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Nonlinear isomorphisms of lattices of Lipschitz functions

F and J Cabello Sanchez

Abstract. The paper contains a number of Banach-Stone type theorems for lattices of uniformly
continuous and Lipschitz functions without any linearity assumption. Sample result: two complete
metric spaces are Lipschitz homeomorphic if (and only if, of course) the corresponding lattices of
Lipschitz functions are isomorphic. Here, a lattice isomorphism is just a bijection preserving the order
in both directions, in particular linearity is not assumed.

Introduction

The results presented in this paper could be described as nonlinear Banach-Stone type theorems
for lattices of uniformly continuous and Lipschitz functions. Here, by a Banach-Stone theorem we
mean the statement that certain (often algebraical) structure of a system of (continuous, real-valued)
functions on a topological space X determines some additional (often topological) structure on X. As
everyone knows the genuine Banach-Stone theorem says that two compact spaces are homeomorphic
provided their corresponding spaces of continuous functions are isometric in the natural supremum
norm. See [5] for a survey with many historical comments in the linear setting and the references in
[2] for the nonlinear background.

Let X be a metric space, with distance d. A function f : X — R is said to be Lipschitz if

A(f) = sup |f($) — f(y)| < 00.

x#y d(:E, y)

The set of all Lipschitz functions on X is denoted Lip(X) and carries several structures: it is a linear
space, a lattice and even a Banach lattice. When X has finite diameter it is also a Banach algebra.
The nice booklet by Weaver [11] contains a lot of information on spaces of Lipschitz functions. In this
paper we forget every structure of Lip(X) but the order and we contemplate it as a lattice. Of course
the order in Lip(X) is the pointwise order inherited from R, with f < g meaning f(z) < g(z) for all
z € X. Let us emphasize that such notions as ‘isomorphism’, ‘homomorphism’, and the like refer to
the ‘default’ lattice setting unless otherwise stated.

The main result of the paper is that the lattice structure of Lip(X) determines the Lipschitz
structure of X amongst complete metric spaces of finite diameter: if ¥ and X are complete metric
spaces of finite diameter and there is a lattice isomorphism 7" : Lip(Y) — Lip(X), then X and Y
are Lipschitz homeomorphic (we remark again that a lattice isomorphism is nothing but a bijection
preserving the order in both directions, in particular linearity is not assumed). In fact what we shall
show is that such a T is implemented by a Lipschitz homeomorphism 7 : X — Y in the precise way
we explain in Theorem 1.

It is worth noting that the corresponding linear result has been obtained only very recently [9,
Part (d) of the Main Theorem]|. See [4] for related results.

The somewhat involved proof of this single result occupies most of the paper (Section 1). In Section
2 we give an application to little Lipschitz functions. In Section 3 we prove a non-linear version of
a recent result by Garrido and Jaramillo stating that ‘unital’ uniformly separating lattices determine
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the uniform structure of complete metric spaces. In Section 3 we exhibit an example showing that
the hypothesis made in the above results cannot be dropped. This actually follows from standard
‘reduction’ results for Lipschitz functions, but the uniformly continuous case seems to be new. We
close the paper with an esoteric remark on a classical paper by Shirota and some open problems.

Notations and conventions. We use d to denote distance on any metric space. This causes no
confusion unless we must consider two different metrics on the same space.

We write B(xz,r) for the closed ball of radius r centred at z. The distance between two subsets
of X is given by d(A, B) = inf{d(a,b) : a € A,b € B}. Given a continuous function f : X — R the
support of f, abbreviated supp f, is the closure of the set {x € X : f(z) # 0}.

Finally, given a partially ordered set S, we write ST for the subset {s € S : s > 0} whenever this
makes sense.

1. Lattices of Lipschitz functions
Let us present now the sought after result on Lipschitz lattices.

THEOREM 1. Let T : Lip(Y) — Lip(X) be an isomorphism, where Y and X are complete metric
spaces of finite diameter. Then there is a Lipschitz homeomorphism 7 : X — Y such that

(1) Tf(z) =t(z, f(r(2)))
for every f € Lip(Y) and all x € X, where t: X x R — R is given by t(z,c) = Tc(x).

The rather long proof is divided into three parts. First we construct the required map 7: X — Y
and we show it is a uniform homeomorphism. Then, we use it to get the representation (1). Finally, we
use this representation and a category argument to obtain that 7 must be Lipschitz in both directions.

1.1. From order to topology. In this part we show how the lattice Lip(X) determines the
topological space X and the uniform structure induced by the distance.

With an eye in the applications to little Lipschitz functions, let us say that a lattice L(X) of
uniformly continuous functions on X is uniformly separating if, given subsets A and B of X such that
d(A, B) > 0 there is f € L(X) such that f =0 on A and f = 1 on B. This notion is borrowed from
[3]. Only the case L(X) = Lip(X) is needed to prove Theorem 1.

Throughout this Section L(X) and L(Y') will stand for uniformly separating vector lattices of
functions on the metric spaces X and Y, respectively.

To each f € L(X)" we associate an open set Uy taking the interior of its support. This is in fact
a regular open set (one that agrees with the interior of its closure).

The class of all regular open subsets of X is denoted R(X) and the subclass of those arising as
Uy for some f € L(X)™ is denoted RL(X). These are lattices when ordered by inclusion. Notice that
RL(X) contains a base for the topology of X as long as L(X) is uniformly separating.

