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INTRODUCTION	  

Phases	  and	  phase	  transi:ons	  
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Magnetic field At zero temperature: Quantum phases. 
They include very exotic phenomena: topological 
dependency, superconductivity, spin liquids, etc. 
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Spectral gap =0 
(Def.) 
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Spectral	  gap	  problem	  
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States with minimal energy = eigenvector of 
Called ground states.  N 
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How does the spectral gap behave as N goes to infinity? 

Spectral Gap: 
Energy to pay to jump from ground states to excited states  

€ 

ΔN = λ1(N) − λ0(N)

Does the system have gap? i.e is there a c>0 such that              for all N?  
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Spectral Gap problem: 



	  Why	  is	  it	  interes:ng?	  

Spectral Gap in condensed matter physics: 

•    It defines the concept of quantum phase, phase transition, phase diagram, … 

Spectral Gap in quantum information and computation: 

•    It measures the efficiency in both adiabatic and dissipative quantum computation and quantum 
state engineering   

Spectral Gap in high energy physics: 

•    It is connected (via discretization) with particle masses and hence with the Yang-Mills 
millenium problem. 
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Our	  result	  (informal	  statement)	  

Problem (Spectral Gap): 
Input: nearest-neighbor interaction h  
Output: decide if H has a gap or not. 

Theorem: 
The Spectral Gap problem is undecidable. 

There is no algorithm that on input h decides it 

Corollary: There exist nearest neighbor interactions for which the existence or 
absence of gap cannot be proven within the axioms of mathematics. 

Proof by reduction from the halting problem of a Turing Machine. 
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Instructions :  δ :Q × S→Q × L,R{ } × S

€ 

E.g. δ(A,0) = (C,1,R)
δ(C,0) = (B,1,L)
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in N, written in binary just at the right of the starting cell. 

Halting problem: Given a TM, does it halt?  

Theorem  (1936, Turing): The halting problem is undecidable. That is, there is no 
algorithm (= TM) that on input another TM (=N), decides whether it halts or not. 

We say simply that a TM halts if it halts on input 0.  

Theorem  (1936, Turing): There exists a TM M, called universal (UTM), so that it 
halts on input N iff the TM=N halts on input 0. 

Corollary: There is no algorithm that on input a natural number N, decides 
whether the UTM halts or not on input N. 
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Theorem:  

         the Hamiltonian given by  

Have the following properties 
1.  All terms                                 have operator norm bounded by 1. 
2.  If the UTM halts on input n, then in the thermodynamic limit  
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Theorem: We give explicitly a dimension d,               matrices A,B,C,D and a rational 
number     so that  
•  A, B are hermitian and with coefficients in 
•  C, D have integer coefficients 

And if we define, for each natural number n,  
(          an algebraic computable number).  

Then the Hamiltonian given by  

Have the following properties 
1.  All terms                                 have operator norm bounded by 1. 
2.  If the UTM halts on input n, then in the thermodynamic limit  
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Proof quite technical and long (140 pages). 3 main ingredients: 

Ingredient 1 (Writing n on the tape). Construction for each n of a QUANTUM Turing 
Machine with size independent of n, so that, for each N>|n|, on input 

Outputs always n (in binary) 
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Ingredients	  of	  the	  proof	  

Ingredient 2. (a Hamiltonian whose spectrum depends on whether the UTM on input 
n halts or not)  

Construction, for each classical or quantum Turing Machine, of a 1D nearest neighbor 
interaction whose ground state encodes the evolution of the TM. 

By adding a penalty term to the halting state, one gets that the ground state has energy 0 
if the TM does not halt and energy exp(-N) if it halts (N size of the system). 

By choosing the QTM of Ingredient 1 followed by the UTM we get a Hamiltonian which 
has different ground energies depending on the behavior of the UTM on input n.     
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Ingredients	  of	  the	  proof	  

Ingredient 3. (Amplifying the spectral difference between halting and not-halting)  

For that we rely on Robinson’s aperiodic tiling which allows us to have infinitely many 
copies of the previous Hamiltonian in all possible system sizes. 

We also use the trivial fact that we can encode any valid tiling in the ground state of a 
nearest neighbor Hamiltonian defined in terms of the tiles. 
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Implica:ons	  of	  the	  result	  
In condensed matter physics, almost all knowledge is numerical. Got by increasing the 
system size and extrapolating the result. Example: Haldane’s conjecture. 

Schollwöck and co. d=5, DMRG (1995) 

Our result implies that there exist systems that look gapless for all systems sizes 
But a gap opens from       on. Moreover, this (uncomputable) critical size can be arbitrarily large.  

€ 

< Lc

€ 

Lc

Nichtingale and co. d=3, MC (1986) 
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•  Conjecture:	  the	  following	  quan::es	  are	  also	  
uncomputable:	  

•  The	  number	  of	  people	  that	  have	  benefited	  from	  
Richard’s	  sharp	  and	  generous	  ideas.	  

•  The	  number	  of	  people	  that	  have	  felt	  at	  home	  in	  
Kent	  thanks	  to	  Richard’s	  hospitality.	  	  



THANKS	  RICHARD!	  	  

…	  and	  HAPPY	  BIRTHDAY!	  


