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SUMMARY

This paper offers an introduction to Bayesian reference analysis, often regarded as the more successful
method to produce non-subjective, model-based, posterior distributions. The ideas are illustrated with
an interesting problem, the ratio of multinomial parameters, for which no model-based Bayesian analysis
has been proposed. Signposts are provided to the huge related literature.
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1. INTRODUCTION

From a Bayesian perspective, the outcome ofany inference problem is theposterior dis-
tribution of the quantity of interest, which combines the information provided by the data with
available prior information; it has been often recognised that there is a pragmatically important
need for a form of prior to posterior analysis which captures, in awell-defined sense, the notion
that the prior should have a minimal effect, relative to the data, on the posterior inference. We
will generally denote byπ(φ |x) a model-based, non-subjective posterior density of a quantity
of interestφ conditional on datax, for which a probability modelp(x |φ,λ) is assumed which
may also depend on a vectorλ = {λ1, . . . , λm} of nuisance parameters.

In the long, fascinating history of the quest for these “baseline” posterior distributions, a
number of requirements have emerged which may reasonably be regarded as necessary properties
of an algorithm designed to produce such non-subjective posteriors:

(i) Invariance with respect to one-to-one transformations. (Jeffreys, 1946; Jaynes, 1968;
Kass, 1989; Dawid, 1983; Yang, 1995; Datta and Ghosh, 1996). The posteriorπ(φ |x)
with respect to modelp(x |φ) mustbe consistent with the posteriorπ(θ |x) with respect to
p(x | θ), whereθ = θ(φ) is a one-to-one function ofφ, so that, for allx,

π(φ |x) = π(θ |x)
∣∣∣∣dθ

dφ

∣∣∣∣
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(ii) No marginalization paradoxes. (Stone and Dawid, 1972; Dawid, Stone and Zidek, 1973).
If the posteriorπ1(φ |x) for the quantity of interestφ conditional to datax from model
p(x |φ,λ) is of the formπ1(φ |x) = π1(φ | t), and if the sampling distribution oft,
p(t |φ,λ) = p(t |φ) only depends onφ, then the posterior ofφ, π2(φ | t), obtained from
the simplified modelp(t |φ) mustbe the same as the posteriorπ1(φ | t) obtained from the
full modelp(x |φ,λ).

(iii) Consistent sampling properties. (Neyman and Scott, 1948, Stein, 1959, 1962, 1985; Welch
and Peers, 1963; Peers, 1965; Stone, 1976; Fraser, Monette and Ng, 1985; Tibshirani,
1989; Datta and Ghosh, 1995a). The properties under repeated sampling of the posterior
distribution, should be consistent with the model. In particular, for anylarge sample size
and for any0 < p < 1, the coverage probability of a credible interval with non-subjective
posterior probabilityp should be close top for most parameter values.

Besides those technical requirements, methods proposed to derive non-subjective posterior
distributions should begeneral, i.e., applicable to any properly defined inference problem, and
“admissible” in the sense that, for each known example, no other model-based posterior could
be argued to be “better” in a generally accepted, well-defined sense.

The reference analysis, introduced by Bernardo (1979, 1981) and further developed by
Berger and Bernardo (1989, 1992a, 1992b, 1992c) is, to the best of our knowledge, the only
available method to derive non-subjective posterior distributions which satisfy all those desi-
derata. However, reference posterior distributions have a reputation of being difficult to obtain,
and the professional literature often contains formal Bayesian analysis using unjustified and
often misleading, (but easily derived!), naïve “noninformative” priors. This may be partially
due to the lack of an easily accessible introduction to reference analysis; in this paper, we try to
offer such an introduction.

Section 2 contains an overview of reference analysis, where the definition is motivated,
heuristic derivations of explicit expressions for the one parameter, two parameters, and multi-
parameter cases are sequentially presented, and the behaviour of the reference posteriors under
repeated sampling is discussed. In Section 3, the theory is applied to an inference problem,
the ratio of multinomial parameters, for which no model-based Bayesian analysis has been
previously proposed, and which has been chosen because it combines intrinsic importance and
pedagogic value. Section 4 includes further discussion and provides directions for complemen-
tary reading. A number of definite integral results required in Section 3 are collected together
in a final appendix.

2. AN OVERVIEW OF REFERENCE ANALYSIS

2.1. Motivation

The declared objective of reference Bayesian analysis is to specify a prior distribution such that,
even for moderate sample sizes, theinformation provided by the data should dominate the prior
informationbecause of the “vague” nature of the prior knowledge. Reference analysis uses the
concept of statistical information, in the technical sense of Shannon (1948) and Lindley (1956),
to make this notion precise; see Soofi (1994) for a recent discussion of these ideas.

The amount of information to be expected from an experiment about some quantity of in-
terest naturally depends on the available prior knowledge: the more prior information available,
the less information may be expected to be learned from the data. An infinitely large experiment
would eventually provide all missing information; thus, it is possible to obtain a measure of the
amount of missing information as a limiting form of a functional of the prior distribution. It
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is natural to define “vague” prior knowledge as that with the largest missing information: the
reference priorshould then be that whichmaximizes the missing information.

Actually, due to the fact that the missing information is defined as a limit which is not
necessarily finite, the reference prior is defined as some special limit of a sequence of prior
distributions which maximize the information to be expected from an increasingly large experi-
ment; we now make this formulation precise.

2.2. One Parameter

Given an experimente which consists of one observationx from p(x |φ), φ ∈ Φ ⊂ �, the
amount of informationI{e, p(φ)} which may be expected aboutφ when prior knowledge is
described byp(φ) is defined by

I{e, p(φ)} =
∫

X
p(x)

∫
Φ

p(φ |x) log
p(φ |x)
p(φ)

dφdx;

hence, the amount of information which may be expected fromk independent replications ofe,
zk = {x1, . . . ,xk} is

I{e(k), p(φ)} =
∫

Xk
p(zk)

∫
Φ

p(φ |zk) log
p(φ |zk)

p(φ)
dφdzk.

Ask → ∞, e(k) would provide anymissing informationaboutφ which could be obtained within
this framework, and hence, ask → ∞, I{e(k), p(φ)} will approach the missing information
aboutφ when prior knowledge is described byp(φ).

It would be natural for a non-subjective prior intended to describe “lack of knowledge”
about a quantityφ to maximize the missing information about its value: the reference prior
would then be a special type of limit, ask → ∞, of a sequence of priorsπk(φ) which maximize
I{e(k), p(φ)} within the class of strictly positive priors onΦ. The amount of information
I{e(k), p(φ)} may usefully be reexpressed as

I{e(k), p(φ)} =
∫

Φ
p(φ) log

fk(φ)
p(φ)

dφ,

fk(φ) = exp
{∫

p(zk |φ) log p(φ |zk) dzk

}
and, using a calculus of variations argument, it is easily verified that this is maximized if, and
only if, the prior p(φ) is such thatp(φ) ∝ fk(φ). However, for eachk, this only provides
an implicit solution for the prior which maximizesI{e(k), p(φ)}, sincefk(φ) depends on the
prior through the posterior distributionp(φ |zk); moreover, the maximizing prior is typically
discrete, even for continuous parameters (Berger, Bernardo and Mendoza, 1989).

To overcome both difficulties, consider, for largek, an asymptotic approximation to the
posterior distribution, sayq(φ |zk), which may certainly be chosen to be independent ofp(φ).
Then, under suitable regularity conditions, the sequence ofpositivefunctions

πk(φ) = exp
{∫

Xk
p(zk |φ) log q(φ |zk)dzk

}
, φ ∈ Φ, k = 1, 2, . . . (1)

derived from such an asymptotic posterior may be expected to induce, by formal use of Bayes
theorem, a sequence of posterior distributions

πk(φ |x) =
p(x |φ)πk(φ)∫

Φ p(x |φ)πk(φ)dφ
, k = 1, 2, . . .
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with the desired reference posterior distributionπ(φ |x) as its limit, so that

π(φ |x) = lim
k→∞

πk(φ |x), φ ∈ Φ, x ∈ X, (2)

where the limit is to be understood in theinformation sense, i.e., such that, for almost allx,

lim
k→∞

∫
Φ

πk(φ |x) log
πk(φ |x)
π(φ |x)

dφ = 0.