Our immediate aim is to show that the relations Uy C Uy and Uf C U, can be expressed within
the order structure of L(X)T. To this end, following Shirota [8] let us declare f C g when for every
h € L(X)" one has f A h =0 whenever g A h = 0. Then, we say that f and g are equivalent if f C g
and g C f. Also, we write f € g if, whenever the family (h,) has an upper bound in L(X)™ and
he C f for all a, there is an upper bound h € L(X)" such that h C g.

LEMMA 1 (Mainly Shirota). Given f,g € L(X)" one has:
(a) fAg=0ifand only if U NU, = @.

(b) f C g if and only if Us C Uy if and only if supp f C suppg.
(c) If f € g, then d(Us,Ug) > 0. The converse is true if L(X) is closed under products.
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PROOF. (a) is trivial, let us prove (b). By the very definition, we have f C g if and only if gAh =0
implies f A h = 0. By part (a), this is equivalent to ‘U, N U;, = @ implies Uy N U;, = @', which is
clearly equivalent to Uy C U,. The last equivalence is obvious.

(c) Assume f € g. For each z € Uy pick some h; : X — [0,1] in L(X) such that h,(z) = 1 and
hy C f. Of course, the family (h;) is bounded by 1. Now, if A is an upper bound for (h;) such that
h C g, then h > 1 on Uy, h =0 on U; and since h is uniformly continuous we have d(Uy, Ugc) > 0.

Assume L(X) is a ring and d(Uy, Ug) > 0. Take u € L(X) such that u = 0 off U; and u = 1 on
Us. Now, if h, C f and h is an upper bound for (h,), then uh is also an upper bound and quite

clearly uh C f. d
COROLLARY 1. If T : L(Y)* — L(X)" is an isomorphism, then the map T : RL(Y) — RL(X)
gwen by T(Us) = Ury is a well-defined lattice isomorphism. O

The following results show that isomorphisms of function lattices have a local behaviour.

LEMMA 2. Given f,g,h € L(Y)T, one has f < g on Uy, if and only if f Au < g Au for every
u C h.

Therefore if T : LY(Y) — L*(X) is an isomorphism, then, given f,g € LT (Y) and U € RL(Y),
one has f < g on U if and only Tf <Tg on T(U), where < is as in Corollary 1.

Proor. If f < gon Uy and u C h, then it is straightforward that every function lower than f and
u is lower than g, so f Au C g A u.
As for the converse, it is clear that if f A ah < g A ah for every a € (0,00), then f < gon U,. O

COROLLARY 2. Let T : L(Y) — L(X) be an isomorphism. There is a lattice isomorphism ¥ :
RL(Y) — RL(X) such that, given f,g € L(Y) and U € RL(Y), one has f < g on U if and only if
Tf <Tg onZT(U). The same is true if we replace ‘<’ by >’ or ‘="

PRrROOF. There is no loss of generality in assuming 70 = 0. Let ¥ be as in Corollary 1. We then
have that for f,g € LT(Y) and U € RL(Y) one has f < g on U if and only if Tf < Tg on T(U). It is
evident that this property characterizes T(U) amongst the members of RL(X).

But 0 plays no special role here, so actually we have proved that, given v € L(Y'), there is an
isomorphism ¥, : RL(Y) — RL(X) such that for f,g > u in L(Y) and U € RL(Y') one has f < g on
U if and only if Tf < Tg on T, (U). As before, this property characterizes ¥,(U) in RL(X). Now, if
u,v € L(Y), it is easily seen that

Tu = ‘zu/\v = ‘zu\/v = ‘Zva

so T, = %y = T and the conclusion obtains. O

Before embarking into the proof of the main result, let us remark that Lip(X) is always uniformly
separating. Indeed, if d(Ap, A1) > 0, then the function given by

_ d(.’II, AO)
1@ = G A0) + d(z, A7)
+

equals i on A;, for i = 0,1. Moreover every regular open subset of X arises as U, for some g € Lip(X)™,
for if U € R(X), then U = U, where g(z) = d(z,U°).

PROOF OF THEOREM 1. PART I. In this part of the proof we construct the required mapping
7: X — Y and we prove it is a uniform homeomorphism. Our reasonings depend on the fact that
Lipschitz functions on spaces with finite diameter are bounded and they do not apply to unbounded
metrics; see Example 1 below.

So, let 7' : Lip(Y) — Lip(X) be an isomorphism and let ¥ : R(Y) — R(X) be the lattice
isomorphism given by Corollary 2. What we will show is that ¥ is induced by a point-mapping
7:X — Y in the sense that T(U) = 771 (U) holds for every U € R(Y).
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Consider the set valued map 7 : X — 2" given by

Fa)= () U=[]T V).
2€%(U) zeV
Let V,, be the open ball of radius 1/n, centred at z. As d(Vp41,V,) > 0, if we write V,, = Up,, for
suitably chosen h, € Lip(X) we have h,1 € h, and thus T 'h,; € T 'h, whence if we denote
Up=%1V,) = Up-1p,, one has d(Uy41, UE) > 0, in particular U,y C Uy, and

#(@) = (\Un=[)Un

Let us see that 7(x) is nonempty. For each n, take y, € U, and consider the resulting sequence.
Every cluster point of (y,) is in the closure of every U, and so in 7(z). So, if we assume 7(z) to
be empty, then there is ¢ > 0 and an infinite M C N such that d(yp,ym) > ¢ for n # m provided
n,m € M. Take a partition M = My @ M; into two infinite subsets and, for 1 = 0, 1, set

W; = U B(yn,e/3).
neM;
Clearly d(Wy, W1) > ¢/3, so there is a Lipschitz u : Y — [0, 1] such that u = 0 on W and u = 1 on
Wi. Let f and g be such that Tf = 0 and T'g = 1. The function v = f + u - (g — f) agrees with f on
Wy and agrees with g on Wy. So, if w = T'v, then w takes the values 0 and 1 on any neighbourhood
of x, a contradiction.

