
Combining Information Sources for Video Retrieval
The Lowlands Team at TRECVID 2003

Thijs Westerveld� Tzvetanka Ianeva†∗, Lioudmila Boldareva‡, Arjen P. de Vries�

and Djoerd Hiemstra‡

�Centrum voor Wiskunde en
Informatica (CWI)

Amsterdam, The Netherlands
{thijs,arjen}@cwi.nl

†Departament
d’Informàtica

Universitat de València
València, Spain

tzveta.ianeva@uv.es

‡Department of Computer
Science

University of Twente
Enschede, The Netherlands

{boldarli,hiemstra}@cs.utwente.nl

Abstract

The previous video track results demonstrated that
it is far from trivial to take advantage of multiple
modalities for the video retrieval search task. For
almost any query, results based on ASR transcripts
have been better than any other run. This year’s
main success in our runs is that a combination of
ASR and visual performs better than either alone! In
addition we experimented with dynamic shot models,
combining topic examples, feature extraction and in-
teractive search.

1 Introduction

Often it is stated that a successful video retrieval sys-
tem should take advantage of information from all
available sources and modalities. Merging knowledge
from for example speech, vision, and audio would
yield better results than using only one of them. But
previous video track results demonstrated that it is
far from trivial to take advantage of multiple modal-
ities for a video retrieval search task.

For this year’s TRECVID workshop, we experi-
mented with combining different types of informa-

∗The work has been carried out while at CWI, supported
by grants GV FPIB01 362 and CTESRR/2003/43

tion:

• combining different models/modalities

• combining multiple example images

• combining model similarity and human-judged
similarity

The basic retrieval models we use to investigate the
merging of different sources are the same models we
used last year [12], they are described briefly in sec-
tion 2 and more extensively in [13]. Section 2.1 de-
scribes a dynamic variant of the model that allows for
describing spatio-temporal information as opposed to
the spatial information captured in the basic models.
These dynamic models can describe shots instead of
still keyframes. For modelling the ASR transcripts,
we use a basic language modelling approach (see Sec-
tion 2.2). The interactive retrieval setup (Section 2.3)
builds upon the visual models and language mod-
els. After the introduction of the separate models,
we present experiments for combining textual and
visual information (Section 4), combining different
examples (Section 5) and the feature task (Section
6). Combining automatic similarity and interactive
similarity is discussed in Section 7.

1

2 Generative Probabilistic Re-
trieval Model

The retrieval model we use to rank video shots is a
generative model inspired by the language modelling
approach to information retrieval [9, 6] and a simi-
lar probabilistic approach to image retrieval [10]. We
present – concisely – the visual part of the model, re-
ferring the interested reader to [13] for more details.
The visual model ranks images by their probability of
generating the samples (pixel blocks) in one or more
query example(s) [13]. The model is smoothed using
background probabilities, calculated by marginalisa-
tion over the collection. So, a collection image ωi

is compared to an example image x consisting of N
samples (x = (x1, x2, . . . , xN)) by computing its abil-
ity to explain the samples x. The retrieval status
value (RSV) of an image ωi is defined as:

RSV(ωi) =
1
N

N∑
j=1

log [κP (xj |ωi) + (1− κ)P (xj)],

(1)
where κ is a mixing parameter.

Collection images ωi are modelled as mixtures of
Gaussians with a fixed number of components C [10,
13]:

P (x|ωi) =
NC∑
c=1

P (Ci,c) G(x,µi,c,Σi,c), (2)

where NC is the number of components in the mix-
ture model, Ci,c is component c of class model ωi and
G(x,µ,Σ) is the Gaussian density with mean vector
µ and co-variance matrix Σ:

G(x,µ,Σ) =
1√

(2π)n|Σ|
e−

1
2 (x−µ)T Σ−1(x−µ),

where n is the dimensionality of the feature space and
(x− µ)T is the matrix transpose of (x− µ).

The samples are 8 by 8 pixel blocks, described by
their DCT coefficients and their position in the image
plane; the models are trained on these using standard
EM [3], assuming a diagonal co-variance matrix.

