
Approximation of Sobolev-type embeddings
Recent results and open problems

Thomas Kühn
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Subject of the talk

Approximation of functions on the d-dimensional torus Td

Functions: from quite general spaces, including e.g. classical Sobolev
spaces (isotropic, dominating mixed smoothness,...)

Quality of approximation: expressed via approximation numbers

Error: with respect to the L2-norm or the sup-norm

Special emphasis on

Optimal asymptotic rates and sharp constants

Preasymptotic estimates

This subject is related to

Functional Analysis, Approximation Theory, Numerical Analysis,...
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The talk is based on the following recent papers

T. Kühn, W. Sickel and T. Ullrich, Approximation numbers of
Sobolev embeddings – Sharp constants and tractability,
J. Complexity 30 (2014), 95–116.

T. Kühn, W. Sickel and T. Ullrich, Approximation of mixed order
Sobolev functions on the d-torus – Asymptotics, preasymptotics and
d-dependence, Constr. Approx. 42 (2015), 353–398.

F. Cobos, T. Kühn and W. Sickel, Optimal approximation of
multivariate periodic Sobolev functions in the sup-norm, J. Funct.
Anal. 270 (2016), 4196–4212.

T. Kühn, S. Mayer and T. Ullrich, Counting via entropy: New
preasymptotics for the approximation numbers of Sobolev
embeddings, SIAM J. Numer. Anal. 54 (2016), 3625–3647.

T. Kühn and M. Petersen, Approximation in periodic Gevrey spaces,
in progress
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Approximation numbers

For (bounded linear) operators T : X → Y between two Banach
spaces the approximation numbers are defined as

an(T : X → Y ) := inf{‖T − A‖ : rankA < n}

lim
n→∞

an(T ) = 0 =⇒ T compact

⇐= fails by Enflo’s counter-example

Rate of decay of an(T ) describes the ’degree’ of compactness of T

For compact operators between Hilbert spaces

an(T ) = sn(T ) =
√
λn(T ∗T ) = n-th singular number
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Interpretation in Numerical Analysis

Every operator A : X → Y of finite rank n can be written as

Ax =
n∑

j=1

Lj(x) yj for all x ∈ X

with linear functionals Lj ∈ X ′ and vectors yj ∈ Y .
y A is a linear algorithm using n arbitrary linear informations

worst-case error of the algorithm A

errwor (A) := sup
‖x‖≤1

‖Tx − Ax‖ = ‖T − A‖

n-th minimal worst-case error of the problem T
(with respect to linear algorithms and arbitrary linear information)

errworn (T ) := inf
rankA≤n

errwor (A) = an+1(T )
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Sobolev embeddings

Well-known

– For isotropic Sobolev spaces on the d-dimensional torus Td

cs,d · n−s/d ≤ an(Id : Hs(Td)→ L2(Td)) ≤ Cs,d · n−s/d

– For Sobolev spaces of dominating mixed smoothness

cs,d ·
[

(log n)d−1

n

]s
≤ an(Id : Hs

mix(Td)→ L2(Td)) ≤ Cs,d ·
[

(log n)d−1

n

]s
Almost nothing known

How do the constants cs,d and Cs,d depend on s and d ???

This is essential for high-dimensional numerical problems, and
also for tractability questions in information-based complexity.
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Some remarks

Of course, the constants heavily depend on the chosen norms.

y First we have to fix (somehow natural) norms.
For all our norms, we will have norm one embeddings into L2(Td).

For example, for smoothness s = 1, the asymptotic rates are

αn := n−1/d and βn :=
(log n)d−1

n
.

In high dimensions, one has to wait exponentially long until these
rates become visible, as one can see from the following examples.

Isotropic case.
n = 10d (very large) y αn = 1

10 (poor error estimate)

Mixed case. (Dimension d + 1)
Even worse, n = dd y βn = (log d)d � 1 (trivial estimate)

y We need precise information on the constants and
preasymptotic estimates (for small n, say n ≤ 2d)
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Periodic function spaces

The Fourier coefficients of a function f ∈ L2(Td) on the
d-dimensional torus Td = [0, 2π]d are

ck(f ) :=
1

(2π)d

∫
Td

f (x)e−ikxdx , k ∈ Zd

Given any weights w(k) > 0, we define Fd(w) as the space of all
f ∈ L2(Td) such that

‖f |Fd(w)‖ :=
( ∑

k∈Zd

w(k)2|ck(f )|2
)1/2

<∞ .

There are compact embeddings

Fd(w) ↪→ L2(Td) ⇐⇒ lim
|k|→∞

1/w(k) = 0

Fd(w) ↪→ L∞(Td) ⇐⇒
∑
k∈Zd

1/w(k)2 <∞ .
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Isotropic periodic Sobolev spaces, integer smoothness

The Sobolev space Hm(Td), m ∈ N, consists of all f ∈ L2(Td) such
that the following (equivalent!) norms are finite.