We see that 7(x) has exactly one point. If y € 7(z), then by the very definition, given U € R(Y),
we have y € U as long as T(U) contains z. Let S : Lip(X) — Lip(Y) be the inverse of T, & : R(Y) —
R(X) the lattice isomorphism associated to S and & : Y — 2¥ the set-valued function associated to
G. Clearly, G is nothing but the inverse of T. Of course, we have proved that 6(y) is nonempty.
Taking 2’ € 6(y) we obtain the following implications, for V' € R(X):

reV=ye6V)=>2' eV

This already implies that z' = z and so, for y € 7(z), we have z € V if and only if y € §(V). But &
is a lattice isomorphism and so there is at most one y satisfying that condition.

This shows that 7(z) is a singleton for every z € X. That the map 7: X — Y sending z into the
only element of 7(z) is continuous is trivial. That this map is a homeomorphism follows by symmetry.

It remains to see that 7 is uniformly continuous, that is, d(x,, z,) — 0 in X implies d(yy, ;) — 0
in Y, where y, = 7(z,),y, = 7(z],). If we assume the contrary, we get sequences (z,) and (z],)
such that d(z,,z]) — 0, while d(yy,y,,) is bounded away from zero. Since neither (z,) nor (z,) have
convergent subsequences, and passing to a subsequence if necessary, we get d(Ag, A1) > 0 in Y, where
Aop ={yn :n € N} and A; = {y}, : n € N}. Take u € Lip(Y) such that v = 7 on a neighbourhood of
A;, where ¢ = 0,1 and proceed as before: assuming T'f = 0 and T'g = 1, the image of the function
v = f+u-(g—f) under T takes the value 0 at every z,, and the value 1 at every z, a contradiction. O

1.2. Functional representation. In this Section we use the map 7 to obtain the representation
of T appearing in the main result. The key point is the construction of certain Lipschitz functions
with suitable oscillation properties we present now.

LEMMA 3. Let S be a set of real numbers having 0 as a cluster point. There is a Lipschitz function
¢ : R —[0,1] and two infinite subsets M and N of S such that:

o p(t) >t forallt e M.
e o =0 on a neighbourhood of every t € N.

Moreover ¢ can be chosen with Lipschitz constant arbitrarily close to 1.
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PROOF. Without loss of generality we may assume 0 is a cluster point of S*. The action takes
place in the plane R? and to avoid any risk of confussion, in this proof, we denote by ]a, b[ the open
interval with endpoints a and b. Fix r > 1. Pick s; € SN]0,1/r[. Now take 0 < sy < s1 in STso that
the line joining (s2,0) with (s1,s1) has slope at most 7, that is:

81—0

81— S92
Let 0 < s3 < s2 so that ]s3, s2[NS # @. Next take s4 < s3 in such a way that the line joining (s4, s4)
with (s3,0) has slope at most 7:
0— s4

<.

83 — S4
Now, replace s; by s4 to obtain s5 as we did with so and so on.

Let us consider the function ¢ vanishing on the semiaxis | — 0o, 0], taking the value s; on [s1, 00[
and whose graph in ]0, s1[ is the ‘polygonal’ defined by the points

(317 51)7 (527 0)7 (537 0)7 (547 34)7 (557 0)7 (36, 0)7 (577 57)7 s
Then ¢ = r¢ is the Lipschitz function we were looking for and, quite clearly, A(y¢) < r2. O

PROOF OF THEOREM 1. PART II. Let us prove the formula (1), where 7 : X — Y is the uniform
homeomorphism we got in Part I. Plainly, it suffices to prove that, given f,g € Lip(Y'), one has
Tf(xz) = Tg(x) if and only if f(y) = g(y), where y = 7(x). By symmetry, we only need the proof of
the ‘if’ part.

Suppose f(y) = g(y). Replacing f and g by f A g and f V g we may assume f < g. In this
case we already know T'f < Tg and we must show T'f(z) = Tg(z). This is obvious if f = g on a
neighbourhood of y, so in the ensuing argument we assume every neighbourhood of y contains points
where f < g. In particular y (hence x) is not isolated.

Put h = g — f. Then h(y) = 0 and there is a sequence y,, — y such that h(y,) > 0 for every n.
Take t, = h(y,) and apply Lemma 3 to the set of these t,. Let ¢ the resulting function and define
u = f 4 ¢ o h. Clearly, every neighbourhood of y contains an open set where u = f and also an
open set where u > g. Therefore, if v = T'w, then every neighbourhood of x contains an open set
where v = T'f and also an open set where v > T'g. It follows that T'f(z) = T'g(z) = v(z) and we are
done. O

1.3. From order to distance through category. We have arrived to the most delicate point
of our main result and we face the proof that 7 is Lipschitz. Here we will use in a essential way the
fact that Lipschitz lattices are themselves complete metric spaces.

First of all, whenever X has finite diameter we can equip Lip(X) with the norm ||f|| = || flleo VA(f)
which makes it into a Banach space. The resulting Banach lattice turns out to be boundedly complete.
This simply means that \/ S exists as long as the set S is norm bounded in Lip(X). We hasten to
remark that ‘norm bounded’ implies ‘bounded’ , but the converse fails.

