Approximation of Sobolev-type embeddings Recent results and open problems

Thomas Kühn

Universität Leipzig, Germany

XIII Encuentro de Red de Análisis Funcional Cáceres, 9 – 11 March 2017 10 March 2017

Subject of the talk

Approximation of functions on the d-dimensional torus \mathbb{T}^d

- Functions: from quite general spaces, including e.g. classical Sobolev spaces (isotropic, dominating mixed smoothness,...)
- Quality of approximation: expressed via approximation numbers
- Error: with respect to the L₂-norm or the sup-norm

Special emphasis on

- Optimal asymptotic rates and sharp constants
- Preasymptotic estimates

This subject is related to

• Functional Analysis, Approximation Theory, Numerical Analysis,...

The talk is based on the following recent papers

- T. Kühn, W. Sickel and T. Ullrich, Approximation numbers of Sobolev embeddings – Sharp constants and tractability,
 J. Complexity 30 (2014), 95–116.
- T. Kühn, W. Sickel and T. Ullrich, Approximation of mixed order Sobolev functions on the d-torus – Asymptotics, preasymptotics and d-dependence, Constr. Approx. 42 (2015), 353–398.
- F. Cobos, T. Kühn and W. Sickel, Optimal approximation of multivariate periodic Sobolev functions in the sup-norm, J. Funct. Anal. 270 (2016), 4196–4212.
- T. Kühn, S. Mayer and T. Ullrich, Counting via entropy: New preasymptotics for the approximation numbers of Sobolev embeddings, SIAM J. Numer. Anal. 54 (2016), 3625–3647.
- T. Kühn and M. Petersen, *Approximation in periodic Gevrey spaces*, in progress

Approximation numbers

 For (bounded linear) operators T : X → Y between two Banach spaces the approximation numbers are defined as

$$a_n(T:X\to Y):=\inf\{\|T-A\|:\operatorname{rank} A< n\}$$

- $\lim_{n \to \infty} a_n(T) = 0 \implies T$ compact \iff fails by Enflo's counter-example Rate of decay of $a_n(T)$ describes the 'degree' of compactness of T
- For compact operators between Hilbert spaces

$$a_n(T) = s_n(T) = \sqrt{\lambda_n(T^*T)} = n$$
-th singular number

Interpretation in Numerical Analysis

• Every operator $A: X \to Y$ of finite rank n can be written as

$$Ax = \sum_{j=1}^{n} L_j(x) y_j$$
 for all $x \in X$

with linear functionals $L_j \in X'$ and vectors $y_j \in Y$.

 \land A is a linear algorithm using n arbitrary linear informations

worst-case error of the algorithm A

$$err^{wor}(A) := \sup_{\|x\| \le 1} \|Tx - Ax\| = \|T - A\|$$

n-th minimal worst-case error of the problem T
 (with respect to linear algorithms and arbitrary linear information)

$$err_n^{wor}(T) := \inf_{\operatorname{rank} A \le n} err^{wor}(A) = a_{n+1}(T)$$

Sobolev embeddings

Well-known

– For isotropic Sobolev spaces on the d-dimensional torus \mathbb{T}^d

$$c_{s,d} \cdot n^{-s/d} \leq a_n(I_d : H^s(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq C_{s,d} \cdot n^{-s/d}$$

For Sobolev spaces of dominating mixed smoothness

$$c_{s,d} \cdot \left[\frac{(\log n)^{d-1}}{n} \right]^s \leq a_n(I_d : H^s_{mix}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq C_{s,d} \cdot \left[\frac{(\log n)^{d-1}}{n} \right]^s$$

Almost nothing known

How do the constants $c_{s,d}$ and $C_{s,d}$ depend on s and d???

This is essential for high-dimensional numerical problems, and also for tractability questions in information-based complexity.