2.1 Dynamic Model

The Dynamic model is a Gaussian Mixture Model
in DCT-space-time domain [7]. Instead of modelling
just a single image (keyframe) we model a one-second
video sequence around the keyframe as a single en-
tity. The dynamic model is an extension of the static
model, the sampling process is very similar. We take
29 frames around the keyframe and cut them in dis-
tinct blocks of 8 by 8 pixels. Each block is then de-
scribed by its DCT coefficients, its x and y position in
the image plane and its position in time (normalised
between 0 and 1). Given this setup, the static model
can be seen as a special case of the dynamic model
where the temporal feature takes a fixed value of 0.5.
The intuitive explanation in this case is: we do not
know what is happening before and after the central
time moment matching the keyframe.

The number of samples for training the dynamic
model is much larger than for the static model (i.e.
29 times as large). The training process remains the
same: feature vectors are fed to the EM algorithm
to find the parameters µc, Σc, and P (Cc). Because
we use diagonal covariance matrices (Σc), the compo-
nents are aligned to the axes. The resulting models
capture the appearance and disappearance of objects,
but not all temporal information. Figure 1 shows an
example video sequence and a visualisation of the re-
sulting model. It is easy to see how well the model
fits the data, the tree in the top left corner is only
visible at the beginning of the sequence. The corre-
sponding component in the model also disappears at
about t = 0.5 In other words, the GMM captures the
disappearing of the tree. This effect is impossible to
be captured from the static model where time is not
taken into account.

2.2 ASR

The ASR approach used the same hierarchical lan-
guage model as last year [12]. We model video as a
sequence of scenes, each consisting of a sequence of
shots. The generative model mixes the different lev-
els of the hierarchy, with models for shots and scenes.
Given a query with Nt terms q = (q1, q2, . . . , qNt

), the
RSV of a shot ωi is defined as:

2

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29

Figure 1: A shot represented by 29 frames around
the keyframe (top) and a 3D visualisation of dynamic
GMM computed from it (bottom). The bottom im-
age shows mean colour and mean texture of the com-
ponents where the standard deviation from the mean
position in the x−y−t is below 2. Prior probabilities
and variance in colour and texture are not visualised.

RSV(ωi) = 1
Nt

∑Nt

j=1 log[λShotP (qj |Shoti)+
λSceneP (qj |Scenei) + λCollP (qj)]
with λColl = 1− λShot − λScene

(3)
Shoti and Scenei are the shot and scene to which
ωi belongs. The main idea behind this approach is
that a good shot contains the query terms and is
part of a scene having more occurrences of the query
terms. Also, by including scenes in the ranking func-
tion, we hope to retrieve the shot of interest, even if
the video’s speech describes it just before it begins
or just after it is finished. Because scene boundaries
are not known, we assume (pragmatically) that each
sequence of 5 consecutive shots forms a scene.

The features in the ASR model are simply the
word tokens from the LIMSI transcripts [5]. We esti-
mate the foreground (P (qj |Shoti)) and background
(P (qj)) probabilities in Equation 3 by taking the
term frequency and document frequency respectively
[6]. We used the TREC-2002 video search collection
to find the optimal values for the mixing parameters:
λShot = 0.090, λScene = 0.210, and λColl = 0.700.

2.3 Interactive retrieval

In an interactive setting, the models above might be
used as follows: First the user enters a text query that
uses the speech recognition transcripts. As a result,
he/she gets a screen full of video key frames. The
user might now: a) rephrase his/her query, b) walk
down the ranked list, i.e. look at the next screen of
key frames, or c) use relevance feedback, i.e. retrieve
key frames that are similar to one or more of the
key frames currently on the screen. The text queries
(see Section 2.2) can be evaluated almost instantly
by the system. Whenever the system has to find sim-
ilar images, however, the Gaussian mixture models
of Equation 1 are used. It is well-known that simi-
larity search using low level features does not scale
very well. Given one example image, ranking the
32,000 key frames of the collection would take about
15 minutes on a fairly fast personal computer. Rank-
ing 3.2 million key frames would take approximately
100 times as long.