Also, recall that a lattice homomorphism 7T is said to be normal if it preserves all joints and meets,
that is, it satisfies T'(\/ S) = \/ T'(S) (respectively, T (A S) = AT(S)) provided \/ S (respectively, A S)
exists. Needless to say, lattice isomorphisms are normal.

LEMMA 4. Let T : Lip(Y) — Lip(X) be a normal homomorphism. Then:

(a) If (fn) is bounded in the norm of Lip(Y) and converges pointwise to f, then T f, converges
pointwise to Tf provided (T f,) is norm bounded in Lip(X).
(b) T maps an open set of Lip(Y') into a norm bounded set of Lip(X).
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PROOF. The first part is nearly obvious once one realizes that if (f,) is bounded in norm, then
fn converges to f pointwise if and only if

F=AV H=VA
n k>n n k>n

in the corresponding Lipschitz lattice.

Let us prove (b). We show that, for each real R, the set {f : [|Tf|| < R} is closed in Lip(Y).
Indeed, if (f,) converges to f in the Lipschitz norm and ||Tf,|| < R for all n, then (fy) is norm
bounded and pointwise convergent to f, so (T'f,) is pointwise convergent to 7T'f, which clearly implies
that ||Tf|] < R. Now, we have

Lip(Y) = | J{f : ITfIl < k}.
k=1

By Baire’s theorem, there is R € N such that the (norm closure of) {f : | Tf|| < R} has nonempty
interior. This completes the proof. O

Let V be a vector lattice and let g € V. Then the map f — f + g is a lattice automorphism of
V. In particular, if T : Lip(Y) — Lip(X) is a homomorphism, g € Lip(Y) and h € Lip(X), then
f— h+T(f + g) is a homomorphism. It is normal or an automorphism if and only if 7" is. In
particular, if 7" maps a neighbourhood of g into a norm bounded set, then

fr—=T(f—9) = T(=9)
maps a ball centered at the origin into a bounded set and sends 0 to 0.
In the following result we use || for the integer part function.

LEMMA 5. Let d and § be bounded metrics on X and T : Lip(X,0) — Lip(X,
having the representation T f(z) = t(z, f(x)) for every f and all x. If Ay(Tf) <
ball of radius r in Lip(X,d), one has the following:

(a) If a,b € [—r,r] and |b—a| < ré(z,y), then |t(z,a) — t(y,b)| < R-d(z,y).
(b) If0 < c <d(z,y)1/d(z,y)], then [t(z,cr) — t(z,0)] < R-d(z,y)/d(z,y).

PRrOOF. (a) There is f € Lip(X,d) such that f(z) =a, f(y) =b and ||f]| < r. Now, as Ag(Tf) <
R, we have

d) a homomorphism
R

for each f in the

t(z,a) —t(y,b)| = |T'f(z) = Tf(y)| < Rd(z,y).
(b) We may assume 70 = 0. Fix z,y € X and let N be the least integer such that No(z,y) > 1,
so that N —1=[1/0(z,y)|. Applying the first part with a = rd(z,y) and b = 0 we get t(z,rd(z,y)) <
Rd(z,y). And, by symmetry, t(y,rd(z,y)) < Rd(z,y). Also,

|t($7 2’/‘(5(.’1), y)) - t(ya 7”(5({1?, y))| < Rd(ZE, y) and |t(ya 27‘5(3;7 y)) - t(x’ T‘&(.’L‘, y))| < Rd(.’L‘, y),

hence |t(z,2rd(z,y))| < 2Rd(z,y) and |t(y,2rd(z,y))| < 2Rd(z,y). Continuing in this way, we arrive
to

[t(z, (N = 1)rd(z,y))| < R(N — 1)d(z, y).
Since (N — 1)d(z,y) < 1 the result follows. O

PROOF OF THEOREM 1. PART III. In previous issues of the proof we have seen that Tf(x) =
t(z, f(r(x))), where 7 : X — Y is a uniform homeomorphism. Thus, we can transfer the structure
of Y to X by defining a new distance through 7 taking §(z,z’) = dy(7(z),7(z')). In this way we
may assume in the remainder of the proof that Y = X and 7 is the identity on X so that 71" defines
an isomorphism from Lip(X,d) to Lip(X,d) by the formula 7'f(z) = t(x, f(x)), where d and § are
uniformly equivalent metrics on X, both bounded and complete.

We must show that the identity is Lipschitz from (X, d) to (X, ).
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Clearly, isomorphisms are normal homomorphisms, so Lemma 4 guarantees that 7" maps a closed
ball of Lip(X,d) into a norm-bounded set of Lip(X,d). By the remark made after Lemma 4 we may
and do assume that Ay(T'f) < R for every f € Lip(X,d) with ||f|| < r and also that 70 = 0.

Now, if the identity fails to be Lipschitz from (X,d) to (X, ), there are sequences (z,) and (y,)
such that

)
@) im O@Em ) _
n—=00 d(Zn, Yn)
which already implies d(xy,y,) — 0. Since ¢ is uniformly equivalent to d we also have §(zp,yn) — 0.