Some remarks

- Of course, the constants heavily depend on the chosen norms.
 - \curvearrowright First we have to fix (somehow natural) norms. For all our norms, we will have norm one embeddings into $L_2(\mathbb{T}^d)$.
- ullet For example, for smoothness s=1, the asymptotic rates are

$$\alpha_n := n^{-1/d}$$
 and $\beta_n := \frac{(\log n)^{d-1}}{n}$.

In high dimensions, one has to wait exponentially long until these rates become visible, as one can see from the following examples.

- Isotropic case.
 - $n=10^d$ (very large) $\alpha_n=\frac{1}{10}$ (poor error estimate)
- Mixed case. (Dimension d+1) Even worse, $n=d^d$ \curvearrowright $\beta_n=(\log d)^d\gg 1$ (trivial estimate)
- \curvearrowright We need precise information on the constants and preasymptotic estimates (for small n, say $n \le 2^d$)

Periodic function spaces

• The Fourier coefficients of a function $f \in L_2(\mathbb{T}^d)$ on the d-dimensional torus $\mathbb{T}^d = [0, 2\pi]^d$ are

$$c_k(f) := \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x) e^{-ikx} dx$$
 , $k \in \mathbb{Z}^d$

• Given any weights w(k) > 0, we define $F_d(w)$ as the space of all $f \in L_2(\mathbb{T}^d)$ such that

$$||f|F_d(w)|| := \Big(\sum_{k \in \mathbb{Z}^d} w(k)^2 |c_k(f)|^2\Big)^{1/2} < \infty.$$

There are compact embeddings

$$F_d(w) \hookrightarrow L_2(\mathbb{T}^d) \iff \lim_{|k| \to \infty} 1/w(k) = 0$$

$$F_d(w) \hookrightarrow L_\infty(\mathbb{T}^d) \iff \sum_{k \in \mathbb{T}^d} 1/w(k)^2 < \infty.$$

Isotropic periodic Sobolev spaces, integer smoothness

- The Sobolev space $H^m(\mathbb{T}^d)$, $m \in \mathbb{N}$, consists of all $f \in L_2(\mathbb{T}^d)$ such that the following (equivalent!) norms are finite.
- Natural norm (all partial derivatives)

$$\| f | H^m(\mathbb{T}^d) \| := \Big(\sum_{|\alpha| \le m} \| D^{\alpha} f | L_2(\mathbb{T}^d) \|^2 \Big)^{1/2}$$

Modified natural norm (only highest derivatives in each coordinate)

$$\| f | H^m(\mathbb{T}^d) \|^* := \left(\| f | L_2(\mathbb{T}^d) \|^2 + \sum_{j=1}^d \left\| \frac{\partial^m f}{\partial x_j^m} \left| L_2(\mathbb{T}^d) \right\|^2 \right)^{1/2}$$

Norms via Fourier coefficients

- These norms can be rewritten in terms of Fourier coefficients, using Parseval's identity and $c_k(D^{\alpha}f) = (ik)^{\alpha}c_k(f)$.
- For the natural norm one has

$$\| f \| H^m(\mathbb{T}^d) \| \sim \left(\sum_{k \in \mathbb{Z}^d} \left(1 + \sum_{j=1}^d |k_j|^2 \right)^m |c_k(f)|^2
ight)^{1/2}$$

with equivalence constants independent on d.

• For the modified natural norm one has even equality

$$\|f\|H^m(\mathbb{T}^d)\|^* = \left(\sum_{k\in\mathbb{Z}^d}\left(1+\sum_{j=1}^d|k_j|^{2m}\right)|c_k(f)|^2\right)^{1/2}.$$

Fractional smoothness s > 0

• Let s > 0, $d \in \mathbb{N}$ and 0 .

 $H^{s,p}(\mathbb{T}^d)$ consists of all $f\in L_2(\mathbb{T}^d)$ such that

$$||f|H^{s,p}(\mathbb{T}^d)|| := \Big(\sum_{k \in \mathbb{Z}^d} w_{s,p}(k)^2 |c_k(f)|^2\Big)^{1/2} < \infty,$$

where the weights are $w_{s,p}(k) := \left(1 + \sum_{j=1}^d |k_j|^p\right)^{s/p}$.