For a discussion of the necessity of this type of limit, see the analysis of theconfidence paradox
of Monette, Fraser and Ng (1985), in Berger and Bernardo (1992c).

The limiting distribution (2) isdefinedto be thereference posterior distributionof φ. A
reference prioris a function which, for any data, makes it possible to obtain the reference
posteriorπ(φ |x) by formal use of Bayes theorem,i.e., a positive functionπ(φ) such that, for
all x ∈ X,

π(φ |x) =
p(x |φ)π(φ)∫

Φ p(x |φ)π(φ)dφ
.

Thus the reference priorπ(φ) is the limit of the sequence{πk(φ), k = 1, 2, . . .} defined by (1)
in the precise sense that the information-type limit of the corresponding sequence of posterior
distributions{πk(φ |x), k = 1, 2, . . .} is the posterior obtained fromπ(φ) by formal use of
Bayes theorem.

Very often, the asymptotic posterior distributionq(φ |zk) only depends on the data through
some asymptotically sufficient, consistent estimatorφ̂. In such case, the sequence (1) may be
reexpressed as

πk(φ) = exp
{∫

Xk
p(zk |φ) log q(φ |zk) dzk

}
= exp

{∫
�

p(φ̂ |φ) log q(φ | φ̂) dφ̂

}
,

which, ask → ∞, converges to

exp
{

log q(φ | φ̂) | φ̂=φ

}
= q(φ|φ̂)

∣∣∣
φ̂=φ.

In particular, ifq(φ|φ̂) = N(φ|φ̂, d(φ̂)) so that the posterior distribution ofφ is asymptotically
normal with mean̂φ and standard deviationd(φ̂), then

q(φ|φ̂)
∣∣∣
φ̂=φ

∝ d−1(φ).

Summarizing, we may state:

Proposition 1. Letp(x |φ), x ∈ X, be a probability model with one real-valued parameter
φ ∈ Φ ⊂ � such that there is a consistent and asymptotically sufficient estimatorφ̂, and
let q(φ | φ̂) be an asymptotic approximation to the posterior distribution ofφ which only
depends on the model. Then, any function of the form

π(φ) ∝ q(φ | φ̂)
∣∣∣
φ̂=φ
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is a reference prior. In particular, if the asymptotic posterior is normal with standard
deviationd(φ̂), thenπ(φ) ∝ d(φ)−1. The reference posterior distribution ofφ given
{x1, . . . ,xn} is

π(φ |x1, . . . ,xn) =
π(φ)

∏n
l=1 p(xl |φ)∫

Φ π(φ)
∏n

l=1 p(xl |φ) dφ
.

It is well known that under regularity conditions, the posterior distribution is asymptotically
normal with standard deviationf(φ̂)−1/2, where

f(φ) = −
∫

X
p(x |φ)

∂2

∂φ2 log p(x |φ) dx

is Fisher’s function. In this case, the reference prior is

π(φ) ∝ d(φ)−1 = f(φ)1/2,

i.e., Jeffreys (1946, 1961) prior; Polson (1992) discusses in detail the necessary regularity
conditions; Ghosal (1996) analyses the non-regular case. It follows that the reference prior
algorithm contains Jeffreys’ prior as the particular case which obtains undernormalasymptotics
in one-parametercontinuous models.

Proposition 1 may be used to derive reference posteriors associated to models which only
depend on the quantity of interest. As one should require, if the model is otherwise parametrized
in terms of some one-to-one functionθ = θ(φ) of the quantity of interest, the reference posterior
of φ may consistently be obtained from that ofθ. Indeed,

π(φ) = q(φ | φ̂)
∣∣∣
φ̂=φ

= q(θ(φ) | θ̂)
∣∣∣dθ

dφ

∣∣∣∣∣∣
θ̂=θ(φ)

= π(θ(φ))
∣∣∣dθ

dφ

∣∣∣.
We now consider models which contain nuisance parameters; it turns out that those may be
handled by recursively using the one-parameter solution.

2.3. One Nuisance Parameter

Suppose that we are interested in the value ofφ, given a random sample{x1, . . . ,xn} from a
model

p(x |φ, λ), φ ∈ Φ ⊂ �, λ ∈ Λ(φ) ⊂ �,

which contains a nuisance parameterλ. Note that we allow for the possibility that the nuisance
parameter spaceΛ(φ) maydepend onφ.

Working conditionally onφ, this is a one-parameter problem and, hence, the one-parameter
solution described above may be used to obtain aconditionalreference priorπ(λ |φ). If this
is proper, then it may be used to integrate out the nuisance parameterλ and obtain a model
p(x |φ) which only depends onφ, thereby reducing the problem to one already solved.

If the conditional reference priorπ(λ |φ) is not proper, then the procedure is performed
within an increasing sequence of bounded approximations{Λi, i = 1, 2, . . .} to the nuisance
parameter spaceΛ, chosen such thatπ(λ |φ) is integrable within each of them. The reference
posteriorπ(φ |x) is then obtained as the limit of the resulting sequence{πi(φ |x), i = 1, 2, . . .}
of restricted reference posteriors.
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We shall only consider here the regular case, where joint posterior asymptotic normality
may be established. LetF (φ, λ) be the corresponding2 × 2 Fisher’s matrix in terms ofφ and
λ, and letS(φ, λ) = F−1(φ, λ), so that the posterior distribution of(φ, λ) is asymptotically
normal with mean(φ̂, λ̂), the corresponding mle’s, and covariance matrixS(φ̂, λ̂). It follows
that:

(i) the marginalposterior distribution ofφ is asymptotically normal with standard deviation
d0(φ̂, λ̂) = s1,1(φ̂, λ̂)1/2;

(ii) the conditionalposterior distribution ofλ givenφ is asymptotically normal with standard
deviationd1(φ, λ̂) = f2,2(φ, λ̂)−1/2.

Working conditionally onφ, so thatλ is the only relevant parameter, and using Proposition 1,
we findπ(λ |φ) ∝ d1(φ, λ)−1 and, therefore

π(λ |φ) =
d−1

1 (φ, λ)∫
Λ(φ) d−1

1 (φ, λ) dλ
, λ ∈ Λ(φ),

provided the integral exists. If it does not, an approximating sequence is

πi(λ |φ) =
d−1

1 (φ, λ)∫
Λi(φ) d−1

1 (φ, λ) dλ
, λ ∈ Λi(φ),

where{Λi(φ), i = 1, 2, . . .} is an increasing sequence of compact approximations toΛ(φ).
The sequence of priors (1) may then be computed as

πk(φ) ∝ exp
{∫

Xk
p(zk |φ) log q(φ |zk) dzk

}
= exp

{∫
�2

p(φ̂, λ̂ |φ) log q(φ | φ̂, λ̂) dφ̂ dλ̂

}
, k = 1, 2, . . .

If π(λ |φ) is proper, we have

p(φ̂, λ̂ |φ) =
∫

Λ(φ)
p(φ̂, λ̂ |φ, λ)π(λ |φ) dλ

and therefore, substituting and changing the order of integration,

πk(φ) = exp

{∫
Λ(φ)

π(λ |φ)
( ∫

�2
p(φ̂, λ̂ |φ, λ) log q(φ | φ̂, λ̂) dφ̂dλ̂

)
dλ

}
.