3

To get reasonable on-line performance, we used a
brute-force solution by pre-computing for each key
frame x its nearest neighbours ωi (see e.g. [4]), ac-
cording to the Gaussian mixture models. In practice,
this means we have to calculate all image-image sim-
ilarity pairs, and then take those image pairs that
are nearest neighbours. The image pairs (x, ωi) are
stored together with the probability P (x|ωi) defined
by Equation 1 in an access structure called associa-
tive matrix. Using the associative matrix, we avoid
expensive run time distance computations [1]. To
search for images that are similar to two or more ex-
ample images xj , the model’s probabilities P (x|ωi)
are combined by assuming conditional independence
between selected images x1,x2, . . . given the hypoth-
esised target image ωi:

P (x1,x2, . . . |ωi) =
n∏

j=1

P (xj |ωi) (4)

For images that are not among the nearest neighbours
(that is, for which P (xj |ωi) is not stored in the asso-
ciative matrix), we use a back-off mechanism, effec-
tively replacing P (xj |ωi) with a smoothing constant
p̄.

Besides efficient real time access to similar images,
the associative matrix serves another purpose: It can
be trained from user interaction. By collecting user
feedback, we hope to adapt the matrix in such a way
that it represents user’s associations between images.
A possible interpretation of an image pair (xj , ωi) in
the matrix is the following: “Users that were looking
for image ωi selected image xj”1, or more precisely,
80 % of the users that sought image ωi selected image
xj as relevant if P (xj |ωi) = 0.8.

3 Experimental Setup

3.1 Building Models and Queries

The search collection is indexed using the proce-
dures described above. For each shot, we build a
static model a dynamic model and a Language Model.

1As in collaborative filtering used by e.g. Amazon.com:
“Customers who bought this book also bought:. . .”

Building queries from the topic descriptions is mostly
automatic. The only manual action in construct-
ing visual queries was selecting one or more image
or video examples to be used for ranking. A tex-
tual query was constructed manually for each topic
be taking only the content words from the topic de-
scription. From there on, the whole retrieval process
was automatic, except for the experiments described
in section 5.1. All image examples are rescaled to at
most 272x352 pixels and then jpg compressed with a
quality level of 20% to match size and quality of the
collections videos. Further experiments are needed
to test if this scaling and degrading of queries influ-
ences retrieval results. The interactive experiments
only used textual queries; not the image examples
from the topics.

3.2 Guarding Covariance

In estimating GMMs from images using EM, it some-
times happens that one of the components collapses
onto a single point in features space. This means, the
covariance of such a component tends to zero and the
component explains nothing except for this particular
point in feature space. For example in the TRECVID
dataset, it happens that a component collapses onto
perfectly black or perfectly white blocks. In retrieval
such singular solutions can cause underflow division-
by-zero problems and queries that happen to have
samples that fall into the exact center of a singular
component (e.g. queries with perfectly black blocks),
will get infinity scores. To work around this, in our of-
ficial submissions, we set the prior probability of com-
ponents with a covariance smaller than some thresh-
hold to zero. Effectively, this means we ignored these
components during retrieval. An alternative, better,
solution is to guard the covariances during training
of the models, and to make sure they do not get too
small. This is what we did for the static model in
post hoc experiments. In the following, both the of-
ficial scores and the post hoc scores are listed, they
are labeled official and COVguard respectively.

4

Description MAP MAP
official COVguard

ASR only .130
static only .022 .025
static + ASR .105 .134
dynamic only .022
dynamic + ASR .132

ARS + noAnchor .133
static + noAnchor .022
static + ASR + noAnchor .106
dynamic + noAnchor .022
dynamic + ASR + noAnchor .135

Table 1: Mean Average Precision (MAP) for ASR
only, visual only and combined runs (static and dy-
namic models).

4 Combining Modalities

If we (unrealistically) assume textual and visual in-
formation are independent, we can easily compute a
joint probability of observing query text and visual
example from a document. Under this assumption,
we can simply multiply the individual probabilities
(or sum the log probabilities from Equations 1 and
3). In previous TREC experiments, we found that
such a combination strategy works well provided that
the individual runs each have useful results [12]. This
year, this seems to be the case: a combination of the
dynamic models described in Section 2.1 and ASR
(Section 2.2) outperforms the individual runs (see Ta-
ble 1). In the offical results, the static run performs
worse than ASR only. But, after retraining the static
models and guarding the covariances in the process
(see Section 3.2), the static+ASR combination run
also outperforms the monomodal variants. However,
rebuilding the dynamic models in the same way is
expected to give a similar increase in performance.2

Therefore, the comparison in the remainder of this
section is based on the official results. The dynamic
combination outperforms the static one, even though
the MAP score for static only is the same as that for