- For fixed s>0 and $d\in\mathbb{N}$, all these norms are equivalent. Clearly, the equivalence constants depend on d. But all spaces $H^{s,p}(\mathbb{T}^d)$, $0< p\leq \infty$, coincide as vector spaces.
- These spaces are of the general form $F_d(w)$.

Relation to the classical norms

For the natural norm we have equivalence

$$|| f | H^m(\mathbb{T}^d) || \sim || f | H^{m,2}(\mathbb{T}^d) ||$$

with equivalence constants independent on d.

For the modified natural norm one has even equality

$$|| f | H^m(\mathbb{T}^d) ||^* = || f | H^{m,2m}(\mathbb{T}^d) ||$$

Sobolev spaces of dominating mixed smoothness

• Let s > 0, $d \in \mathbb{N}$ and 0 .

 $H^{s,p}_{mix}(\mathbb{T}^d)$ consists of all $f\in L_2(\mathbb{T}^d)$ such that

$$||f|H^{s,p}(\mathbb{T}^d)|| := \Big(\sum_{k \in \mathbb{Z}^d} w_{s,p}^{mix}(k)^2 |c_k(f)|^2\Big)^{1/2} < \infty,$$

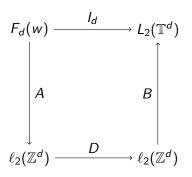
where the weights are now $w_{s,p}^{mix}(k) := \prod_{j=1}^d (1+|k_j|^p)^{s/p}$.

• For integer smoothness $s \in \mathbb{N}$, all $H_{mix}^{s,p}(\mathbb{T}^d)$, 0 , coincide with the classical Sobolev space of dominating mixed smoothness

$$H_{mix}^{s}(\mathbb{T}^{d}) = \{ f \in L_{2}(\mathbb{T}^{d}) : D^{\alpha}f \in L_{2}(\mathbb{T}^{d}) \ \forall \alpha \in \{0, 1, ..., s\}^{d} \}$$

The parameter p indicates which of the equivalent norms we are using.

Reduction to sequence spaces



$$Af:=(w(k)\,c_k(f))_{k\in\mathbb{Z}^d}$$
 , $B\xi:=\sum_{k\in\mathbb{Z}^d}\xi_k\,e^{ikx}$, $D(\xi_k):=(\xi_k/w(k))$

Let $(\sigma_n)_{n\in\mathbb{N}}$ is the non-increasing rearrangement of $(1/w(k))_{k\in\mathbb{Z}^d}$

A and B are unitary operators
$$\curvearrowright$$
 $a_n(I_d) = a_n(D) = s_n(D) = \sigma_n$

Isotropic Sobolev spaces

- $H^{s,p}(\mathbb{T}^d) = F_d(w)$ with $w(k) = (1 + \sum_{j=1}^d |k_j|^p)^{s/p}$.
 - $(\sigma_n)_n$ attains the values $(1+r^p)^{-s/p}$, $r \in \mathbb{N}$, but each of them at least 2d times.
- Define $N(r,d) := card\{k \in \mathbb{Z}^d : \sum_{j=1}^d |k_j|^p \le r^p\}$.

Lemma

If
$$N(r-1,d) < n \le N(r,d)$$
, then

$$a_n(I_d: H^{s,p}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) = (1+r^p)^{-s/p}$$
.

• In principle, this gives $a_n(I_d)$ for all n, but the exact computation of the cardinalities N(r,d) is impossible. The hard work is to find good estimates, using combinatorial and volume arguments.

Asymptotic constants, $n \to \infty$

• Let B_p^d denote the unit ball in $(\mathbb{R}^d, \|.\|_p)$. Using volume estimates, we can show the existence of asymptotically optimal constants.