But the inner double integral converges to

log q(φ | φ̂, λ̂)
∣∣∣
(φ̂,λ̂)=(φ,λ)

= log
[
d−1

0 (φ, λ)
]

sinceq(φ | φ̂, λ̂) is normal with mean̂φ and standard deviationd−1
0 (φ̂, λ̂) and, therefore,

π(φ) ∝ exp
{∫

Λ(φ)
π(λ |φ) log[d−1

0 (φ, λ)] dλ
}

.

If π(λ |φ) is not proper, one would similarly obtain the approximating sequence

πi(φ) ∝ exp
{∫

Λi(φ)
π(λ |φ) log[d−1

0 (φ, λ)] dλ
}

.

Thus, we have:
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Proposition 2. Let p(x |φ, λ), φ ∈ Φ ⊂ �, λ ∈ Λ(φ) ⊂ �, be a probability model with
two real-valued parametersφ andλ, whereφ is the quantity of interest, and suppose that
the joint posterior distribution of(φ, λ) is asymptotically normal with covariance matrix
S(φ̂, λ̂). Then, ifH(φ, λ) = S−1(φ, λ),

(i) the conditional reference prior ofλ is

π(λ |φ) ∝ d−1
1 (φ, λ) = h

1/2
2,2 (φ, λ), λ ∈ Λ(φ)

(ii) if π(λ |φ) is proper, the reference posterior distribution ofφ given{x1, . . . ,xn} is

π(φ |x1, . . . ,xn) ∝ π(φ)
∫

Λ(φ)

{∏n

l=1
p(xl |φ, λ)

}
π(λ |φ) dλ,

where the marginal reference prior ofφ is

π(φ) ∝ exp
{∫

Λ(φ)
π(λ |φ) log[d−1

0 (φ, λ)] dλ
}

, d0(φ, λ) = s
1/2
1,1 (φ, λ).

(iii) if π(λ |φ) is not proper, a compact approximation{Λi(φ), i = 1, 2, . . .} to Λ(φ) is
required, and the reference posterior distribution ofφ is obtained as

π(φ |x1, . . . ,xn) = lim
i→∞

πi(φ |x1, . . . ,xn),

whereπi(φ |x1, . . . ,xn) is derived usingΛi(φ) instead ofΛ(φ).

It is often found in applications that the nuisance parameter spaceΛ(φ) = Λ is independent
of φ, and that the functionsd0 andd1 nicely factorize in the formd−1

0 (φ, λ) = a0(φ)b0(λ),
d−1

1 (φ, λ) = a1(φ)b1(λ); if this is the case, then, for some positive constantci, we have

πi(λ |φ) =
a1(φ)b1(λ)∫

Λi
a1(φ)b1(λ)dλ

= cib1(λ),

πi(φ) ∝ exp

{∫
Λi

cib1(λ) log[a0(φ)b1(λ)]dλ

}
∝ a0(φ),

and hence,πi(φ) = π(φ) ∝ a0(φ). Thus, we have,

Corollary. If the nuisance parameter spaceΛ(φ) = Λ is independent ofφ, and the functions
d0 andd1 factorize in the form

d−1
0 (φ, λ) = a0(φ)b0(λ), d−1

1 (φ, λ) = a1(φ)b1(λ),

then
π(φ) ∝ a0(φ), π(λ |φ) ∝ b1(λ),

and there is no need for compact approximation, even if the conditional reference priors
are not proper.
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2.4. The Multiparameter Case

Proposition 2 and its corollary may easily be extended to any number of nuisance parame-
ters. Indeed, if the model isp(x |φ, λ1, . . . , λm), the quantity of interest isφ, the appropriate
regularity conditions hold, andF (φ, λ1, . . . , λm) is the corresponding(m + 1) × (m + 1)
Fisher’s matrix, then the posterior distribution of(φ, λ1, . . . , λm) is asymptotically normal with
mean(φ̂, λ̂1, . . . , λ̂m), the corresponding mle’s, and covariance matrixS(φ̂, λ̂1, . . . , λ̂m), where
S = F−1.

It follows that, if Sj is thej × j upper matrix ofS, j = 1, . . . , m + 1, Hj = S−1
j and

hj,j(φ, λ1, . . . , λm) is the(j, j) element ofHj , so thatHm+1 = F andhm+1,m+1 = fm+1,m+1,
then

(i) themarginalposterior distribution ofφ is asymptotically normal with standard deviation

d0(φ̂, λ̂1, . . . , λ̂m) = s1,1(φ̂, λ̂1, . . . , λ̂m)1/2 = h1,1(φ̂, λ̂1, . . . , λ̂m)−1/2;

(ii) the conditionalposterior distribution ofλi givenφ, λ1, . . . , λi−1 , is asymptotically normal
with standard deviation

di(φ, λ1, . . . , λi−1, λ̂i, . . . , λ̂m) = hi+1,i+1(φ, λ1, . . . , λi−1, λ̂i, . . . , λ̂m)−1/2,

and one may sequentially use the algorithm described in 2.3 to deriveπ(λm |φ, λ1, . . . , λm−1),
π(λm−1 |φ, λ1, . . . , λm−2), . . .,π(λ1 |φ), andπ(φ), and produce the desired reference posterior.

Proposition 3. Letp(x |φ,λ), λ = (λ1, . . . , λm) be a probability model withm + 1 real-
valued parameters, letφ be the quantity of interest, and suppose that the joint distribution of
(φ, λ1, . . . , λm) is asymptotically normal with covariance matrixS(φ̂, λ̂1, . . . , λ̂m). Then,
if Sj is thej × j upper matrix ofS, Hj = S−1

j andhj,j(φ, λ1, . . . , λm) is the(j, j) element
of Hj ,

(i) the conditional reference priors are

π(λm |φ, λ1, . . . , λm−1) ∝ d−1
m (φ, λ1, . . . , λm),

π(λi |φ, λ1, . . . , λi−1) ∝

exp
{ ∫

Λi+1
· · ·

∫
Λm

log d−1
i (φ, λ1, . . . , λm)

{ m∏
j=i+1

π(λj |φ, λ1, . . . , λj−1)
}

dλi+1

}

wheredλj = dλj × · · · × dλm, and

d−1
i (φ, λ1, . . . , λm) = hi+1,i+1(φ, λ1, . . . , λm)1/2, i = 1, . . . , m,

providedπ(λi |λ1, . . . , λi−1), i = 1, . . . , m are all proper. If any of those condi-
tional reference priors is not proper, then a compact approximation is required for the
corresponding integrals.

(ii) The marginal reference prior ofφ is

π(φ) ∝ exp
{ ∫

Λ1
· · ·

∫
Λm

log d−1
0 (φ, λ1, . . . , λm)

{ m∏
j=1

π(λj |φ, λ1, . . . , λj−1)
}

dλ1

}
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where

d−1
0 (φ, λ1, . . . , λm) = h

1/2
1,1 (φ, λ1, . . . , λm) = s

−1/2
1,1 (φ, λ1, . . . , λm).

After data{x1, . . . ,xn} have been observed, the reference posterior distribution of the
parameter of interestφ, is

π(φ |x1, . . . ,xn)

∝ π(φ)
∫

Λ1
· · ·

∫
Λm

{ n∏
l=1

p(xl |φ, λ1, . . . , λm)
} m∏

j=1

{
π(λj |λ1, . . . , λj−1)

}
dλ1

}
.

Corollary If the nuisance parameter spacesΛi(φ, λ1, . . . , λi−1) = Λi are independent of
bothφ and theλi’s, and the functionsd0, . . . , dm, factorize in the form

d−1
0 (φ, λ1, . . . , λm) = h

1/2
1,1 (φ, λ1, . . . , λm) = a0(φ)b0(λ1, . . . , λm)

d−1
i (φ, λ1, . . . , λm) = h

1/2
i+1,i+1(φ, λ1, . . . , λm)

= ai(λi)bi(φ, λ1, . . . , λi−1, λi+1, . . . , λm), i = 1 . . . , m,

then
π(φ) ∝ a0(φ), π(λi |φ, λ1, . . . , λi−1) ∝ ai(λi), i = 1, . . . , m

and there is no need for compact approximations, even if theπ(λi |φ, λ1, . . . , λi−1)’s are
not proper.