2At the moment, we are recomputing the dynamic models
to verify this.

dynamic only. MAP scores hide a lot of information
though. The dynamic run has a higher initial preci-
sion (See Figure 2), and thus in some ways, the dy-
namic run is better than the static run and therefore
more useful in a combination. While the dynamic
models represent some of the temporal aspects of a
shot, like objects (dis-)appearing, the main advan-
tage over the static models seems to result from two
(related) aspects: more training data describing the
visual content, and less dependency on choosing an
appropriate keyframe.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

static
dynamic
ASR
static+ASR
dynamic+ASR

Figure 2: Recall-Precision graph for static, dynamic
and ASR runs as well as multimodal combinations.

Results of the dynamic+ASR are further improved
by filtering out shots with anchor persons. These
shots are identified by computing the likelihood of
generating the set of frames annotated with the labels
news person face and studio setting from the shot
models.3 The 1077 shots4 with the highest likelihood
are assumed to contain anchor persons and are fil-
tered out. The resulting MAPs are shown in Table 1.
A detailed analysis of the combination of ASR and
visual results can be found in [2].

3For computational reasons, we computed the likelihood
of a subset of the samples from the frames, instead of the
likelihood of the full set.

4After 1077 documents, we noticed a drop in Anchor person
likelihood scores.

5

5 Combining Topic Examples

5.1 Merging Run Results

Last year, we found combining multiple examples in
one query is far from trivial [12]. Conflicting exam-
ples (like different views under different weather con-
ditions) can easily cause bad results. Still, if we use
just one ’best’ topic example as a query there’s a
risk of missing a lot of relevant material. Suppose,
for example, we selected a close up shot of a point
being scored in basketball, and most of the relevant
shots in the collection happen to be overview shots
of the playing field. This year, instead of combining
multiple examples in a single query, we experiment
with running separate queries for each example and
merging run results afterwards. For each topic, we
manually select a set of ’good’ examples, run sepa-
rate queries for each example, and then merge the
results using a simple round-robin approach. Dupli-
cates are filtered out afterwards.

In addition to this within topic merging of exam-
ples, we also experiment with merging results from
different models. The goal here is to find out if it
is possible to decide in advance what would be a
good model to use for a given topic. When there are
only still image examples, one could decide to use
the static models, whilst the dynamic model might
be used for video examples. For each topic, we man-
ually selected a visual model to be used. The main
strategy is the one described above: dynamic models
for video examples and static ones for still image ex-
amples (more precisely, ‘Topic Models’, see Section
5.2). In addition, for topics where this seems apro-
priate, we filter out unwanted shots from the results
set. The approach is similar to the one described in
[8]. We use Anchor Person, people, studio setting and
weather maps filters and remove those shots that have
a high likelihood5 of explaining annotated samples of
the given feature (See also section 6).

The MAP of this merging run is .039, the high-
est among the runs that use only visual information,
even though, for some topics, it contains results from
the disappointing Topic Model run (See Section 5.2).

5High means within some top K, where K is set using sep-
arate training data.

It may be interesting to see if topic specific model
selection can be useful.

5.2 Building Topic Models

Instead of explaining the query samples from the doc-
ument models (and combining the results for different
examples afterwards), we could go the other way and
explain document samples from query models (called
‘Topic Models’ in this paper). In this setting, docu-
ments that have a high likelihood of being generated
from the query model are assumed to be relevant. For
a full comparison of this topic model approach and
the original document model approach from section
2, see [11].

In the topic model approach, all available exam-
ples for a given topic are used to build a GMM. The
assumption here is that different components in the
GMM can capture different aspects of the informa-
tion need, thus contrasting examples (e.g. day and
night shots of city views) are no longer a problem.
During training of the model we allowed topic sam-
ples to be explained by a background model; this
way very common, non distinguishing query samples
do not contribute as much to the model parameters.
After building the models we can use our normal
ranking function (Equation 1), only now the roles
of query and document are reversed; we have a set of
document samples x that need to be explained from
query model ωi.

