Talagrand pseudocompacts and Rainwater sets

Manuel López Pellicer (IUMPA, UPV)

and S. López Alfonso (UPV)

Cáceres, March 09 - 11, 2017 XIII Encuentro Red de Análisis Funcional y Aplicaciones Project Prometeo I/2013/058

Outline

- Preliminaries
- 2 Some topological properties of Rainwater sets for $C^b(X)$
- Rainwater sets and weak K-analyticity in $C^b(X)$

Outline

Notations and well known facts on vX and βX

X is a completely regular (Hausdorff) space.

 $C^b(X)$, and C(X) for X pseudocompact, have the $\|\cdot\|_{\infty}$. $f \mapsto f^{\beta}$ is a linear isometry from $C^b(X)$ onto $C(\beta X)$.

We identify X and βX with $\{\delta_X : X \in X\}$ and $\overline{\{\delta_X : X \in X\}}^{\text{weak}^*}$ in $B_{C^b(X)^*}$ (weak*).

Let $x \in \beta X$. Then $x \in vX$, the Hewitt realcompactification of X,

- iff each $f \in C(X)$ admits a continuous extension to $X \cup \{x\}$, hence $f \mapsto f^{\nu}$ is a biyection from C(X) onto $C(\nu X)$,
- iff $V \cap X \neq \emptyset$ for each βX -zero V containing x, whence X is G_{δ} -dense in vX.

X pseudocompact means

$$C(X) = C^b(X) \iff vX = \beta X \iff X \text{ is } G_{\delta}\text{-dense in } \beta X.$$

A sequentially continuous map

If $Y \subset C^b(X)^*$ separates functions in $C^b(X)$, then σ_Y is the pointwise convergence topology on $C^b(X)$ (on C(X)). $C_{\mathcal{D}}(X) := (C(X), \sigma_X).$

Claim

Let Y be G_{δ} -dense in Z. $(C(Z), \sigma_Y)$ and $C_p(Z)$ have the same convergent sequences ((rel) sequentially compact subsets). If f_0 is σ_Y adherent to (f_n) then f_0 is also adherent in $C_n(Z)$. If moreover $Z \subset \beta Y$, i.e., $Z \subset vY$, then $f \mapsto f^{\nu}|_{Z}$ is a linear isomorphism from C(Y) onto C(Z).

Proof.

If $Z_n := \{z \in Z : f_n(z) = f_n(x)\}$ then $\exists z_x \in Y \cap \bigcap_{n=0}^{\infty} Z_n$. C(Y) is embedds in C(vY).

Rainwater subsets in the dual unit ball of a Banach space *E*

Definition

A subset X of B_{E^*} is a *Rainwater set* if in B_E the topologies σ_X and $\sigma_{B_{E^*}}$ have the same convergent sequences.

This means that each *bounded* sequence of *E* that converges pointwise on *X* converges weakly*.

- From Choquet's integral representation it theorem follows that the set of extreme points of the closed dual unit ball is a Rainwater set for E (Rainwater's theorem).
- From Simons lemma it follows that each James boundary is a Rainwater set for E (a subset J of B_{E^*} is a James boundary if each element of E attains its maximum in B_{E^*} in J).

Rainwater theorem for C(X)

Theorem (Rainwater's theorem for C(X))

Each compact X is a Rainwater set for C(X).

Proof.

By Arens-Kelly theorem, Ext $B_{C(X)^*} = \{\pm \delta_x : x \in X\}.$ Hence $\{\pm \delta_x : x \in X\}$, and also X, is a C(X)-Rainwater set

Other proof.

By Riesz representation theorem, $C(X)^* = rca(\mathcal{B}(X))$. If $\{f_n\}_{n=1}^{\infty}$ is C(X) bounded and $f_n(x) \to f(x)$, $\forall x \in X$, then, by Lebesgue dominated convergence theorem, $\langle f_n, \mu \rangle \to \langle f, \mu \rangle$ for every $\mu \in C(X)^*$, i.e., $f_n \to f$ weakly.

Outline

- Some topological properties of Rainwater sets for $C^b(X)$
 - Pseudocompactness
 - G_{δ} -density

$\mathsf{Pseudocompact} \Longleftrightarrow \mathsf{Rainwater} \ \mathsf{set} \ (\Longrightarrow)$

Proposition

X is a Rainwater set for $C^b(X) \iff X$ is pseudocompact.