2.5. Behaviour under repeated sampling

The frequentist coverage probabilities of credible intervals derived from reference posterior
distributions are sometimes identical, and usually very close, to their posterior probabilities;
this means that even for moderate samples, an interval with reference posterior probability1−α
may often be interpreted as an approximate confidence interval with significance levelα.

More formally, if tα = tα(x1, . . . ,xn) denotes the1 − α quantile which corresponds to
the reference posteriorπ(φ |x1, . . . ,xn), so that

P
[
φ ≤ tα |x1, . . . ,xn

]
=

∫
φ≤tα(x1,...,xn)

π(φ |x1, . . . ,xn) dφ = 1 − α,

then the coverage probability of the(1 − α) reference posterior credible interval] −∞, tα],

P
[
tα ≥ φ |φ

]
=

∫
tα(x1,...,xn)≥φ

p(x1, . . . ,xn |φ) dx1 · · · dxn

often satisfies
P

[
tα ≥ φ |φ

]
= 1 − α + O(n−1),

while, for most priors, this asymptotic approximation is onlyO(n−1/2). Intuitively, this says
that the reference prior is often aprobability matchingprior, i.e., a prior for which the coverage
probabilities ofone-sidedposterior credible intervals are asymptotically as close as possible
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to their posterior probabilities. Hartigan (1966) showed that the coverage probabilities oftwo-
sidedBayesian posterior credible intervals satisfy this type of approximation toO(n−1) for all
priors.

In a pioneering paper, Welch and Peers (1963) established that in the case of the one-
parameter regular continuous models Jeffreys’ prior, —which in this case (Proposition 1) is
also the reference prior—, is the only probability matching prior. Hartigan (1983, p. 79)
showed that this result may be extended to one-parameter discrete models by using continuity
corrections. Datta and Ghosh (1995a) derived a differential equation which provides a necessary
and sufficient condition for a prior to be probability matching in the multiparameter continuous
regular case; this has been used to verify that reference priors are typically probability matching
priors. Recent work by Rousseau (1996) using continuity corrections, suggests that these results
may also be extended to multiparameter discrete models. In Section 4, we summarize some
additional related work.

Although the results described above only justify anasymptoticapproximate frequentist
interpretation of reference posterior probabilities, there is empirical evidence to suggest that
the coverage probabilities of reference posterior credible intervals derived from relatively small
samples are also typically close to their posterior probabilities; this will be illustrated in the
example discussed below.

3. THE RATIO OF MULTINOMIAL PARAMETERS

3.1. The Problem

Considern multinomial observations which belong to one of, say,m + 1 categories, so that

p(r1, . . . , rm |n, θ1, . . . , θm) =
n!∏m+1

i=1 ri!

m+1∏
i=1

θ
ri
i , 0 ≤ ri < n,

m∑
i=1

ri ≤ n

with 0 < θi < 1, θm+1 = 1 −
∑m

i=1 θi, andrm+1 = n −
∑m

i=1 ri.

Suppose that we are interested in the ratio of the, say, first two parametersφ = θ1/θ2. For
instance, in an insurance application one may be interested in assessing how many times more
likely is risk 1 than risk 2 or, in a political application, one may be interested in assessing the
ratio of the percentages of votes that candidates 1 and 2 may be expected to obtain.

We note that, in the absence of other information, one would expect the result to depend on
r1 andr2, but not on n or the otherri’s, which intuition suggest should be irrelevant; indeed,
in the absence of information on the relationship among theθi’s, we cannot expect to obtain
information aboutθ1/θ2 from then− r1 − r2 observations which do not belong to either of the
first two categories.

3.2. The Two Parameters Case

Let us first consider the two parameter case, so that there are three categories, with probabilities
θ1, θ2 and1 − θ1 − θ2, and

p(r1, r2 |n, θ1, θ2) =
n!

r1!r2!(n − r1 − r2)!
θ1

r1θ2
r2(1 − θ1 − θ2)n−r1−r2, r1 + r2 ≤ n,

or, in terms ofφ = θ1/θ2, andλ = θ2,

p(r1, r2 |n, φ, λ) =
n!

r1!r2!(n − r1 − r2)!
φr1λr1+r2

(
1 − λ(1 + φ)

)n−r1−r2
.
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The corresponding Fisher’s matrix is easily found to be

F (φ, λ) =
n

1 − λ(1 + φ)

(
λ(1−λ)

φ 1

1 1+φ
λ

)
so that

S(φ, λ) = F−1(φ, λ) =
1
n

( φ(1+φ)
λ −φ
−φ λ(1 − λ)

)
;

hence, the joint posterior of(φ, λ) is asymptotically normal with covariance matrixS(φ̂, λ̂)
and, therefore,

(i) themarginalasymptotic posterior ofφ is normal with standard deviationd0(φ̂, λ̂),

d0(φ, λ) =
1√
n

(
φ(1 + φ)

λ

)1/2

;

(ii) theconditionalasymptotic posterior ofλ givenφ is normal with standard deviationd1(φ, λ̂),

d1(φ, λ) =
1√
n

(
1 + φ

λ{1 − λ(1 + φ)}

)−1/2

.

From Proposition 2 (i),π(λ |φ) ∝ d−1
1 (φ, λ); hence,

π(λ |φ) =
d−1

1 (φ, λ)∫
Λ(φ) d−1

1 (φ, λ)dλ
=

λ−1/2{1 − λ(1 + φ)}−1/2∫ (1+φ)−1
0 λ−1/2{1 − λ(1 + φ)}−1/2dλ

,

since the factor(1 + φ)1/2 cancels out and

0 < θ1 + θ2 < 1 ⇒ 0 < φλ + λ < 1 ⇒ 0 < λ < (1 + φ)−1;

thus, using Proposition A1, witha = b = 1/2, andc = 1 + φ, the conditional reference prior
of the nuisance parameterλ given the parameter of interestφ is

π(λ |φ) =
(1 + φ)1/2

π
λ−1/2{1 − λ(1 + φ)}−1/2, 0 < λ < (1 + φ)−1, (3)

which is a proper, Beta-like, distribution on the interval

Λ(φ) =
[
0,

1
1 + φ

]
=

[
0,

θ1

θ1 + θ2

]
.

From Proposition 2 (ii),

π(φ) ∝ exp

{∫
Λ(φ)

π(λ |φ) log d−1
0 (φ, λ) dλ

}

∝ exp

{∫
Λ(φ)

π(λ |φ) log
(

φ(1 + φ)
λ

)−1/2

dλ

}



J. M. Bernardo and J. M. Ramón.Reference Analysis 12

= φ−1/2(1 + φ)−1/2 exp

{
1
2

∫
Λ(φ)

π(λ |φ) log λ dλ

}
and, using Proposition A2 witha = b = 1/2 andc = 1 + φ, one has

π(φ) ∝ φ−1/2(1 + φ)−1/2 exp
{
−1

2 log[4(1 + φ)]
}
∝ φ−1/2(1 + φ)−1;

finally , using Proposition A4 witha = b = 1/2,∫ ∞

0
φ−1/2(1 + φ)−1dφ = π

and, hence, the marginal reference prior of the parameter of interestφ, which isproper even
though it is defined on the unbounded spaceΦ =]0,∞[, is given by

π(φ) =
1
π

φ−1/2(1 + φ)−1, 0 < φ < ∞. (4)

Combining (3) and (4), thejoint reference prior needed to obtain a reference posterior for
the parameter of interestφ is theproperprior

π(φ)π(λ |φ) =
1
π2φ−1/2(1 + φ)−1/2λ−1/2{1 − λ(1 + φ)}−1/2; (5)

therefore, using (5) in Bayes theorem to derive the corresponding joint posterior and integrating
out the nuisance parameterλ, the reference posterior for the parameter of interest is

π(φ | r1, r2, n) ∝ π(φ)
∫

Λ(φ)
p(r1, r2 |n, φ, λ)π(λ |φ) dλ

∝ φ−1/2(1 + φ)−1
∫ 1

1+φ

0
(1 + φ)1/2φr1λr1+r2−1/2{1 − λ(1 + φ)}n−r1−r2−1/2dλ

∝ (1 + φ)−1/2φr1−1/2
∫ 1

1+φ

0
λr1+r2−1/2{1 − λ(1 + φ)}n−r1−r2−1/2dλ.