Smoothing with background probabilities as in
Equation 1 is not wise in this case. When we use
smoothing, common samples get a high score. This
is useful in the standard query likelihood approach
(Section 2), since these high background scores are
independent of the document model under consider-
ation; the contribution of the individual document
models to scores of common samples, is therefore less
important and the influence of these samples on the
ranking is relatively small. However with the reversed
likelihood that we are using here, smoothing means
that common document samples get high scores. Ob-
viously, this is not document independent and thus
documents with a lot of common samples will get
high scores and end up at the top of the ranked list.
For this reason, we do not smooth the scores for the

6

Topic Models and rank the documents using:

RSV(xD) =
1
N

N∑
j=1

log P (xD
j |ωQ), (5)

where xD is the set of N samples from document D
and ωQ is the model built from the samples from topic
Q. Using this approach we obtain a MAP of only .005
and for many topics we retrieve a lot of black frames.
Apparently, even without the smoothing, we retrieve
mainly shots with common samples. This is not too
surprising, since shots with common samples which
are easily explained by any model, are often also well
explained by a specific query model.

In an additional (not submitted) experiment, we
calculate the odds rather than the likelihood of the
document samples:

RSV(xD) =
∑N

j=1 log P (xD
j |ωQ)∑N

j=1 log P (xD
j |¬ωQ)

=
∑N

j=1 log P (xD
j |ωQ)∑N

j=1 log P (xD
j)

.
(6)

Using this approach, we get a MAP of .013, signifi-
cantly higher than for the document likelihood rank-
ing discussed above, but lower than the original query
likelihood ranking. Perhaps, we still have a back-
ground influence and are now confronted with a pref-
erence for uncommon documents. In post workshop
experiments, we found that indeed it is important
to balance the influence of common and uncommon
shots [11]. In those experiments, we use the likelihood
ratio of Equation 6, but we smooth the numerator
to balance the influence of common and uncommon
shots. Using this smoothed version of the likelihood
ratio, we get a MAP of .033. We have to admit that
these new experiments are based on the COVguard
version of the training, but even then the score with-
out smoothing is much lower (.015).

6 Feature Extraction

In a way, feature extraction is the same as retrieval.
There is a more or less coherent set of examples (an-
notated images) for a specific information need (fea-
ture to be detected). Thus, it is possible to use the

techniques developed for search on the feature extrac-
tion task. The results could be regarded as a baseline
for systems that put more effort into building detec-
tors for specific features.

Starting from the results of the collaborative anno-
tation effort, we construct sets of examples for each
specific feature, by grouping labels. For example ev-
erything annotated as either building or house is used
in the example set for the building feature. The set of
examples is then converted into feature vectors using
the usual procedure (computing DCTs from 8x8 pixel
blocks). From each set of samples, we take a random
subset6 and use that as the set of samples to use
our search techniques on. We used the sample likeli-
hood approach (See Section 2) and the reversed like-
lihood approach based on feature models both with
and without using the background probabilities dur-
ing training (Section 5.2). For some features some of
the approaches got results above median, but overall
the results are disappointing.7 Possible reasons for
this are the high diversity in the set of annotated ex-
amples for a given feature and again the influence of
the background probabilities (cf. Section 5.2). Fur-
ther experiments with odds rather then likelihoods
and more carefully selected examples are needed to
test whether feature extraction as search is in princi-
ple a reasonable option.

7 Interactive Experiments

The interactive experiments are built on results from
the automatic models as described in Section 2.3.
Since computing the associative matrix is computa-
tionally very intensive, we computed the likelihood
using a random subset of 100 image samples8. Based
on experiments on the TREC 2002 video collection
on which we simulated user feedback using the as-
sessments [1], we identified the following four exper-

6We take at most 10,000 samples per feature, to keep ev-
erything tractable. For sets with fewer than 10,000 annotated
samples, all available samples are used.

7Even a random system scores above median on some top-
ics.

8A small experiment indicated that using a subset of 100
samples only, already gives a ranking similar to the one ob-
tained by using the full set of samples.

7

iments:

1. Randomised The user gets random key frames
on the screen;

2. Text-Only The next screen of key frames is
only based on the textual query, not on the user’s
feedback;

3. Feedback The next screen of key frames is
based on the user’s feedback using the associa-
tive matrix based on the mixture models;

4. Feedback-trained The next screen of key
frames is based on the user’s feedback using an
associative matrix that was trained on the user
feedback gathered by experiments 1 to 3.

Only systems 3 and 4 actually used the feedback; the
other two systems recorded the feedback for the re-
sulting ranked list to make use of the users’ notion of
relevance, but ignored it when updating the screen.
Systems 2–4 started out with textual query, which
was automatically taken from the topic descriptions,
thus emulating the realistic situation when the (inex-
perienced) user copies the topic description into the
query field. For the same topic both systems started
with the same set of images.

The same user interface was used for all systems.
The screen contained twelve scaled-down images (3
rows by 4), which could be magnified to their real
size by hovering mouse pointer over an icon. Above
each image, the user could check a box to indicate
its relevance to the topic. The topic description was
available to the user at any time, and could be re-
moved from the screen to save space for key frames.
To support the users in their action, recent positive
examples were displayed at the side of the screen,
even when the feedback was not used by the system
for the display update.

For Systems 1–3 there were two groups of three
subjects performing 15 minute search sessions for
each topic, with 3 × 3 Latin square experiment de-
sign. The supplemental experiment with System 4
was performed by one person. The ranked lists for
the submission to TREC were produced by taking
the images that were selected by the user and con-
catenating them with the ranking produced by the
model at the last iteration step. All systems used the

collected relevance feedback to fill up the result list
up to the allowed 1000 shots.

Table 2 contains in column 2 MAP achieved with
each method after at most 15 minutes of interaction9.
It does not come as a surprise that the prior informa-
tion from speech transcripts and text queries from the
topic descriptions, in combination with user’s notion
of similarity, has great impact on the retrieval quality
(System 2), further improved by the relevance feed-
back based on visual contents of the key frames (in
Systems 3 and 4). Remarkably low value for the Ran-
domised system indicates, that for a large collection
such display update strategy is not practical. The
users got to see very little relevant key frames on the
screen, and in almost half of the cases the system was
unable to produce any one.

Column “Relevant found by users” of Table 2
shows the proportion of relevant shots identified by
the users during the search, from all relevant shots
that occurred in the submitted results. By its defi-
nition, the MAP measure is sensitive to the number
relevant shots put on top of the ranked list. The dif-
ference in MAP between Systems 3,4 and System 2 is
substantial, but still it hides the fact that the users of
the systems with feedback identified 49% and 60% of
all detected relevant shots, whereas for the text-only
system this number is about 38%. Preliminary exper-
iments with training the associative matrix (System
4) indicate that the relevance information obtained
from the user is valuable and should be used to com-
plement existing techniques for feature extraction.

Table 2: Statistics of interactive runs

System MAP Rel.found Agreement Missed
type by users with NIST Relev.

Randomised (1) 0.026 5.79% 55.00% 31.25%
Text only (2) 0.214 37.83% 85.02% 51.91%
Feedback (3) 0.245 49.18% 78.74% 48.98%
Trained (4) 0.240 60.65% 64.03% 32.07%

9For some topics the system returned no relevant shots
which lead to a higher MAP reported in the TREC summary
table.

8

Next to “Relevant found by users” are shown the
agreement between the users and the ground truth,
and the percentage of missed relevant shots. From
the numbers we suspect that the user tends to give
his/her relevance judgements relative to other images
present on the screen: In the Randomised system
the user clicked larger proportion of irrelevant key
frames, than in other cases. Conversely, when more
relevant frames are displayed, the user missed a larger
proportion of them than when the screen contained
arbitrary key frames (see in Table 2 column “Missed
relevant”, which shows proportion of key frames of
relevant shots, that have not been marked by the
users as relevant). Partially the relevant documents
are not recognised as such due to the fact that the
user saw single frames representing a shot which may
not have contained the relevant objects, and not the
video shots themselves. This is an indication that
there is a need for a better presentation of a shot to
the user.

Figure 3 shows the recall-precision graphs of sys-
tems 1–4. On most recall levels, the feedback run
is better than the text run. The feedback run on
the trained matrix showed slightly worse performance
than the feedback run on the visual feature matrix,
but at higher recall levels there is a noticeable advan-
tage.

Figure 3: Precision at various recall levels for inter-
active runs.

In the questionnaires that the users filled before
and after the search sessions, the users merely pre-
ferred to make many fast iterations to waiting be-
tween the search steps, regardless the fact that a ses-
sion never exceeded 15 minutes. The average number
of iteration steps per search was 65, with the max-
imum of 150. Thus, an algorithm that quickly pro-
duces the next set of examples, is desired. At the
same time, in our small user study we found that
the users did not like the Randomised system be-
cause of the lack of good examples on the screen, and,
conversely, liked when the next screen seemed to be
the consequence of their feedback, giving the user the
feeling of being in control of the process. Thus, when
choosing an algorithm for display update, one should
keep a trade off between speed and quality of that.

8 Conclusions

This paper presented the models used and exper-
iments carried out for the TRECVID 2003 work-
shop. We focused on combining information on dif-
ferent levels. We combined information from different
sources and modalities, information from different vi-
sual examples and human and model based informa-
tion.

We extended our generative probabilistic models
to include temporal information and found this im-
proves the results. Combining these results with re-
sults from a ASR run gives another improvement.
Whenever both text results (from ASR language
models) and visual results (from GMM models) do
something useful, a combination gives even better re-
sults.

Manually selecting good visual examples and useful
models for a given topic gave the best results among
the visual runs. The selection of (multiple) good ex-
amples and their combination are the main cause for
this success.

Intuitively, building a model from all (or some) vi-
sual topic examples and ranking the documents by
their probability of being generated from such a topic
model, seems at least as good an approach as the re-
versed process (trying to explain query samples from
document models). In practise it turns out that in

9

fact this topic model approach works better, provided
that smoothing is used (See also [11]).

The interactive search results are obviously far bet-
ter, than the manual ones. Also here we noticed that
a combination of textual and visual information per-
formed better than text alone. The user action re-
mains an indispensable component of an information
retrieval system.

References

[1] L. Boldareva, D. Hiemstra, and W. Jonker.
Relevance feedback in probabilistic multime-
dia retrieval. In DELOS Workshop on Mul-
timedia Contents in Digital Libraries, 2003.
http://www.music.tuc.gr/MDL/.

[2] A. P. de Vries, T. Westerveld, and T. Ianeva.
Combining multiple representations on the
TRECVID search task. In International Confer-
ence on Acoustics, Speech, and Signal Processing
(ICASSP 2004), 2004. to appear.

[3] A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algo-
rithm. Journal of the Royal Statistical Society,
series B, 39(1):1–38, 1977.

[4] R. Fagin. Fuzzy queries in multimedia database
systems. In ACM Symposium on Principles of
Database Systems (PODS), pages 1–10, 1998.

[5] J. Gauvain, L. Lamel, and G. Adda. The LIMSI
broadcast news transcription system. Speech
Communication, 37(1–2):89–108, 2002.

[6] D. Hiemstra. Using language models for infor-
mation retrieval. PhD thesis, Centre for Telem-
atics and Information Technology, University of
Twente, 2001.

[7] T. Ianeva, A. P. de Vries, and T. Westerveld.
A dynamic probabilistic retrieval model. In
IEEE International Conference on Multimedia
and Expo (ICME), 2004. to appear.

[8] T. I. Ianeva, A. P. de Vries, and H. Röhrig.
Detecting cartoons: a case study in automatic

video-genre classification. In 2003 IEEE In-
ternational Conference on Multimeda & Expo,
2003.

[9] J. M. Ponte and W. B. Croft. A language
modeling approach to information retrieval. In
Proceedings of the 21st ACM Conference on
Research and Development in Information Re-
trieval (SIGIR’98), pages 275–281, 1998.

[10] N. Vasconcelos. Bayesian Models for Visual In-
formation Retrieval. PhD thesis, Massachusetts
Institut of Technology, 2000.

[11] T. Westerveld and A. P. de Vries. Multimedia
retrieval using multiple examples. Technical Re-
port INS-E0403, CWI, Amsterdam, The Nether-
lands, March 2004.

[12] T. Westerveld, A. P. de Vries, and A. van Bal-
legooij. CWI at the TREC-2002 video track.
In E. M. Voorhees and D. K. Harman, edi-
tors, The Eleventh Text REtrieval Conference
(TREC-2002), 2003.

[13] T. Westerveld, A. P. de Vries, A. van Ballegooij,
F. M. G. de Jong, and D. Hiemstra. A proba-
bilistic multimedia retrieval model and its eval-
uation. EURASIP Journal on Applied Signal
Processing, 2003(2):186–198, 2003. special issue
on Unstructured Information Management from
Multimedia Data Sources.

10

