combine machine learning techniques with
heuristics and metaheuristics. They are based on the fact that problems
commonly have variables that depend on the configuration of the solutions.
Then the machine learning tools help to predict the states of the search.

– Simheuristics: The merging of simulation methods with heuristics permits
handling the stochastic component of the problems by including a simula-
tion stage. Then simheuristics consider that optimal solutions of a deter-
ministic problem are also good solutions of a similar stochastic problem.
Some variations of the random elements of the problem can also be in-
cluded.

An important research line is the exploration of different and novel method-
ologies that permit the creation of more efficient x -heuristics. For example, in
the case of ML / SL methods, the field of fuzzy systems could be extended
by using type II fuzzy sets or rough sets (Türkşen, 1999). This allows us not
only to enhance the solutions, but also to increase the family of algorithms
based on fuzzy systems. In addition, it is also important to explore each of the
aforementioned methods separately, since they give rise to many open research
lines.

9 Conclusions

This article presents a study of different approaches where heuristics are mod-
ified to increase their capabilities. Based on such modifications we define the
term x -heuristics, where the variable “x” takes different names such as ‘meta’,
‘sim’, ‘mat’, ‘biased-randomised’, or ‘learn’. The sections introduce a deep
analysis of x -heuristics in different stochastic applications, such as transporta-
tion, logistic, manufacturing, finance, and energy, among others.

The use of heuristics, independently of the family of algorithms, is growing
due to the flexibility of these methods that permit easy adaptation. However,
depending on the problem and the requirements of the application, differ-
ent approaches can be used. Metaheuristics are the most popular group of
approaches, that allow exploration of the search space by applying a single
heuristic using specific rules at different stages of the search process. Also, the
use of exact methods in combination with heuristics permit the creation of
robust methods, which provide high-quality solutions. The biased-randomised
heuristics are important tools that convert a heuristic in a probabilistic algo-
rithm. When such methods are adapted to run on parallel hardware, they are
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called agile optimisation algorithms. Recently, the use of statistical and ma-
chine learning has become very important, and its combination with stochastic
optimisation permits more powerful search algorithms. However, their use can
be extended to estimate stochastic variables in optimisation problems. This
introduces the concept of a learnheuristic, where computational learning is
used to predict the next steps of the optimisation. Finally, with the merger of
heuristics with simulation methods, we define the term simheuristics. In this
domain a set of optimal solutions for a deterministic problem is also considered
optimal for the stochastic version of the same problem by including random
elements to model it.

Considering the above, there are different open research lines as to the
proper identification of a methodology for a problem. The presented study
tries to clarify this but, since many open problems exist, this task is extremely
difficult. However, the information presented can be used as a guide to iden-
tify when to use one methodology or another. In addition, we have included
a section that permits analysis of the computational results from different
references from the state-of-the-art.
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