Using Proposition A1 witha = r1 + r2 + 1/2, b = n − r1 − r2 + 1/2 andc = 1 + φ to solve
the last integral, we have

π(φ | r1, r2, n) ∝ (1 + φ)−1/2φr1−1/2(1 + φ)−(r1+r2+1/2) ∝ φr1−1/2

(1 + φ)r1+r2+1
,

and, using Proposition A4 witha = r1 + 1/2 andb = r2 + 1/2 to obtain the proportionality
constant, we finally obtain the desired reference posterior distribution of the quantity of interest
φ, as the Beta distribution of the second kind (seee.g., Johnsonet al. , 1995, p. 248)

π(φ | r1, r2, n) = π(φ | r1, r2) =
Γ(r1 + r2 + 1)

Γ(r1 + 1/2)Γ(r2 + 1/2)
φr1−1/2

(1 + φ)r1+r2+1
. (6)

Since (6) has been derived from a proper prior, it is obviously proper for any data. Moreover,
as expected, it doesnotdepend onn, but only onr1 andr2: then− r1 − r2 observations which
belong to the third category do not directly provide any information on the value ofφ = θ1/θ2.
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π(φ) = π(φ | r1 = r2 = 0)

Figure 1. Marginal reference prior ofφ, and reference posterior for any data withr1 = r2 = 0.
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π(φ | r1, r2)

•

Figure 2. Examples of reference posterior distributions from three random samples
of sizesn = 5, n = 20 andn = 100, simulated withθ1 = 0.4 andθ2 = 0.5, so thatφ = φ0 = 4/5.

In the particular case wherer1 = r2 = 0, so that alln observations belong to the third
category, we do not have any information aboutφ = θ1/θ2 and hence, the reference posterior
distribution reduces to the marginal reference prior (4), shown in Figure 1, which has no expected
value, but a median equal to 1, thus making equally likelyθ1 > θ2 thanθ2 > θ1.

It is easily checked that, whenr1 ≥ 1, π(φ | r1, r2) has a mode at(r1 − 1/2)/(r2 + 3/2).
Moreover, if one further defines

ω =
φ

1 + φ
=

θ1

θ1 + θ2
,

and henceφ = ω/(1 − ω), one has

π(ω | r1, r2) = π(φ | r1, r2)
∣∣∣∣dφ

dω

∣∣∣∣ ∝ wr1−1/2(1 − w)r2−1/2

and, therefore,
π(w | r1, r2) = Be(w | r1 + 1/2, r2 + 1/2).
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Thus the reference posterior forφ is equivalent toω, the proportion of observed elements in
category 1 among those in either category 1 or category 2, having the conventional Jeffreys-like
reference posterior Be(ω | r1 + 1/2, r2 + 1/2). This may be used to obtain credible regions for
φ using the typically preprogrammed incomplete Beta routines.

Figure 2 shows the reference posterior distributions ofφ obtained from three simulated
samples of sizen = 5, n = 20 andn = 100 from a multinomial model withθ1 = 0.4 and
θ2 = 0.5, so that the true value of the quantity of interest isθ1/θ2 = 4/5.

3.3. The General Case

Let us now consider the general case, so that there arem + 1 categories with probabilities
θ1, . . . , θm and1 −

∑m
j=1 θj , and

p(r1, . . . , rm |n, θ1, . . . , θm) =
n!∏m+1

j=1 rj !

m+1∏
j=1

θ
rj
j ,

∑m

j=1
rj ≤ n,

with rm+1 = n −
∑m

i=1 ri andθm+1 = 1 −
∑m

j=1 θj .

In this parametrization, the corresponding Fisher’s matrix is easily found to be

F (θ1, . . . , θm) = E(r1,...,rm | n,θ1,...,θm)

{
− ∂2

∂θi∂θj
log p(r1, . . . , rm |n, θ1, . . . , θm)

}

= n



1 + θm+1
θ1

1 . . . 1

1 1 + θm+1
θ2

. . . 1
...

...
. ..

...

1 1 . . . 1 + θm+1
θm


Since we are interested inφ = θ1/θ2, we make the one-to-one transformation

φ = θ1/θ2, λ = θ2, θi = θi, i = 3, . . . , m

The Jacobian of the inverse transformationθ1 = φλ, θ2 = λ, θi = θi, i = 3, . . . , m is then

J =


λ φ 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

.. .
...

0 0 0 . . . 1


and, therefore, the posterior distribution of(φ, λ, θ3, . . . , θm) is asymptotically normal with
covariance matrixn−1S(φ̂, λ̂, θ̂3, . . . , θ̂m), where φ̂ = r1/r2, λ̂ = r2/n, and θ̂i = ri/n,
i = 3, . . . , m are the corresponding mle’s, and

S(φ, λ, θ3, . . . , θm) = H−1(φ, λ, θ3, . . . , θm),

with
H(φ, λ, θ3, . . . , θm) = JtF (φ, λ, θ3, . . . , θm)J ;
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(see Mendoza, 1994, or Bernardo and Smith, 1994, p. 295). After some algebra, one finds

H(φ, λ, θ3, . . . , θm) =
n

1 − λ(1 + φ) − θ∗m

(
A B
Bt C

)
with

A =

( λ(1−λ−θ∗m)
φ 1 − θ∗m

1 − θ∗m
(1+φ)(1−θ∗m)

λ

)
B =

(
λ · · · λ

1 + φ · · · 1 + φ

)

C =


1+θ3−λ(1+φ)−θ∗m

θ3
1 · · · 1

1 . .. · · · 1
...

...
.. .

...

1 1 · · · 1+θm−λ(1+φ)−θ∗m
θm

 (7)

whereθ∗m = θ3 + · · · + θm, and

S(φ, λ, θ3, . . . , θm) = H−1(φ, λ, θ3, . . . , θm)

=
1
n



φ(φ+1)
λ −φ 0 · · · 0
−φ λ(1 − λ) −λθ3 · · · −λθm

0 −λθ3 θ3(1 − θ3) · · · −θ3θm

...
...

...
...

...

0 −λθm −θ3θm · · · θm(1 − θm)


(8)

With the notation of Proposition 3, and using the recursive structure of (7) and (8), we find
that

hi,i(θ1, . . . , θm)1/2 =
(

1 + θi − λ(1 + φ) − θ∗i
θi{1 − λ(1 + φ) − θ∗i }

)1/2

=
(

1 − λ(1 + φ) − δi

θi{1 − λ(1 + φ) − δi − θi}

)1/2

, i = 3, . . . , m,

whereθ∗i = θ3 + · · · + θi andδi =
∑i−1

j=3 θj = θ∗i − θi.