Proof.

(Known) If X is pseudocompact, $\{f_n\}_{n=1}^{\infty}$ is bounded in C(X) and $(f_n)_n \to f$ in $C_p(X)$ then for each $y \in vX = \beta X$

$$f_{n}^{\beta}\left(y
ight)=f_{n}^{\upsilon}\left(y
ight)
ightarrow\left(ext{by Claim}
ight)f^{\upsilon}\left(y
ight)=f^{\beta}\left(y
ight).$$

By Rainwater theorem for $C(\beta X)$

$$\left\langle f_{n}^{\beta},\mu\right
angle
ightarrow \left\langle f^{\beta},\mu
ight
angle ext{ for each }\mu\in\mathcal{C}\left(eta X
ight)^{*}=\mathcal{C}^{b}\left(X
ight)^{*}$$
 .

Thus X is a Rainwater set for $C^b(X)$.

Proof, conversely.

Suppose that X is not pseudocompact. For each $y \in \beta X \setminus \upsilon X$ there exists $h_y \in C(\beta X)$, $h_y(y) = 0$, $h_y(\upsilon X) \subset]0, 1]$. Now define

- **1** $g_y \in C(\beta X)$ by $g_y(z) = (1 + h_y(z))^{-1}, z \in \beta X$.
- 2 $f_n := (g_y)^n$.

Clearly $g_y(vX) \subset]0,1[$ and $g_y(y)=1$, hence from

- $||f_n|_X||_{\infty} \leq 1$,
- $\bullet \ \lim_n f_n(x) = \lim_n g_y(x)^n = 0, \, \forall x \in X,$
- $\langle f_n|_X, \delta_y \rangle = f_n(y) = g_y(y)^n = 1, (f_n)_n \not\to 0 \text{ (weak*)},$

we conclude that X is not a Rainwater set for $C^b(X)$.

Pseudocompact subsets Y of $B_{C^b(X)^*}$ with $X \subset Y$

Proposition

 $(Y, \text{weak}_{|Y}^*)$ pseudocompact $\Longrightarrow Y$ is a $C^b(X)$ -Rainwater set.

Proof.

Let *T* the product of the isometry-inmersions

$$C^b(X) \longrightarrow C(B_{C^b(X)^*}) \longrightarrow C(Y).$$

$$T^*(C(Y)^*)=C^b(X)^*.$$

Let $\{u_n\}_{n=0}^{\infty}$ be $C^b(X)$ -bounded and $\lim_n u_n = u_0$ in σ_Y .

Then $\{Tu_n\}_{n=0}^{\infty}$ is C(Y)-bounded and $\lim_n Tu_n = Tu_0$ in $C_p(Y)$. By pseudocompactness, for each $T^*\mu \in C^b(X)^*$ ($\mu \in C(Y)^*$)

$$\lim_{n} \langle u_n, T^* \mu \rangle = \lim_{n} \langle Tu_n, \mu \rangle = \langle Tu_0, \mu \rangle = \langle u_0, T^* \mu \rangle$$

Examples

Example

An infinite discrete space I is not Rainwater for $C^{b}(I) = \ell_{\infty}(I)$.

Example

If D is a dense subset of $\beta N \setminus N$ of cardinality $|D| \leq c$, then $N \cup D$ is a Rainwater set for ℓ_{∞} . $(N \cup D)$ is pseudocompact).

Example (Kalenda)

A Valdivia compact X which is not Corson's compact contains a non compact Y which is a Rainwater set for C(X).

Exists a countably compact $Y \subsetneq X$ with $\nu Y = \beta Y = X$ Y -homeomorphic to a bounded closed subset of some $\Sigma(\Gamma)$ - is non compact and Rainwater set of $C^b(Y) = C(\beta Y) = C(X)$.

Rainwater subsets of a pseudocompact

 $(\mathsf{Rw} \Longrightarrow G_{\delta}\text{-dense})$

Proposition

Let Y be a subset of a pseudocompact X. Y is a Rainwater set for C(X) if and only if Y is G_{δ} -dense in X.

Proof.

If *Y* is not G_{δ} -dense in *X* there exists $x_0 \in \bigcap_{n=1}^{\infty} U_n \downarrow$, non void G_{δ} subset of *X* which that does not meet *Y*.

Let
$$g_n \in C(X)$$
 with $0 \le g_n \le 1$, $g_n(X \setminus U_n) = \{0\}$ and $g_n(x_0) = 1$, $\forall n \in \mathbb{N}$. From

$$\lim_{n} g_n = 0$$
, in σ_Y , and $\lim_{n} \delta_{x_0}(g_n) = 1$

we get that Y is not a Rainwater set for C(X).

Rainwater subsets of a pseudocompact $(G_{\delta}$ -dense \Longrightarrow Rw)

Proposition

Let X' be a Rainwater set for $C^b(X)$ and let Y be a G_δ -dense in $(X', \operatorname{weak}^*|_{X'})$. Then Y is a Rainwater set for $C^b(X)$. Hence if vZ is homeomorphic to a Rainwater set for $C^b(X)$, then Z is also homeomorphic to a Rainwater set for $C^b(X)$.

Proof.

If $(f)_{nn=0}^{\infty}$ is bounded in $C^b(X)$ and $\lim_n f_n = f_0$ in σ_Y , then:

- By G_{δ} -density $\lim_n f_n = f_0$ in $\sigma_{\chi'}$,
- By Rainwater condition $\lim_n f_n = f_0 (C^b(X), \text{weak})$.

Hence Y is a Rainwater set for $C^b(X)$.

Particular case: Z is G_{δ} -dense in vZ.

Rainwater subset of a pseudocompact → pseudoc.

Example

There exists pseudocompact X that contains a non pseudocompact subset Y that it is Rainwater set for $C^b(X)$.

Proof.

Let G pseudocompact such that $G \times G$ not pseudocompact.

 $G \times G$ is G_{δ} -dense in $G \times \beta G$.

 $\mathbf{G} \times \beta \mathbf{G}$ is pseudocompact (pseudocompact \times compact).

Hence $G \times G$ is a Rainwater set for $C(G \times \beta G)$.

Remark

Let $X = Y \cup \{\infty\}$ be the Alexandroff compactification of a discrete space Y of nonmeasurable infinite cardinality. Clearly Y is not pseudocompact G_{δ} -dense in Eberlein compact X.

Outline

- - Some equivalences
 - Applications

Two lemmas

 $X = T(\mathbb{N}^{\mathbb{N}})$ is *K*-analytic if *T* is u.s.c.c. valued (ordered).

Lemma

 $C^b(X)$ weakly K-analytic $\Longrightarrow X$ pseudocompact.

Proof.

$$C^b(X) = C(\beta X) \Longrightarrow \beta X$$
 Talagrand compact $\Longrightarrow \beta X$ F.-U.

$$(y_n \in vX)_n \to y_0 \notin vX \Longrightarrow |\beta \mathbb{N}| \leqslant |\mathbb{N}|!!!!$$
. Hence $\beta X = vX$.

Lemma

Y Rainwater for $C^b(X) \Longrightarrow Y$ separates functions of $C^b(X)$.

Proof.

$$f(y) = g(y) \Longrightarrow \{f, g, f, g, \ldots\}$$
 weak converges.

Weak K-analyticity in C(X)

Theorem

Let X be completely regular. The following are equivalent:

- \bigcirc X is pseudocompact and $C_p(X)$ is K-analytic.
- There exists a Rainwater set Y for $C^b(X)$ such that $(C^b(X), \sigma_Y)$ is K-analytic and $C_p(Y)$ is angelic.
- There exists a Rainwater set Y for $C^b(X)$ such that $(C^b(X), \sigma_Y)$ is both K-analytic and angelic.
- \bigcirc $C^b(X)$ is weakly K-analytic.

Proof of $1 \Rightarrow 2$ and $2 \Rightarrow 3$.

 $1 \Rightarrow 2$ Take Y := X (pseudocompact) $\Longrightarrow C_p(Y)$ angelic.

$$2 \Longrightarrow 3 \ Y \subset B_{C^b(X)^*} \Longrightarrow (C^b(X), \sigma_Y)$$
 embeds in $C_p(Y)$.

Weak K-analyticity in $C^b(X)$

```
Proof: 3(\exists \text{Rw } Y: (C^b(X), \sigma_Y) \text{ $K$-analytic angelic)} \Longrightarrow 4(C^b(X) \text{ weak $K$-analytic)} \Longrightarrow 1(X \text{ psdcom, } C_p(X) \text{ $K$-analytic)}.
```

 $3\Rightarrow 4$. By 3, $W:=\left(B_{C^b(X)},\sigma_Y|_{B_{C^b(X)}}\right)$ is angelic and has an an ordered K-analytic representation $\left\{\mathcal{K}_\alpha:\alpha\in\mathbb{N}^\mathbb{N}\right\}$.

W and $Z := \left(B_{C^b(X)}, \operatorname{weak}|_{B_{C^b(X)}}\right)$ has the same convergent sequences (Y is Rainwater).

Hence $\{K_{\alpha}: \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a compact resolution of the angelic space Z.

Then $\{K_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a K-analytic representation of Z.

Whence $C^b(X) = \bigcup_{n=1}^{\infty} nB_{C^b(X)}$ is weakly *K*-analytic.

 $4 \Rightarrow 1.$ ($C^b(X)$, weak) K-analytic $\Longrightarrow X$ pseudocompact (Lemma) and $C_p(X)$ K-analytic.

Another characterization of Talagrand compact sets

Theorem

Let Y be a G_{δ} -dense subset of a pseudocompact X. $C_p(X)$ is K-analytic \iff $(C(X), \sigma_Y)$ is K-analytic.

Proof.

 \Longrightarrow obvious. (\Longleftrightarrow) By the Claim if M is σ_Y -r.c.c. then M is r.c.c. in the angelic space $C_p(X)$.

 $\overline{M}^{C_p(X)}$ is compact and F-U $\Longrightarrow \overline{M}^{\sigma(Y)}$ compact and F-U $\Longrightarrow (C(X), \sigma_Y)$ angelic.

Y Rainwater C(X). Hence we may apply Th 3 \Longrightarrow 1.

Corollary

Let Y be a G_{δ} -dense subset of a compact X. X is Talagrand compact if and only if $(C(X), \sigma_Y)$ is K-analytic.

The last example

Remark

If x_0 is a non-isolated point of a pseudocompact X, $Y := X \setminus \{x_0\}$ and if $\{x_0\}$ is not a G_δ -subset of X, then each nonempty G_δ -subset G of X intersects Y (otherwise $G = \{x_0\}$) hence $C_p(X)$ is K-analytic $\iff (C(X), \sigma_Y)$ is K-analytic.

Example

 $\{\omega_1\}$ is not G_δ -subset of $[0,\omega_1]$ and $C_p([0,\omega_1])$ is not K-analytic, because $[0,\omega_1]$ is not Fréchet-Urysohn. Hence the pseudocompact space $Y:=[0,\omega_1)$ verifies that $C_p([0,\omega_1))$ is not K-analytic.

Ferrando, Kąkol and L-P study the case " x_0 G_δ -subset of X" in On spaces $C_b(X)$ weakly K-analytic.

The last slide

iMUCHAS GRACIAS!

References I

- Arens, R. F. and Kelley, J. L., Characterizations of the space of continuous functions over a compact Hausdorff space, Trans. Amer. Math. Soc. **62** (1947), 499-508.
- Ferrando, J. C., Kąkol, J. and M. López-Pellicer, M., *On spaces C_b(X) weakly K-analytic*, submitted.
- García-Ferreira, S. and García-Máynez, A., *On weakly pseudocompact spaces*, Houston J. Math. **20** (1994), 145-159.
- Ralenda, O., *A characterization of Valdivia compact spaces*, Collect. Math. **51** (2000), 59-81.

References II

- King, D. M. and Morris, S. A., *The Stone-Čech compactification and weakly Fréchet spaces*, Bull. Austral. Math. Soc. **42** (1990), 349-352.
- Moll, S. and Sánchez Ruiz, L. M., A note on a theorem of Talagrand, Topology Appl. **153** (2006), 2905-2907.
- Nygaard, O., *A remark on Rainwater's theorem*, Ann. Math. Inform. **32** (2005), 125-127.
- Rainwater, J., Weak convergence of bounded sequences, Proc. Amer. Math. Soc. 14 (1963), 999-999.
- Simons, S., *A convergence theorem with boundary*, Pacific J. Math. **40** (1972), 703-708.

References III

- Simons, S., An eigenvector proof of Fatou's lemma for continuous functions, Math. Intelligencer 17 (3) (1995), 67–70.
- Talagrand, M., Espaces de Banach faiblement K-analytiques, Annals of Math. **110** (1979), 407-438.