Hiperciclicidad y caos de operadores

Alberto Conejero Félix Martínez Alfredo Peris (IP) Macarena Trujillo

Departamento Matemática Aplicada Instituto Universitario de Matemática Pura y Aplicada Universidad Politécnica de Valencia

IV Encuentro Análisis Funcional y Aplicaciones 3 – 5 abril 2008 Salobreña

Teorema (G. D. Birkhoff, 1929)

Existe una función entera $f: \mathbb{C} \to \mathbb{C}$ tal que, para cualquier función entera $g: \mathbb{C} \to \mathbb{C}$, existe una sucesión $(z_k)_k$ en \mathbb{C} tal que

 $\lim f(z+z_k)=g(z)$ uniformemente en conjuntos compactos de $\mathbb C$.

En términos de dinámica

- $\mathcal{H}(\mathbb{C}) := \{ f : \mathbb{C} \to \mathbb{C} : f \text{ es entera} \}, \text{ consideramos } (\mathcal{H}(\mathbb{C}), \tau_0).$
- Consideramos la aplicación (lineal y continua)

$$T_1: \mathcal{H}(\mathbb{C}) \to \mathcal{H}(\mathbb{C}), \ \ f(z) \mapsto f(z+1)$$

• Entonces existe $f \in \mathcal{H}(\mathbb{C})$ tal que su *órbita* bajo la función T_1

$$Orb(T_1, f) := \{f, T_1 f, T_1^2 f, \dots\}$$

es densa en $\mathcal{H}(\mathbb{C})$.

Contexto de trabajo y definiciones básicas

- Desde ahora X será un espacio de Fréchet separable y
 T: X → X un operador (aplicación lineal y continua)
- Dado x ∈ X, su órbita bajo el operador T se define como

$$Orb(T, x) := \{x, Tx, T^2x, \dots\}.$$

• El operador $T: X \to X$ se dice que es hipercíclico si existe un vector $x \in X$ tal que $\overline{\text{Orb}(T, x)} = X$. A dicho vector x se le llama vector hipercíclico de T.

Kitai, Gethner, Godefroy, Shapiro y Herrero establecen las bases de la teoría

Rolewicz, 1969

No existen operadores hipercíclicos definidos en espacios de dimensión finita

Teorema de transitividad de Birkhoff, 1920

Equivalen

- a) T es hipercíclico
- b) T es topológicamente transitivo

Para todo $U, V \subset X$ abiertos y no vacíos existe $n \in \mathbb{N}$ tal que $T^n(U) \cap V \neq \emptyset$

El operador "desplazamiento hacia atrás" (backward shift)

Consideramos $B: I_p \rightarrow I_p$ definido como

$$(x_1, x_2, x_3, \dots) \mapsto (x_2, x_3, x_4, \dots)$$

Si $|\lambda| > 1$ entonces λB es hipercíclico en I_p (Rolewicz, 1969)

Todo espacio de Fréchet separable de dimensión infinita admite operador hipercíclico

- Caso Banach (Ansari y Bernal)
- Caso Fréchet (Bonet-Peris)

(usan un resultado de Salas sobre perturbaciones de la identidad por operadores shift ponderados $I + B_w$)

Caos

Una aplicación continua $f: M \to M$ en un espacio métrico (M, d) es caótica (en el sentido Devaney) si

- f es topológicamente transitiva
- El conjunto

Per(
$$f$$
) := {puntos periódicos de f }
= { $x \in M$; $f^n x = x$ para algún n }

es denso en M

Los ejemplos citados anteriormente, T_1 y λB_1 , son caóticos

Sea $B(x_1, x_2, x_3,...) = (x_2, x_3, x_4,...)$ y P(z) un polinomio complejo. Consideramos $P(B): I_p \to I_p$ Condiciones en los coeficientes de P(z) para que P(B) sea caótico

Motivaciones

- ¿Es suficiente que P posea un coeficiente a_i con $|a_i| > 1$ y P(0) = 0 (R. Aron)?
- Todo operador en derivadas P(D) que no sea un múltiplo de la identidad es caótico en $\mathcal{H}(\mathbb{C})$ (Godefroy-Shapiro) ¿Caos de P(D) en algunos espacios de Banach de funciones analíticas?

Teorema

Sea
$$P(z) = \sum_{i=1}^{n} a_i z^i$$
, si $\left(\sum_{i=1}^{n} |a_i|^2\right)^{1/2} > 1$ entonces $P(B)$ es caótico en I_p

Caos de P(D) en espacios de Hilbert de funciones enteras

Sea $\gamma(z)$ una función entera de comparación admisible, i.e.,

$$\gamma_i > 0 \ \forall i \in \mathbb{N}_0 \ y \ \{i\gamma_i/\gamma_{i-1}\}_{i>1}$$
 es decreciente

Consideramos el espacio de Hilbert

$$E^{2}(\gamma) := \left\{ g(z) = \sum_{i=0}^{\infty} \hat{g}(i)z^{i} \text{ tales que } \|g\|_{2,\gamma}^{2} := \sum_{i=0}^{\infty} \gamma_{i}^{-2} \left| \hat{g}(i) \right|^{2} < \infty \right\}$$

 $E^2(\gamma)$ es isométrico a $I_2(\{\gamma_i^{-1}\}_i)$

(Hiperciclicidad — Chan-Shapiro)

$$P(B): I_p \rightarrow I_p$$
 $\downarrow \downarrow$
 $P(B_w): I_p \rightarrow I_p$
 $\downarrow \downarrow$
 $P(B_v): I_p((a_i)_i) \rightarrow I_p((a_i)_i)$
 $\downarrow \downarrow$
 $P(D): E^2(\gamma) \rightarrow E^2(\gamma)$
 $B_w(x_1, x_2, x_3, \dots) = (w_2 x_2, w_3 x_3, w_4 x_4, \dots)$

Definición

Sea X un espacio de Banach complejo y $T: X \to X$ un operador. Un vector $x \in X \setminus \{0\}$ se dice que es n-periódico si $T^n x = x$ y $T^m x \neq x$ para cada $1 \leq m < n$. Se dice que $n \in \mathbb{N}$ es periodo de T si T admite un vector n-periódico. Denotaremos

$$\mathcal{P}(T) := \{ n \in \mathbb{N} \text{ tales que } n \text{ es un periodo de } T \}$$

Teorema

 $A \subset \mathbb{N}$ es un conjunto de periodos de un operador en un espacio de Hilbert si y sólo si A contiene los m.c.m. de todos los pares de elementos de A. Si, además, A es infinito existe un operador caótico $T: X \to X$ tal que $\mathcal{P}(T) = A$.

Aplicaciones "linealizables y conjugación topológica"

- f: X → X continua es "linealizable" si es topológicamente conjugada a un operador T: Y → Y
- Todo espacio de Banach separable es homeomorfo a l₂ (teorema de Anderson-Kadec)

Teorema

Sea X espacio de Banach separable y $A\subset\mathbb{N}$ infinito. Existe $f:X\to X$ aplicación caótica "linealizable" tal que $\mathcal{P}(f)=A$ si y sólo si A contiene los m.c.m. de todos los pares de elementos de A.

C₀- semigrupos hipercíclicos y caóticos

Un C_0 -semigrupo $\mathcal{T} := \{T_t : X \to X; \ t \ge 0\}$ es una familia uniparamétrica de operadores tal que $T_0 = I$, $T_t \circ T_s = T_{t+s}$, y lím $_{t\to s} T_t x = T_s x$ para cada $x \in X$.

La <u>órbita</u> de x es $Orb(\mathcal{T}, x) := \{T_t x; t \ge 0\}.$

El semigrupo es hipercíclico si tiene una órbita densa y, es caótico si es hipercíclico y el conjunto de puntos periódicos es denso en X

$$Per(\mathcal{T}) := \{x \in X \mid T_t x = x \text{ para algún } t > 0\}$$

Comportamiento asintótico de soluciones del problema abstracto de Cauchy x'(t) = Ax, $x(0) = x_0 \in X$, donde A es un operador cerrado (no acotado) en X que genera el semigrupo de soluciones

Lasota, Desch, Schappacher, Webb

Caso discreto (Ansari)

Si $T: X \to X$ es hipercíclico, entonces T^n es hipercíclico para todo $n \in \mathbb{N}$

Caso continuo (Conejero-Müller-Peris)

Si $\mathcal{T} := \{T_t : X \to X; \ t \ge 0\}$ es un C_0 -semigrupo hipercíclico, entonces T_t es hipercíclico para todo t > 0

Bayart-Bermúdez

Existen C_0 -semigrupos caóticos tales que ningún T_t , t > 0 es caótico

$$P: X \rightarrow X$$

es un polinomio d-homogéneo si

$$\exists \ A: X \times \stackrel{(d)}{\cdots} \times X \to X \text{ multilineal y continua t.q.}$$
$$P(x) = A(x, \dots, x)$$

$$Q = \sum_{k=0}^{a} P_k$$
 donde P_k es un polinomio k -homogéneo

(operadores lineales on polinomios 1-homogéneos)

¿Todo espacio de Fréchet separable de dimensión infinita admite un polinomio hipercíclico de grado d > 1?

Motivación

- No existen polinomios homogéneos hipercíclicos de grado d > 1 en ningún espacio de Banach (Bernardes)
- ¿No homogéneos en el caso Banach? ¿Homogéneos en espacios de Fréchet? (Aron)
- ¿Todo espacio de Banach separable de dimensión infinita admite un operador hipercíclico?

Peris da ejemplos afirmativos y relaciona la dinámica de polinomios en espacios de Banach con la dinámica compleja de polinomios en $\mathbb C$ (conjuntos de Julia)

Teorema

Todo espacio de Fréchet (complejo) separable de dimensión infinita admite un polinomio hipercíclico de grado d > 1

Usamos el resultado de Salas sobre hipercilicidad de $I + B_w$

Estudiamos el caos de polinomios concretos definidos en espacios generales de sucesiones (esp. de Köthe)

Pregunta

¿Todo espacio de Fréchet separable de dimensión infinita admite un polinomio caótico de grado d > 1?

Respuesta negativa para operadores (Bonet-MG-Peris)