Using Proposition 3 (i),

π(θm |φ, λ, θ3, . . . , θm−1) ∝ h
1/2
m,m(φ, λ, θ3, . . . , θm−1)

=
(

1 − λ(1 + φ) − δm

θm{1 − λ(1 + φ) − δm − θm}

)1/2

, δm =
m−1∑
i=3

θi,

for thoseθm values such that0 < θ1 + θ2 + . . . + θm ≤ 1 and, therefore, such that

0 < λ(1 + φ) + δm + θm < 1 ⇒ 0 < θm < 1 − λ(1 + φ) − δm.
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Hence,

π(θm |φ, λ, θ3, . . . , θm−1) =
θ
−1/2
m (c − θm)−1/2∫ c

0 θ
−1/2
m (c − θm)−1/2dθm

,

wherec = 1−λ(1+φ)−δm. Using Proposition A3 witha = b = 1/2, andc = 1−λ(1+φ)−δm,

π(θm |φ, λ, θ3, . . . , θm−1) =
1
π

θm
−1/2(1 − λ(1 + φ) − δm − θm)−1/2,

for 0 ≤ θm ≤ 1 − λ(1 + φ) − δm.

Using again Proposition 3 (i),π(θi |φ, λ, . . . , θi−1) is proportional to

exp
{ ∫

Θi+1
· · ·

∫
Θm

log h
1/2
i,i (φ, λ, . . . , θm)

{ m∏
j=i+1

π(θj |φ, λ, . . . , θj−1)
}

dθi+1 . . . dθm

}

where

h
1/2
i,i (φ, λ, . . . , θm) = h

1/2
i,i (φ, λ, . . . , θi)

=
(

1 − λ(1 + φ) − δi

θi{1 − λ(1 + φ) − δi − θi}

)1/2

, δi =
i−1∑
j=3

θj

which doesnotdepend onθi+1, . . . , θm. Therefore,

π(θi |φ, λ, . . . , θi−1) ∝ exp{log h
1/2
i,i (φ, λ, . . . , θi)} = h

1/2
i,i (φ, λ, . . . , θi)

and, hence,

π(θi |φ, λ, . . . , θi−1) =
1
π

θi
−1/2(1 − λ(1 + φ) − δi − θi)

−1/2, 0 < θi < 1− λ(1 + φ)− δi.

Moreover,S2, the upper2× 2 submatrix ofS(φ, λ, θ3, . . . , θm), equals the matrixS(φ, λ)
obtained in two parameter case and, hence, the same results obtain, namely,

π(λ |φ) =
(1 + φ)1/2

π
λ−1/2{1 − λ(1 + φ)}−1/2, 0 < λ < (1 + φ)−1,

π(φ) =
1
π

φ−1/2(1 + φ)−1, 0 < φ < ∞.

Thus, thejoint reference prior required to obtain the reference posterior of the quantity of
interestφ is

π(θ) = π(φ)π(λ |φ)
m∏

i=3

π(θi | θi−1, . . . , θ3, λ, φ)

= φ−1/2(1 + φ)−1/2λ−1/2{1 − λ(1 + φ)}−1/2
m∏

i=3

θ
−1/2
i

{
1 − λ(1 + φ) −

i∑
j=3

θj

}−1/2
, (9)
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Using Bayes theorem with this joint prior and integrating out the nuisance parametersλ,
θ3, . . . , θm, the desired reference posterior may be derived as

π(φ | r1, r2, . . . , rm, n)

∝ π(φ)
∫

Λ(φ)
(φλ)r1λr2 π(λ |φ)

∫
Θ3

· · ·
∫

Θm

m∏
j=3

{
θj

rj
}

(1 − λ(1 + φ) − θ∗j )
rm+1

×
{ m∏

j=3

π(θj |φ, λ, . . . , θj−1)
}

dλ dθ3 . . . dθm

∝ φr1−1/2(1 + φ)−1/2
∫

Λ(φ)
λr1+r2−1/2{1 − λ(1 + φ)}−1/2

∫ c3

0
θ3

r3−1/2 dθ3 × . . .

×
∫ cm

0
θm

rm−1/2{1 − λ(1 + φ) − δm − θm}rm+1−1/2dθm,

whererm+1 = n −
∑m

j=1 rj , andcj = 1 − λ(1 + φ) − δj .

Using Proposition A3 witha = 1/2, b = rm+1 + 1/2 andc = cm, the last integral is
proportional to(1 − λ(1 + φ) − δm)rm+1 and, therefore,

π(φ | r1, r2, . . . , rm, n)

∝ φr1−1/2(1 + φ)−1/2
∫

Λ(φ)
λr1+r2−1/2{1 − λ(1 + φ)}−1/2

∫ c3

0
θ3

r3−1/2 . . .∫ cm−1

0
θm−1

rm−1−1/2{1 − λ(1 + φ) − δm−1 − θm−1}rm+1−1/2 dλ dθ3 . . . dθm−1;

thus, using Proposition A3 repeatedly,

π(φ | r1, r2, . . . , rm, n)

∝ φr1−1/2(1 + φ)−1/2
∫

Λ(φ)
λr1+r2−1/2{1 − λ(1 + φ)}rm+1−1/2dλ

.

Finally, using Proposition A1 witha = r1 + r2 + 1/2, b = rm+1 + 1/2, andc = 1 + φ, we
have

π(φ | r1, r2, . . . , rm, n) ∝ φr1−1/2(1 + φ)−1/2(1 + φ)−(r1+r2+1/2)

∝ φr1−1/2(1 + φ)−(r1+r2+1),

as in the two parameter case, so that

π(φ | r1, . . . , rm, n) = π(φ | r1, r2) =
Γ(r1 + r2 + 1)

Γ(r1 + 1/2)Γ(r2 + 1/2)
φr1−1/2

(1 + φ)r1+r2+1
. (10)

Thus, as we anticipated on intuitive grounds, reference inferences aboutθ1/θ2 only depend
onr1 andr2; the number and distribution among the other categories of the remainingn− r1 −
r2 observations —and, more importantly, the essentiallyarbitrary numberm of considered
categories—, are allirrelevantfor inferences solely based on the multinomial model. It is easily
verified that this isnot true if conventional “noninformative” priors, such as a uniform prior, or
Jeffreys’ multivariate prior, are used instead of (9) in deriving a model-based posterior forφ.
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3.4. Coverage Probabilities

The joint reference prior (9) satisfies Datta and Ghosh (1995a) conditions for probability match-
ing in continuous multiparameter models; indeed, after some algebra, it is found that

m∑
j=1

∂

∂θi
ηi(θ)π(θ) = 0 (10)

whereθ = {φ, λ, θ3, . . . , θm},

η(θ) =
S(φ, λ, θ3, . . . , θm)�√
�tS(φ, λ, θ3, . . . , θm)�

,

� = {1, 0, . . . , 0}t, S(φ, λ, θ3, . . . , θm) is given by (8), andπ(θ) is given by (9).

Extending Hartigan (1983) results with the techniques developed by Rousseau (1996),
this suggests that, asymptotically, the continuity corrected coverage probabilities of one-sided
credible intervals forφ of posterior probabilityp are equal top to ordern−1.

Table 1. Observed coverages of one-sided reference intervals forφ with posterior probabilityp.
Mean and standard deviations of five runs of 10000 simulations, for several sample sizes.