Theorem (KSU 2014)

Let $0 < s, p < \infty$ and $d \in \mathbb{N}$. Then

$$\lim_{n\to\infty} \, n^{s/d} \, a_n(I_d:\, H^{s,p}(\mathbb{T}^d)\to L_2(\mathbb{T}^d)) = \mathit{vol}(B^d_p)^{s/d} \sim d^{-s/p}$$

- The asymptotic constant is of order $d^{-s/2}$ for the natural norm (p=2), $d^{-1/2}$ for the modified natural norm (p=2s).
- We get the correct order $n^{-s/d}$ of the a_n in n and the exact decay rate $d^{-s/p}$ of the constants in d.
- Polynomial decay in *d* of the constants helps in error estimates!

Estimates for large *n*

Theorem (KSU 2014, case p = 1)

Let s > 0 and $n \ge 6^d/3$. Then

$$d^{-s}n^{-s/d} \le a_n(I_d: H^{s,1}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \le (4e)^s d^{-s}n^{-s/d}$$
.

- We have similar estimates for all other 0 , but for <math>p = 1 the constants are nicer.
- Note the correct d-dependence d^{-s} of the constants!
- Proof: via combinatorial estimates of the cardinalities N(r,d)

Preasymptotic estimates – small n

Theorem (KSU 2014)

Let p = 1 and $2 \le n \le 2^d$. Then

$$\left(\frac{1}{2+\log_2 n}\right)^s \leq a_n(I_d:H^{s,1}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq \left(\frac{\log_2(2d+1)}{\log_2 n}\right)^{s}.$$

- Using a relation to entropy numbers,
 - the gap between lower and upper bounds was closed
 - arbitrary p's could be treated, shows the influence of the norm

Theorem (KMU 2016)

Let s > 0, $0 and <math>2 \le n \le 2^d$. Then

$$a_n(I_d: H^{s,p}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \sim \left(\frac{\log_2(1+d/\log_2 n))}{\log_2 n}\right)^{s/p}.$$

(We have explicit expressions for the hidden constants.)

Sobolev spaces of dominating mixed smoothness

• Same strategy as for isotropic spaces, but the combinatorial estimates are more complicated.

Theorem (KSU 2015 - optimal asymptotic constants)

Let s > 0 and $d \in \mathbb{N}$. Then, for all 0 , it holds

$$\lim_{n\to\infty}\frac{n^s a_n(I_d:H^{s,p}_{mix}(\mathbb{T}^d)\to L_2(\mathbb{T}^d))}{(\log n)^{s(d-1)}}=\left[\frac{2^d}{(d-1)!}\right]^s$$

- Interesting fact: For all 0 the limit is the same.
- The asymptotic constant decays super-exponentially in d.

Preasymptotic estimates, small *n*

Theorem (KSU 2015)

Let s > 0 and $d \in \mathbb{N}$, $d \ge 2$. Then, for $9 \le n \le d \, 2^{2d-1}$, it holds

$$a_n(I_d:H^{s,1}_{mix}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) \leq \left(\frac{e^2}{n}\right)^{\frac{s}{2+\log_2 d}}$$

- The bound is non-trivial in the given range, since $n \ge 9 > e^2$.
- We have also similar (non-matching) lower estimates. But they show, that one has to wait exponentially long until one can "see" the correct asymptotic rate n^{-s} , ignoring the log-terms.

Approximation in the sup-norm

It is well-known that

$$H^s(\mathbb{T}^d) \hookrightarrow L_\infty(\mathbb{T}^d) \quad \Longleftrightarrow \quad s > \frac{d}{2}$$

$$H^s_{mix}(\mathbb{T}^d) \hookrightarrow L_{\infty}(\mathbb{T}^d) \quad \Longleftrightarrow \quad s > \frac{1}{2}$$

 The asymptotic behaviour of the approximation numbers is also well-known, up to multiplicative constants,

$$a_n(I_d: H^s(\mathbb{T}^d) \to L_\infty(\mathbb{T}^d)) \sim n^{d/2-s}$$

 $a_n(I_d: H^s_{mix}(\mathbb{T}^d) \to L_\infty(\mathbb{T}^d)) \sim n^{1/2-s} (\log n)^{s(d-1)}$

• **Problem.** Find estimates for the hidden constants and the families of norms, with parameters 0 .

From L_2 -approximation to L_{∞} -approximation

• More general: $F_d(w) \hookrightarrow L_\infty(\mathbb{T}^d) \Longleftrightarrow \sum_{k \in \mathbb{Z}^d} 1/w(k)^2 < \infty$. In this case, the embedding is even compact.

Theorem (CKS 2016)

Let $F_d(w) \hookrightarrow L_\infty(\mathbb{T}^d)$. Then

$$a_n(I_d:F_d(w)\to L_\infty(\mathbb{T}^d))=\left(\sum_{j=n}^\infty a_j(I_d:F_d(w)\to L_2(\mathbb{T}^d))^2\right)^{1/2}$$

- – Upper estimate by factorization of $I_d: F_d \to L_\infty(\mathbb{T}^d)$ through a diagonal operator $D: \ell_2 \to \ell_1$, and known results for $a_n(D)$ Lower estimate via absolutely 2-summing operators
- L_2 -approximation can be "translated" into L_{∞} -approximation!

Application to isotropic Sobolev spaces

The relation

$$\lim_{n\to\infty} n^{s/d} a_n(I_d: H^{s,p}(\mathbb{T}^d) \to L_2(\mathbb{T}^d)) = \operatorname{vol}(B_p^d)^{s/d}$$

implies

Thomas Kühn (Leipzig)

Theorem (CKS 2016, asymptotic constants - isotropic spaces)

Let $d \in \mathbb{N}$, s > d/2 and 0 . Then

$$\lim_{n\to\infty} n^{s/d-1/2} a_n(I_d:H^{s,p}(\mathbb{T}^d)\to L_\infty(\mathbb{T}^d)) = \sqrt{\frac{d}{2s-d}}\cdot \mathit{vol}(B_p^d)^{s/d}$$

- Shift in the exponent of n by $\frac{1}{2}$, additional correction factor $\sqrt{\frac{d}{2s-d}}$.
- The same holds for the target space $C(\mathbb{T}^d)$, and also for the Wiener algebra $A(\mathbb{T}^d)$.
- Similarly one can translate estimates of a_n for large n / small n.

Application to mixed Sobolev spaces

The relation

$$\lim_{n\to\infty}\frac{n^s a_n(I_d:H^{s,p}_{mix}(\mathbb{T}^d)\to L_2(\mathbb{T}^d))}{(\log n)^{s(d-1)}}=\left[\frac{2^d}{(d-1)!}\right]^s$$

implies the following

Theorem (CKS 2014, asymptotic constants - mixed spaces)

Let $d \in \mathbb{N}$, s > 1/2 and 0 . Then

$$\lim_{n \to \infty} \frac{n^{s-1/2} a_n(I_d : H^{s,p}_{mix}(\mathbb{T}^d) \to L_{\infty}(\mathbb{T}^d))}{(\log n)^{s(d-1)}} = \frac{1}{\sqrt{2s-1}} \left[\frac{2^d}{(d-1)!} \right]^s$$

• Again: shift in the exponent by $\frac{1}{2}$ and additional correction factor.

Open problems

Open problems for 'our' Hilbert spaces $F_d(w)$

- Approximation with respect to L_p -norms, $1 \le p \ne 2 < \infty$?
- Preasymptotic estimates for L_{∞} -approximation ?

Open problems for other spaces

- Sharp constants for approximation numbers and preasymptotic estimates
 - non-periodic Sobolev spaces $H^s([0,1]^d)$
 - Sobolev spaces $W_p^s(\Omega)$ with $p \neq 2$ (non-Hilbert case)
 - Besov spaces $B_{p,q}^s(\Omega)$

Thank you for your attention!