Thus, for each ¢ < 1, we have ¢ < §(zpn,yn)[1/6(Tn,yn)| for n large enough and by Lemma 5(b),

r d(Tn; Yn)
(T = o 0) < RARI0)
tg) T O S R )
If (z,,) has a cluster point in X, say z, then
d(l‘n, yn)

t (:1:, g) —t(z,0) < R lim =0,

n—00 0(Tp, Yn)
a contradiction: in the second part of the proof we established that t(x,c) is strictly increasing in ¢
for each fixed z.
If (x,,) has no cluster point, then neither (y,) has and there is € > 0 such that e(zy, z,,) > € for
e =d,0, with z = z,y and n # m. Set Z = {x,,yn : n € N}. As bounded Lipschitz functions extend
anywhere the ‘restriction’ of T' to Z, given by

Tf(z) =tz [f(2) (2€2)
is an isomorphism of Lip(Z, d) onto Lip(Z,d) we still call T'.

Let ( denote the involution on Z that permutes z, and y,. It is clear that { is Lipschitz with
respect to d and §. Thus, we can define a symmetric version of T through

Sf=Tf+ (T () =Tf+ (T(fo()) .
Notice that S maps Lip(Z, §) to Lip(Z, d). Even if S need not be an isomorphism, it is a homomorphism
and, in fact,
Sf(z) = t(zn, f(2)) + t(yn, [ (2))

if z is either z, or y,. Also, we remark that SO = 0 and Sf > Tf for every f. We will construct
certain f € Lip(Z,d) so that Sf € Lip(Z,d) forces the ratio §(zn,yn)/d(xn,yn) to be bounded by a
constant independent on n, thus contradicting (2).

We remark that the metric structure of Z is so simple that f : Z — R is Lipschitz with respect to
d if (and only if) it is bounded and satisfies

[f(@n) = f(yn)| < Ad(2n, yn)

for some A independent on n.

Let us write Sf(z) = s(z, f(2)), where s(z,¢) = t(zp,c) +t(yn, ¢) for z = xp, yn. As T is surjective
we can choose K € R such that TK > 1 whence SK > 1. Fix n € N and let N be the least integer
such that No(zp,yn) > K. Let z denote either z,, or y,. We have s(z, N6(zn, yn)) —s(2,0) > 1, hence
there is 0 < m < N — 1 for which

SNTAN-1) - 2K

(3) s(z, (m +1)0(wn, yn)) — s(2, M6 (T, Yn))

Next, we define f : Z — R taking
f(zn) = mdé(zn,yn) and  f(yn) = (m +1)d (70, Yn)-
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Clearly, f € Lip(Z,0) and since Sf € Lip(Z,d) we infer from (3) that

5($na yn)
2K

in contradiction to (2). This completes the proof. O

< Ag(Sf)d(zn, yn),

2. Little Lipschitz lattices

Now we give an application to little Lipschitz functions. We avoid any pathology by considering
in this Section only compact spaces. Let Z be a compact metric space with distance d. Then lip(Z)
consists of those functions in Lip(Z) satisfying

|f(z) = f(y)]
d(z,y)

It may happen that lip(Z) contains only the constant functions: Z = [0, 1] is just one example.
Thus some additional condition is necessary to get a sensitive space of little Lipschitz functions.

Let us consider the following separation property, introduced by Weaver in [10] under a different
name. We say that lip(Z) separates points boundedly if there is a constant & > 1 such that for each
z,y € Z there is f € lip(Z) satisfying |f(z) — f(y)| = d(z,y) with A(f) < k. It turns out [11,
Corollary 3.3.5] that if this condition is satisfied for some &k > 1 then it holds for every k& > 1.

—0 as d(z,y) — 0.

THEOREM 2. LetY and X be compact metric spaces such that ip(Y') and lip(X) separate points
boundedly. Then lip(Y) and lip(X) are isomorphic lattices if and only if X and Y are Lipschitz
homeomorphic.

Antonio Jiménez-Vargas and Moisés Villegas-Vallecinos proved the corresponding linear result in
[6] for Holder metrics. Recall that if Z is a compact metric space with distance d and « € (0,1), then
the Holder space Z¢ is just Z with the new distance d®. It is well-known [11, Proposition 3.2.2(b)]
that such a lip(Z%) separates points boundedly.

The proof in [6] can be shortened just invoking duality. Indeed, if 7" : lip(Y) — lip(X) is a
linear bijection preserving the order, then 7T is continuous (this is proved in [6] for Holder metrics,
but the proof goes undisturbed in the general case), and therefore the Banach space double adjoint
7 : lip(Y)™ — lip(X)*™ is a bounded linear homeomorphism. On the other hand the separation
hypothesis implies lip(Y)*™ = Lip(Y'), so T ‘extends’ to a linear bijection 7%* : Lip(Y') — Lip(X) that
preserves order in both directions (this is easily checked). Hence T**f = a - (f o 7), where a = T'1 and
7 : X — Y is a Lipschitz homeomorphism and the same is true for T. Actually this representation
is valid for any pair of metric spaces satisfying that the bidual of the little Lipschitz lattice is the big
Lipschitz lattice (this can happen even if the involved spaces are not compact; see [10]). Needless to
say this pattern cannot be followed if T fails to be linear. Instead, we will use the following extension
result for little Lipschitz functions on compact spaces [11, Theorem 3.2.6(a)]: if lip(Z) separates
points boundedly, then given a closed set Zy every fy € lip(Zy) with A(fp) < A can be extended to a
7 € lip(Z) with A(f) < A and || e = || follo-

This clearly implies that lip(Z) is a uniformly separating vector lattice. Actually it is even a
Banach algebra with the norm inherited from Lip(Z).

PROOF OF THEOREM 2. Let T : lip(Y) — lip(X) be a lattice isomorphism. The first part of the
proof goes as in Section 1. However this time Rlip(X) need not contain every regular open set and
we must replace the neighbourhoods V,, by Uy, , where h, € lip(X) equals 1 on V41 and vanishes
outside V,,.
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Moreover [11, Proposition 3.1.3], if ¢ € Lip(R) and f € lip(Z) one has ¢ o f € lip(Z), so the
second part applies verbatim. Thus, we have the following representation

(4) Tf(z) =tz f(r(=))  (f€lip(Y),z € X)

where 7 is a homeomorphism and ¢(z, c) = Tc(x).

Next we claim that 7" maps an open set of lip(Y) into a norm bounded subset of lip(X).

As little Lipschitz lattices do not enjoy the remarkable completeness properties of the big ones the
first part of Lemma 4 is useless. However it follows from (4) that t(x,c) is separately continuous in
the second variable (a lattice automorphism of R), so T' preserves pointwise convergence. For if (f,)
converges pointwise to f in lip(Y') we have

T fo(z) = t(z, fu(7(2))) = t(z, f(7(2))) = Tf(2).

This shows that the sets {f : ||Tf|| < R} are all closed in lip(Y') and by Baire’s theorem some of them
must have nonempty interior, as we claimed.

Now, using two translations if necessary we may and do assume that for certain r, R > 0 one has
ITf]| < R in lip(X) whenever ||f|| < r in lip(Y') . These numbers are fixed for the remainder of the
proof. Besides, if we transfer the distance from Y to X through 7, we may consider Y is just X with
another (equivalent) distance § and that T : lip(X,d) — lip(X, d) has the form

Tf(x) = t(z, f(z)).
Now, the crucial estimates are the following:
(a) If a,b € [-r,r] and |b — a|] < rd(z,y), then |t(z,a) — t(y,b)| < R-d(z,y).
(b) I£0 < ¢ < 3(, ) |1/3(2, )], then [t(z, cr) — tw,0)| < R - d(z,)/3(w,y).
This can be proved as we did in Lemma 5, using either the extension result for little Lipschitz
functions we quoted before or the separation condition with k& close to 1.

After that, the proof is easily completed. Let us see that the formal identity is Lipschitz from
(X,d) to (X,0). Assuming the contrary we find sequences (z,) and (y,) such that

= 0.
n—00 5($na yn)

Since d and 0 are bounded, we see that both d(zy,y,) and §(zy,y,) converge to zero. So for every
¢ < 1 we have ¢ < 6(xp, yn)|[1/0(xn,yn)] for large n and from the estimate in (b) we get

r d(Tn, Yn)
(o)~ s 0) < 0]
o) T O S B )
Let z be a cluster point of (z,) —recall that X is compact. Then, taking limits in the above inequality,
we have t (z,7/2) = t(z,0), a contradiction. O

3. Uniformly separating lattices

In this Section we prove a nonlinear version of a relatively recent result by Maribel Garrido and
Jesus Jaramillo on uniformly continuous functions. In the next result the involved lattices are not
assumed to be linear. However, it is easily seen that uniformly separating lattices (in the sense of
Section 1) must contain the constants 0 and 1 and we can adhere this requirement to the definition.

THEOREM 3. LetY and X be complete metric spaces and let L(Y) and L(X) be uniformly sepa-
rating lattices. Suppose there is a lattice isomorphism T : L(Y) — L(X) such that TO =0 and T'1 = 1.
Then Y and X are uniformly homeomorphic.
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The proof follows the lines of Section 1.1, but due to the lack of structure in the involved lattices
we need a different approach to get the point mapping 7 : X — Y out from the lattice isomorphism.
The key point is the following general result where a lattice .S of open sets of a given topological space
X is said to be basic if it contains a base of the topology of X.

LEMMA 6. Let B(Y) and B(X) be basic lattices of open sets for the complete metric spaces Y and
X, respectively. If € : B(Y) — B(X) is a lattice isomorphism, then there exist dense subsets X' of
X and Y' of Y and a homeomorphism 7 : X' — Y' such that given x € X' and U € B(Y) one has
z € T(U) if and only if T(z) € U.

PROOF. Given (z,y) € X x Y, let us write x ~ y if

N 20)={z} and ()T 'V)={y}

yelU eV

First of all notice that if z ~ y and z ~ %/, then y = ¢/. Similarly, if z ~ y and 2’ ~ y, then z = z'.
Let X' be the set of those z € X for which there exists (a necessarily unique) y € Y such that z ~ y
and Y’ the set of those y € Y such that z ~ y for some x € X. It is pretty obvious that the map
7: X' =Y’ sending each z € X’ to the only y € Y’ such that z ~ y is a homeomorphism.

It remains to see that Y’ is dense in Y. The corresponding statement for X’ follows by symmetry.

Let U be a nonempty open subset of Y. We must show that U meets Y’'. Take a nonempty
U; € B(Y) such that U; C U and diamU; < 1. Choose a nonempty Vi C T(U;), with diamV; < 1.
Then choose a nonempty Us C T~1(V1) with Us C U; and diam U < 1/2. Next, take a nonempty
Vo C Z(Us) such that Vo C V; and diam Vo < 1/2. In this way we get sequences (Uy,) and (V) in
B(Y) and B(X), respectively, such that, for each n:

° UnH Cc U, and Vn+1 cV,.
e U, and V,, have diameter at most 1/n.
e T(Upy1) CVy CZ(Uy).

Now, it is clear that there are y € Y and =z € X such that
{y} = ﬂU = ﬂﬁn and {z} = ﬂV = ﬂvn.