φ = 1/3

p n = 10 n = 25 n = 100

0.05 0.0512±0.0016 0.0496±0.0024 0.0542±0.0010
0.25 0.2530±0.0020 0.2528±0.0033 0.2551±0.0019
0.50 0.5028±0.0036 0.5058±0.0032 0.5037±0.0046
0.75 0.7465±0.0054 0.7504±0.0026 0.7510±0.0050
0.95 0.9479±0.0014 0.9516±0.0016 0.9489±0.0017

φ = 3

p n = 10 n = 25 n = 100

0.05 0.0514±0.0008 0.0543±0.0015 0.0533±0.0018
0.25 0.2576±0.0017 0.2594±0.0034 0.2551±0.0040
0.50 0.5073±0.0030 0.5095±0.0025 0.5066±0.0024
0.75 0.7494±0.0024 0.7506±0.0027 0.7497±0.0026
0.95 0.9500±0.0017 0.9491±0.0016 0.9519±0.0016

To analyze the coverage probabilities obtained for finite samples, we simulated 10000
samples{ri1, ri2} of sizesn = 10, n = 25 andn = 100 from a multinomial distribution with
θ1 = 0.1, θ2 = 0.3 (and thereforeφ = 1/3), and other 10000 samples of the same sizes from
a multinomial distribution withθ1 = 0.6, θ2 = 0.2 (and therefore,φ = 3). In both cases, the
quantilesqi

p, for p = 0.05, 0.1, . . . , 0.95, andi = 1, . . . , 10000 were computed for each sample,
so that ∫ qip

0
π(φ | ri1, ri2) = p, i = 1, . . . , 10000,

and, for each sample, we verified whether or not thep-credible interval[0, qi
p] contained the true

value ofφ, and thus computed theobservedproportion of coverages. The whole procedure was
replicatedfivetimes.
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Figure 3. Observed coverage probabilities versus reference posterior probabilities,
with φ = 1/3 andφ = 3, for sample sizesn = 10, n = 25 andn = 100.

In Table 1 we reproduce, for selected quantiles, the mean and standard deviation of the
five observed coverages. In Figure 3 we offer a graphical presentation of the results, where
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the mean of the five observed coverages, and the bands obtained plus and minus two standard
deviations, have been plotted against the corresponding reference posterior probabilities. It may
be observed that even with rather moderate sample sizes, the reference posterior probabilities are
not appreciably different from their observed coverages; as a matter of fact, the average coverage
pattern is very much the same for the three sample sizes considered. This suggests that, even
for moderate sample sizes, posterior reference intervals ofφ arewell calibrated, in the sense
that if many samples of were to be taken from a given multinomial model, the corresponding
reference intervals forφ with posterior probabilityp would contain the true value ofφ with a
relative frequency very close top.

3.6. Numerical Example

In an expensive experiment designed to study possible improvements on the design of a new
airbag, a random sample of1200 airbags were destructively tested and38 of them were found
to be defective. The engineers found five different failure causes, which respectively accounted
for 15, 12, 6, 3 and2 of these failures, and judged them to be independent from each other.
Moreover, it was decided that the optimal allocation of the resources available to improve the
design crucially depended on the ratio of the probabilities of failure associated to the two most
frequent causes of failure. Thus, with the notation above, one hadm = 5, n = 1200, r1 = 15,
r2 = 12, r3 = 6, r4 = 3, r5 = 2, andφ = θ1/θ2 is the quantity of interest.

Using (10), the reference posterior distribution of such quantity of interest is

π(φ |data) = π(φ | r1 = 15, r2 = 12) =
Γ(28)

Γ(15.5)Γ(12.5)
φ14.5

(1 + φ)28
, (11)

shown in Figure 4, which doesnot depend on the total sample size1200 or on the number,
m = 5 of categories considered, or on the number or distribution of the failures which are not
either of type 1 or type 2.

1 2 3 4 5

0.2

0.4

0.6

0.8

φ

π(φ | r1 = 15, r2 = 12)

Figure 4. Reference posterior density of the quantity of interest.

The reference posterior has a mode at14.5/13.5 = 1.074; transforming tow = φ/(1 + φ)
and using the incomplete Beta function, one easily finds that the median is 1.247 and that, for
instance,

P [φ > 1 |data] = 0.718, P [φ > 2 |data] = 0.112, P [φ > 3 |data] = 0.013.
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Thus, given the results of the experiment, one may for instance report that type 1 is quite likely
the more frequent cause of failure, and that it is probably about 1.25 times more likely than type
2, but surely less than 3 times more likely.

More formally, if a decision problem is contemplated with a utility structure of the form
u(di, φ), then the optimal action may be found by maximizing

Eu[di |data] =
∫ ∞

0
u(di, φ)π(φ |data) dφ,

whereπ(φ |data) is given by (11).

4. DISCUSSION AND FURTHER REFERENCES

In this paper, we have summarized the motivation, definition, and derivation of reference pos-
terior distributions, we have illustrated the theory with an important example, and we have
mentioned, —without proof—, some of the properties which may be used to substantiate the
claim that they constitute the more promising available method to derivenon-subjectiveprior
distributions. However, the definition and possible uses of non-subjective priors, which under
this and many other labels, —such as “conventional, “default”, “formal”, “neutral”, “flat” or
“noninformative” —, are intended to provide Bayesian solutions which do not require to assess
a subjective prior, have always been a rather polemic issue among statisticians. In this final
section, we summarize some of the elements of the discussion, and provide signposts for those
interested in pursuing the subject at a deeper level.

4.1. Interpretation of Non-subjective Priors

A major criticism to the use of non-subjective priors comes from subjectivist Bayesians, who
argue that the prior should be an honest expression of the analyst’s prior knowledge and not a
function of the model, specially if this involves integration over the sample space and hence
may violate the likelihood principle. However, from afoundationalviewpoint, the derivation of
a reference posterior should be seen as part of a healthysensitivity analysis, where it is desired
to analyze the changes in the posterior of interest induced by changes in the prior: a reference
posterior is just an answer to awhat ifquestion, namely what could be said about the quantity of
interest given the data, if one’s prior knowledge were dominated by the data. If the experiment
is changed the reference prior may be expected to change correspondingly; if subjective prior
information is specified, the corresponding posterior could be compared with the reference
posterior in order to assess the relative importance on the initial opinions in the final inference.
Moreover, from apragmaticpoint of view, it must be stressed that in the Bayesian analysis of
the complex multiparameter models which are now systematically used as a consequence of
the availability of numerical MCMC methods, —models typically intractable from a frequentist
perspective—, there is little hope for a detailed assessment of a huge personal multivariate prior;
the naïve use of some tractable “noninformative” prior may then hide important unwarranted
assumptions which may easily dominate the analysis (seee.g., Casella, 1996, and references
therein). Careful, responsible choice of a non-subjective prior is then possibly the best available
alternative.

It should also be mentioned here that some Bayesian statisticians would follow Jeffreys
(1961) or Jaynes (1996) in a radical non-subjective view: they would claim that subjective
priors are useless for scientific inference and so, non-subjective priors are necessary because
there is nothing else to do.
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4.2. Improper Priors

The reference priors that we have obtained in this paper have always beenproperprobability
distributions; thus, ∫ ∞

0
π(φ) dφ =

∫ ∞

0

1
π

φ−1/2(1 + φ)−1 dφ = 1,

even thoughΦ =]0,∞[ is not bounded. However, non-subjective priors associated to models
with unbounded parameter spaces, —certainly including reference priors—, are typicallyim-
proper in that, in most cases, ifΦ is not compact, then

∫
Φ π(φ) dφ = ∞. This has often been

criticized on the grounds that (i) foundational arguments require the use of a proper prior, and
(ii) the use of improper priors may lead to unsatisfactory posteriors.

With respect to the foundational issue, we should point out that the natural axioms donot
imply that the prior must be proper: they only lead to finite additivity, which is compatible
with improper measures. However, the further natural assumption ofconglomerabilityleads
to σ-additivity and, hence, to proper measures; some signposts to this interesting debate are
Heath and Sudderth (1978, 1989), Hartigan (1983), Cifarelli and Regazzini (1987), Seidenfeld
(1987), Consonni and Veronese (1989) and Lindley (1996). It must be stressed however that,
by definition, non-subjective priors arenot intended to describe personal beliefs: they areonly
positive functions to be formally used in Bayes theorem to obtain non-subjectiveposteriors,
—which indeedshould always be propergiven a minimum sample size—. Uncritical use of a
“noninformative” prior may lead to an improper posterior (seee.g., Berger, 1985, p. 187, for a
well known example); the precise conditions for an improper prior to lead to a proper posterior
are not known, but we are not aware of any example where the reference algorithm has lead to
an improper posterior given a sample of minimum size. Moreover, non-subjective posteriors
should be expressible as alimit of some sequence of posteriors derived from proper priors (Stein,
1965); this is precisely the procedure used todefinereference distributions.