Natural norm (all partial derivatives)

‖ f |Hm(Td)‖ :=
( ∑
|α|≤m

‖Dαf |L2(Td)‖2
)1/2

Modified natural norm (only highest derivatives in each coordinate)

‖ f |Hm(Td)‖∗ :=
(
‖ f |L2(Td)‖2 +

d∑
j=1

∥∥∥ ∂mf
∂xmj

∣∣∣L2(Td)
∥∥∥2)1/2
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Norms via Fourier coefficients

These norms can be rewritten in terms of Fourier coefficients, using
Parseval’s identity and ck(Dαf ) = (ik)αck(f ).

For the natural norm one has

‖ f |Hm(Td)‖ ∼

∑
k∈Zd

(
1 +

d∑
j=1

|kj |2
)m
|ck(f )|2

1/2

with equivalence constants independent on d .

For the modified natural norm one has even equality

‖ f |Hm(Td)‖∗ =

∑
k∈Zd

(
1 +

d∑
j=1

|kj |2m
)
|ck(f )|2

1/2

.
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Fractional smoothness s > 0

Let s > 0, d ∈ N and 0 < p ≤ ∞.

Hs,p(Td) consists of all f ∈ L2(Td) such that

‖f |Hs,p(Td)‖ :=
( ∑

k∈Zd

ws,p(k)2|ck(f )|2
)1/2

<∞ ,

where the weights are ws,p(k) :=
(

1 +
d∑

j=1
|kj |p

)s/p
.

For fixed s > 0 and d ∈ N, all these norms are equivalent.
Clearly, the equivalence constants depend on d .
But all spaces Hs,p(Td), 0 < p ≤ ∞, coincide as vector spaces.

These spaces are of the general form Fd(w).
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Relation to the classical norms

For the natural norm we have equivalence

‖ f |Hm(Td)‖ ∼ ‖ f |Hm,2(Td)‖

with equivalence constants independent on d .

For the modified natural norm one has even equality

‖ f |Hm(Td)‖∗ = ‖ f |Hm,2m(Td)‖
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Sobolev spaces of dominating mixed smoothness

Let s > 0, d ∈ N and 0 < p ≤ ∞.

Hs,p
mix(Td) consists of all f ∈ L2(Td) such that

‖f |Hs,p(Td)‖ :=
( ∑

k∈Zd

wmix
s,p (k)2|ck(f )|2

)1/2
<∞ ,

where the weights are now wmix
s,p (k) :=

d∏
j=1

(1 + |kj |p)s/p .

For integer smoothness s ∈ N, all Hs,p
mix(Td), 0 < p ≤ ∞, coincide

with the classical Sobolev space of dominating mixed smoothness

Hs
mix(Td) = {f ∈ L2(Td) : Dαf ∈ L2(Td) ∀α ∈ {0, 1, ..., s}d}

The parameter p indicates which of the equivalent norms we are using.
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Reduction to sequence spaces

Fd(w) L2(Td)

`2(Zd) `2(Zd)

Id

A

D

B

Af := (w(k) ck(f ))k∈Zd , Bξ :=
∑

k∈Zd

ξk e
ikx , D(ξk) := (ξk/w(k))

Let (σn)n∈N is the non-increasing rearrangement of (1/w(k))k∈Zd

A and B are unitary operators y an(Id) = an(D) = sn(D) = σn
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Isotropic Sobolev spaces

Hs,p(Td) = Fd(w) with w(k) =
(
1 +

d∑
j=1
|kj |p

)s/p
.

y (σn)n attains the values (1 + rp)−s/p, r ∈ N,
but each of them at least 2d times.

Define N(r , d) := card{k ∈ Zd :
∑d

j=1 |kj |p ≤ rp} .

Lemma

If N(r − 1, d) < n ≤ N(r , d), then

an(Id : Hs,p(Td)→ L2(Td)) = (1 + rp)−s/p .

In principle, this gives an(Id) for all n, but the exact computation of
the cardinalities N(r , d) is impossible. The hard work is to find good
estimates, using combinatorial and volume arguments.
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Asymptotic constants, n→∞

Let Bd
p denote the unit ball in (Rd , ‖.‖p). Using volume estimates,

we can show the existence of asymptotically optimal constants.

Theorem (KSU 2014)

Let 0 < s, p <∞ and d ∈ N. Then

lim
n→∞

ns/d an(Id : Hs,p(Td)→ L2(Td)) = vol(Bd
p )s/d ∼ d−s/p

The asymptotic constant is of order
d−s/2 for the natural norm (p = 2),
d−1/2 for the modified natural norm (p = 2s) .

We get the correct order n−s/d of the an in n and the
exact decay rate d−s/p of the constants in d .

Polynomial decay in d of the constants helps in error estimates!
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Estimates for large n

Theorem (KSU 2014, case p = 1)

Let s > 0 and n ≥ 6d/3. Then

d−sn−s/d ≤ an(Id : Hs,1(Td)→ L2(Td)) ≤ (4e)sd−sn−s/d .

We have similar estimates for all other 0 < p <∞ ,
but for p = 1 the constants are nicer.

Note the correct d-dependence d−s of the constants!

Proof: via combinatorial estimates of the cardinalities N(r , d)
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Preasymptotic estimates – small n

Theorem (KSU 2014)

Let p = 1 and 2 ≤ n ≤ 2d . Then( 1

2 + log2 n

)s
≤ an(Id : Hs,1(Td)→ L2(Td)) ≤

( log2(2d + 1)

log2 n

)s .
Using a relation to entropy numbers,
– the gap between lower and upper bounds was closed
– arbitrary p’s could be treated, shows the influence of the norm

Theorem (KMU 2016)

Let s > 0, 0 < p <∞ and 2 ≤ n ≤ 2d . Then

an(Id : Hs,p(Td)→ L2(Td)) ∼
( log2(1 + d/ log2 n))

log2 n

)s/p
.

(We have explicit expressions for the hidden constants.)
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Sobolev spaces of dominating mixed smoothness

Same strategy as for isotropic spaces, but the combinatorial estimates
are more complicated.

Theorem (KSU 2015 - optimal asymptotic constants)

Let s > 0 and d ∈ N. Then, for all 0 < p <∞, it holds

lim
n→∞

nsan(Id : Hs,p
mix(Td)→ L2(Td))

(log n)s(d−1)
=

[
2d

(d − 1)!

]s

Interesting fact: For all 0 < p <∞ the limit is the same.

The asymptotic constant decays super-exponentially in d .
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Preasymptotic estimates, small n

Theorem (KSU 2015)

Let s > 0 and d ∈ N, d ≥ 2. Then, for 9 ≤ n ≤ d 22d−1, it holds

an(Id : Hs,1
mix(Td)→ L2(Td)) ≤

(
e2

n

) s
2+log2 d

The bound is non-trivial in the given range, since n ≥ 9 > e2.

We have also similar (non-matching) lower estimates.
But they show, that one has to wait exponentially long until one can
”see” the correct asymptotic rate n−s , ignoring the log-terms.
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Approximation in the sup-norm

It is well-known that

Hs(Td) ↪→ L∞(Td) ⇐⇒ s >
d

2

Hs
mix(Td) ↪→ L∞(Td) ⇐⇒ s >

1

2

The asymptotic behaviour of the approximation numbers is also
well-known, up to multiplicative constants,

an(Id : Hs(Td)→ L∞(Td)) ∼ nd/2−s

an(Id : Hs
mix(Td)→ L∞(Td)) ∼ n1/2−s(log n)s(d−1)

Problem. Find estimates for the hidden constants and the families of
norms, with parameters 0 < p <∞.
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From L2-approximation to L∞-approximation

More general: Fd(w) ↪→ L∞(Td)⇐⇒
∑

k∈Zd

1/w(k)2 <∞.

In this case, the embedding is even compact.

Theorem (CKS 2016)

Let Fd(w) ↪→ L∞(Td). Then

an(Id : Fd(w)→ L∞(Td)) =
( ∞∑
j=n

aj(Id : Fd(w)→ L2(Td))2
)1/2

– Upper estimate by factorization of Id : Fd → L∞(Td) through a
diagonal operator D : `2 → `1, and known results for an(D)
– Lower estimate via absolutely 2-summing operators

L2-approximation can be ”translated” into L∞-approximation!
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Application to isotropic Sobolev spaces

The relation

lim
n→∞

ns/dan(Id : Hs,p(Td)→ L2(Td)) = vol(Bd
p )s/d

implies

Theorem (CKS 2016, asymptotic constants - isotropic spaces)

Let d ∈ N, s > d/2 and 0 < p <∞. Then

lim
n→∞

ns/d−1/2an(Id : Hs,p(Td)→ L∞(Td)) =

√
d

2s − d
· vol(Bd

p )s/d

Shift in the exponent of n by 1
2 , additional correction factor

√
d

2s−d .

The same holds for the target space C (Td),
and also for the Wiener algebra A(Td).

Similarly one can translate estimates of an for large n / small n.
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Application to mixed Sobolev spaces

The relation

lim
n→∞

nsan(Id : Hs,p
mix(Td)→ L2(Td))

(log n)s(d−1)
=

[
2d

(d − 1)!

]s
implies the following

Theorem (CKS 2014, asymptotic constants - mixed spaces)

Let d ∈ N, s > 1/2 and 0 < p <∞. Then

lim
n→∞

ns−1/2an(Id : Hs,p
mix(Td)→ L∞(Td))

(log n)s(d−1)
=

1√
2s − 1

[
2d

(d − 1)!

]s
Again: shift in the exponent by 1

2 and additional correction factor.
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Open problems

Open problems for ’our’ Hilbert spaces Fd(w)

Approximation with respect to Lp-norms, 1 ≤ p 6= 2 <∞ ?

Preasymptotic estimates for L∞-approximation ?

Open problems for other spaces

Sharp constants for approximation numbers and
preasymptotic estimates

– non-periodic Sobolev spaces Hs([0, 1]d)

– Sobolev spaces W s
p (Ω) with p 6= 2 (non-Hilbert case)

– Besov spaces Bs
p,q(Ω)
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Thank you for your attention!
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