From where it follows that z ~ y and since y € U we see that Y’ is dense in Y. O

PROOF OF THEOREM 3. There is no loss of generality in assuming that every function in L(Y)
or L(X) takes values in [0, 1]. In any case one can replace L(Y) by

LONY) ={0V (fAl): feL(Y)}

and similarly with L(X). Also, it is clear that the class of open sets B(Y) = {U; : f € L(Y)} is a
lattice. Moreover, for every y € Y and every neighbourhood U of y, there is f € L(Y') vanishing off
U and such that f(y) = 1, so B(Y) is a basic lattice of (regular) open sets of Y, and similarly for
X. Next we define a mapping T : B(Y) — B(X) sending Uy into Ury. The definition makes sense
because Part (b) of Lemma 1 remains true replacing Lip(X) by L(X). Next, we claim that, for i = 0,1
one has f =i on U € S(Y) if and only if T'f =i on T(U). And this is so because f = 0 on Uy, is
equivalent to f A h =0, while f =1 on Uy, is equivalent to f A u = w whenever u C h.

Now we apply Lemma 6 to get a homeomorphism 7 : X’ — Y’ between dense subspaces in such a
way that given U € S(Y) and « € X' one has 7(z) € U if and only if z € T(U). We are going to see
that 7 is uniformly continuous on X’. Assuming the contrary we have sequences (z5) and (z]) in X’

n
such that d(zp,z]) — 0, while d(y,,y),) does not converge to zero, where y, = 7(z,),y,, = 7(x]). As
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(yn) and (y),) cannot converge to the same limit, there is an infinite set M C N and § > 0 such that
d(yn,yl,) > 6 for all n,m € M. Set

Ao= J B(yn,3/3) and Ay = | ] B(y,.9/3),

neM neM
then d(Ag, A1) > /3 and there is f € L(Y') such that f =i on A;, for i = 0, 1. Therefore, for n € M,
we have T'f(z,) = 0 and T f(z},) = 1, a contradiction which completes the proof. O

COROLLARY 3. Let Y and X be complete metric spaces. Suppose L(Y') and L(X) are uniformly
separating vector lattices of bounded functions that are isomorphic as mere lattices. Then Y and X
are uniformly homeomorphic.

PROOF. Let T : L(Y) — L(Y) be a lattice isomorphism. We may assume without loss of generality
that 70 = 0. Put wu = 1y VT '1x and v = Tu = 1x VT'1y. Next notice that since u,v > 1 Theorem 3
remains true if we replace the condition 71 =1 by T'u = v provided L(Y) has the property that if A
and B are subsets of Y such that d(A, B) > 0 there is f € L(Y) such that f =0 on A and f = u on
B and L(X) has the analogous property with respect to v.

To check the relevant condition for L(Y'), take sets A and B such that d(A, B) > 0. Take some
h € L(Y) such that h =0on A and h =1 on B. If M > 0 is any constant satisfying M > u, then
f=uAN Mh does what we need. O

As a byproduct of the proof we have the following explicit description of the isomorphisms of
lattices of regular open sets of complete metric spaces. Notice that regular open sets play a major role
in lattice theory; see [1].

PROPOSITION 1. Let Y and X be complete metric spaces with dense subspaces Y' and X'. Suppose
7: X" =Y’ is a homeomorphism. Then the mapping T : R(Y) — R(X) given by

(5) TU)=r"(UNY")
18 a lattice isomorphism. And, conversely, every lattice isomorphism arises in this way.

PROOF. The first part follows from the fact that A — A’ = ANY” defines an isomorphism between
R(Y) and R(Y') whose inverse is obtained sending B € R(Y’) to the interior of the closure of B in
Y, and similarly for X. Thus if 7 : X’ — Y’ is a homeomorphism between dense subspaces, then the
map T defined in (5) is just the composition

R(Y) —s R(Y') 5 R(X") —> R(X).

To prove this let us introduce the following notation. Given B C Y, we write cly/(B) for the closure of
B in Y' and inty(B) for the interior of B in Y. As before, the bar and the circle stand, respectively,
for the closure and the interior in the whole space Y. Now, we have:

e If AisopeninY, then cly/(ANY')=ANY".

o If F is closed in Y, then intys(F NY") =F NY".
We check the first point only: the second one easily follows by duality taking complements. That
cly/(ANY') € ANY' is trivial. The reversed inclusion is as follows. If y € ANY”, there is a sequence
(yn) in A converging to y. As Y’ is dense in A for each n there is y,, € ANY”’ such that d(y,,y)) < 1/n.

It follows that (y,) converges to y, which belongs to cly'(ANY'), as required.
Let now A be open in Y and put A’ = ANY’'. We have

inty clyr(A") = intys cly (ANY') = inty:(ANY") =A NY".
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It follows that A’ is regular if A is. Next, if A, B € R(Y) are such that ANY' = BNY’, then A = B.
Indeed we have A = B and so A = B.

It remains to see that each C € R(Y’) can be obtained as the intersection of Y’ with some member
of R(Y): but is is easily seen that taking the interior of the closure of C in Y suffices. This ends the
proof of the first statement.

To prove the converse, let T : R(Y) — R(X) be an isomorphism and let 7 : X’ — Y’ be as in
Lemma 6. It is pretty obvious from the definition of # ~ y and the first part of the proof that given
U € R(Y) one has T(U) N X' = 7= (U NY’), which implies (5). O

4. Counterexamples

The following example shows that the hypothesis on the diameters cannot be removed in Theo-
rem 1. It also shows at once that the ‘unital’ character of the isomorphism is necessary in Theorem 3
and that Corollary 3 fails for lattices of unbounded functions. Please notice that linearity would not
help!

EXAMPLE 1. Two non-uniformly homeomorphic complete metric spaces Y and X such that the
lattices Lip(Y') and Lip(X) are (even linearly) isomorphic.

PROOF. Set X = {n?+ie€R:neNn>2i=0,1}andY ={n+i/neR:neNn>2i=
0,1}. We equip these spaces with the restriction of usual distance in R. Consider the map sending
each f € Lip(Y) into the function

Tf(n?+i) =nf(n+i/n).

We claim that T defines an (obviously linear) isomorphism between Lip(Y) and Lip(X). We take
advantage of the fact that the Lipschitz constant of functions defined either on Y or on X can be
computed using only ‘adjacent’ points, so

n 2\ _ n2
Ax<g>=sup{|g(n2+1>—g(n2>|,'g(( 1) ~ o “"},

n>2 2n
while
Av(9) = sup {al o+ 1) = @10+ 1) = f - 1)l
n>2 n
But,
[T+ 1) = TF(P) = nlf (0 + 1/m) = f(n)] < nAy(f)/m = Av(f)
and
[T ((n+ 1)) = Tf? 4+ D] _ |0+ Dfn+ 1) = nf(n+ 1/m)
2n 2n
_ (m+1)f(n+1)—(n+1)f(n+1/n)+ f(n+1/n)]
2n
<" Lt 1)~ pat 14 L
D (g no L S ) = S0) £ £02)
a2 g1y ) 1 V2
< SAv () + 1),
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so Ax (Tf) < 2Ay(f)+]f(2)] and T maps Lip(Y) into Lip(X). To see T is surjective let us show that
for each g € Lip(X) the function f:Y — R given by

f(n—l—z/n) = M

is Lipschitz. Obviously one then has T'f = g. We have

[f(n+1/n) = f(n)]
1/n

n

=|g(n® +1) — g(n)| < Ax(g).

Also,
n n lg((n+1)?) gn?+1)

L B (L ) B e

Ing((n+ 1)) — (n+ 1)g(n* +1)
(n+1)(n—-1)
n lg(n? 4+ 1)]
mrDmo1n W 2T T
8 lg(n? +1) — g(4) + g(4)]

< sl T T

<

< Laxig + 291

Whence Ay (f) < 2Ax(g) +|9(4)|/3, which completes the proof. O

Garrido and Jaramillo proved in [4, Theorem 3.10] that two complete metric spaces are Lipschitz
homeomorphic if and only if there is a linear and unital lattice isomorphism between the corresponding
spaces of Lipschitz functions. The above example shows that ‘unital’ is needed here. And the next
one that neither ‘linear’ can be omitted.

ExamMpPLE 2. Let N; denote the set of integers with the discrete metric instead of the usual
metric. Obviously Nj is not Lipschitz homeomorphic with N. However, there is a lattice isomorphism
T : Lip(N;) — Lip(N) such that 70 = 0 and T'1 = 1.

PRrooF. Notice Lip(N;) is nothing but the space of bounded sequences. Put
fln) it [f(n)] <1

nf(n) otherwise

Tf(n) = {
It is easily verified that T defines an isomorphism of Lip(N;) onto Lip(N). O

5. Concluding remarks

The paper [8] contains the statement that two complete metric spaces are uniformly homeomorphic
if the corresponding lattices of uniformly continuous functions are isomorphic [8, Theorem 6].

While it is apparent that Shirota’s proof works for bounded functions (we refer the interested
reader to [2] for a contemporary proof), a serious gap occurs in the ‘unbounded’ case. It is worth
noticing that Nagata had already proved a closely related for bounded uniformly continuous functions
which are uniformly continuous outside a finite set [7, Theorem 2].

Perhaps the following explanations are in order. Let U(X) denote the lattice of all uniformly
continuous functions on X and U*(X) the sublattice of bounded functions in U(X). Consider Shirota’s
relations ‘C’ and ‘€’ we used in Section 1 in U*(X) and U(X). As before, f C g is equivalent to
Ur C Uy both in U*(X)™T and in U(X)™, but the meaning of f € g depends on the ‘ambient’ lattice.
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Indeed, one has f € g & d(Uy,Ug) > 0in U*(X), by Lemma 1(c). However, the implication (<) may
fail in U(X). To see this, take X = R with the usual distance and the sets:

V={Jn-1/8n+1/8) and W =|Jn—-1/4,n+1/4).

Clearly, d(V,W¢) = 1/8. Define f and g taking f(z) = d(z,V*°) and g(z) = d(xz, W*), so that V = Uy
and W = U,. Let us see that the relation f € g does not hold in U(R). Indeed, for n € N, let h,, be
piecewise linear function defined by the conditions h,(n) = n,hy(n £ ) = 0. Then h,, C f for all n
and the sequence (h,) is bounded by |- |. However no uniformly continuous function h C g can be an
upper bound for (hy,).

So, let us close the paper with the following.

PROBLEM. Let Y and X be complete metric spaces such that the lattices U(Y') and U(X) are
isomorphic. Must X and Y be uniformly homeomorphic? What if U(Y) and U(X) are linearly
isomorphic?

It is apparent that the problem reduces to find a condition equivalent to ‘d(Uy, Ugc) > 0’ (or to
‘d(Uy,Uy) = 0°) within the order structure of U(X)*. This could be an impossible task: Example 1
shows that these conditions cannot be expressed within the order structure of Lip(X) if X has infinite
diameter.
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