Finally, it is very important to emphasize that the use of a proper prior does certainly
not guarantee a sensible behaviour of the resulting posterior. Indeed, if an improper prior
leads to a posterior with undesirable properties, the posterior which would result from a proper
approximation to that prior, —say that obtained by truncation of the parameter space—, will
still have the same undesirable properties; for instance, the posterior of the sum of the squares of
normal meansφ =

∑m
j=1 µ2

j based on a joint uniform prior on the meansπ(µ1, . . . , µm) ∝ 1 is
extremely unsatisfactory as a non-subjective posterior (Stein, 1959), but so it is the posterior of
φ based on thepropermultinormal priorπ(µ1, . . . , µm) ∝

∏
i N(µi|0, σ), for largeσ. Proper

or improper, what must pragmatically be required from non-subjective priors is that, for any
data set, they lead to sensible, data dominated, posterior distributions.

4.3. Calibration

Non-subjective posterior credible intervals are often numerically very close, and sometimes
identical, to frequentist confidence intervals based onsufficientstatistics (for an instructive
discussion of how unsatisfactory confidence intervals may be when not based on sufficient
statistics see Jaynes, 1976). Indeed, the analysis on the frequentist coverage probabilities of
credible intervals derived from non-subjective posteriors, —in an attempt to verify whether
or not they are “well calibrated —, has a very long history, and it does provide some bridges
between frequentist and Bayesian inference. References within this topic include Lindley
(1958), Welch and Peers (1963), Bartholomew (1965), Peers (1965, 1968), Welch (1965),
Hartigan (1966, 1983), DeGroot (1973), Robinson (1975, 1978), Rubin (1984), Stein (1985),
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Chang and Villegas (1986), Tibshirani (1989), Dawid (1991), Severini (1991, 1993, 1994),
Ghosh and Mukerjee (1992, 1993), Efron (1993), Mukerjee and Day (1993), Nicolau (1993),
DiCiccio and Stern (1994), Samaniego and Reneau (1994), Datta and Ghosh (1995a) and Datta
(1996).

This is a very active research area; indeed, the frequentist coverage probabilities of poste-
rior credible intervals have often been an important element in arguing among competing non-
subjective posteriors, as in Stein (1985), Efron (1986), Tibshirani (1989), Berger and Bernardo
(1989), Ye and Berger (1991), Liseo (1993), Berger and Yang (1994), Yang and Berger (1994),
Ghosh, Carlin and Srivastava (1995) and Sun and Ye (1995). Reference posteriors have con-
sistently been found to have very attractive coverage properties, even for small samples, but no
general results have been established.

4.4. Further Signposts

The classic books by Jeffreys (1961), Lindley (1965) and Box and Tiao (1973) are a must
for anyone interested in non-subjective Bayesian inference; they prove that most “textbook”
inference problems have a simple non-subjective Bayesian solution, and one which produces
credible intervals which are often,numerically, either identical or very close to their frequentist
“accepted” counterparts, but much easier to obtain. Zellner (1971) is a textbook on econometrics
from a non-subjective Bayesian viewpoint; Geisser (1993) summarizes many results on non-
subjective posteriorpredictivedistributions.

The construction of non-subjective posterior distributions has a very interesting history,
which dates back to Laplace (1812), and includes Jeffreys (1946, 1961), Perks (1947), Lindley
(1961), Geisser and Cornfield (1963), Welch and Peers (1963), Hartigan (1964, 1965), Novick
and Hall (1965), Jaynes (1968, 1971), Good (1969), DeGroot (1970, Ch. 10), Villegas (1971,
1977, 1981) Box and Tiao (1973, Sec. 1.3), Zellner (1977, 1986), Akaike (1978), Bernardo
(1979), Geisser (1979, 1984), Rissanen (1983), Tibshirani (1989) and Berger and Bernardo
(1989, 1992c) as some of the more influential contributions. The development of this long quest
may conveniently be traced from Bernardo and Smith (1994, Sec. 5.6.2), Kass and Wasserman
(1996), and references therein.

Some recent developments include Ghosh and Mukerjee (1992), Mukerjee and Dey (1993),
Clarke and Wasserman (1993), George and McCulloch (1993), Clarke and Barron (1994),
Wasserman and Clarke (1995), Datta and Ghosh (1995b, 1995c, 1996) and Zellner (1996).
Yang and Berger (1996) is a partialcatalog, alphabetically ordered by probability model, of
many non-subjective priors which have been suggested in the literature. Bernardo (1997) is a
non technical analysis, in a dialog format, on thefoundationalissues involved, and it is followed
by a discussion.

For someone specifically interested in reference distributions, the original paper, Bernardo
(1979), is easily read and it is followed by a very lively discussion; Bernardo (1981) extends
the theory to general decision problems; Berger and Bernardo (1989, 1992c) contain crucial
mathematical extensions. A textbook level description of reference analysis is provided in
Bernardo and Smith (1994, Sec. 5.4).

Papers which contain explicit analysis of specific reference distributions include Bernardo
(1977, 1978, 1979, 1980, 1982, 1985), Bayarri (1981, 1985), Ferrándiz (1982, 1985), Sendra
(1982), Eaves (1983a, 1983b, 1985), Bernardo and Bayarri (1985), Chang and Villegas (1986),
Hills (1987), Mendoza (1987, 1988), Bernardo and Girón (1988), Lindley (1988), Berger and
Bernardo (1989, 1992a, 1992b, 1992c), Pole and West (1989), Chang and Eaves (1990), Polson
and Wasserman (1990), Ye and Berger (1991), Stephens and Smith (1992), Liseo (1993), Ye
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(1993, 1994, 1995), Berger and Yang, (1994) Kubokawa and Robert (1994), Yang and Berger
(1994, 1996), Datta and Ghosh (1995c) Ghosh, Carlin and Srivastava (1995), Sun and Ye (1995),
Ghosal (1996) and Reid (1996).
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APPENDIX

Proposition A1. For a > 0, b > 0, c ≥ 1,∫ 1
c

0
xa−1(1 − cx)b−1dx =

1
ca

Γ(a)Γ(b)
Γ(a + b)

.

Proof. The changey = cx reduces this to a standard Beta integral.�

Proposition A2. For a > 0, b > 0, c > 1, if

p(x | a, b, c) = ca Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − cx)b−1, 0 < x < c−1,

then,

E[log x] = log
1
c

+ ψ(a) − ψ(a + b),

whereψ(.) = Γ
′
(x)/Γ(x) is the digamma function. In particular, ifa = b = 1/2, then

E[log x] = − log 4c.

Proof. Taking logarithms in Proposition A1,

log
∫ c−1

0
xa−1(1 − cx)b−1dx = −a log c + log Γ(a) + log Γ(b) − log Γ(a + b),

and taking derivatives with respect toa,∫ c−1
0 log x xa−1(1 − cx)b−1dx∫ c−1

0 xa−1(1 − cx)b−1dx
= − log c + ψ(a) − ψ(a + b);

but the left hand side is
∫ c−1
0 log x p(x | a, b, c) dx = E[log x]. The particular case follows from

the fact thatψ(1/2) − ψ(1) = −2 log 2. �

Proposition A3. For a > 0, b > 0, c ≥ 1,∫ c

0
xa−1(c − x)b−1dx = ca+b−1Γ(a)Γ(b)

Γ(a + b)
.

Proof. The changey = x/c reduces this to a standard Beta integral.�

Proposition A4. For a > 0, b > 0,∫ ∞

0

xa−1

(1 + x)a+b
dx =

Γ(a)Γ(b)
Γ(a + b)

.

Proof. The changey = (1 + x)−1 reduces this to a standard Beta integral.�


