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Convex Feasibility Problem

@ Numerous problems in mathematics and physical sciences can be recast
as Convex Feasibility Problem:

{Ci}", nonempty closed convex subsets of H Hilbert

| findxe N, G | (CFP)J
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Convex Feasibility Problem

@ Numerous problems in mathematics and physical sciences can be recast
as Convex Feasibility Problem:

{Ci}", nonempty closed convex subsets of H Hilbert

| findxe N, G | (CFP)J

@ broad applicability in different disciplines:

@ image and signal reconstruction (computerized tomography)
Combettes (1996)

‘ Combettes, The Convex Feasibility Problem in Image Recovery, Advances in Imaging and Electron
Physics 95, Academic Press, New York, 1996
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Convex Feasibility Problem

@ Numerous problems in mathematics and physical sciences can be recast
as Convex Feasibility Problem:

{Ci}", nonempty closed convex subsets of H Hilbert

| findxe N, G | (CFP)J

@ widely studied from diverse frameworks:

@ iterative projection methods provided the intersection is nonempty,
Bauschke-Borwein (1996)

@ Bauschke-Borwein, On projection algorithms for solving convex feasibility problems, STAM Rev. 38
(1996), 367-426
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Convex Feasibility Problem

@ Numerous problems in mathematics and physical sciences can be recast
as Convex Feasibility Problem:

{Ci}", nonempty closed convex subsets of H Hilbert

‘ find x € N, C;

(CFP)J

@ widely studied from diverse frameworks:

@ iterative projection methods provided the intersection is nonempty,
Bauschke-Borwein (1996)

@ Bauschke-Borwein, On projection algorithms for solving convex feasibility problems, STAM Rev. 38
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Translation to the product space

H = H x --- x H Hilbert space endowed with the scalar product
N——

m times

m

((x,y)) = ;Wi<xi7)’i>a x,yc€H
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Translation to the product space

H = H x --- x H Hilbert space endowed with the scalar product
N——

m times

m

((x,y)) = ;Wi<xi7)’i>a x,yc€H

Let C=C; x---x Cp ={x € H:x; € C;}, cartesian product of the sets
and D = {(x,--- ,x) € H: x € H}, closed diagonal subspace of H
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Translation to the product space

H = H x --- x H Hilbert space endowed with the scalar product
N——

m times

m

((x,y)) = ;Wi<xi7)’i>a x,yc€H

Let C=C; x---x Cp ={x € H:x; € C;}, cartesian product of the sets
and D = {(x,--- ,x) € H: x € H}, closed diagonal subspace of H

m
Thus CND = {(x,--- ,x) e H:x € N (i}
i=1
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Translation to the product space

H = H x --- x H Hilbert space endowed with the scalar product
N——

m times

<<x,y>>:iw,-<x,-7y,->, xycH

Let C=C; x---x Cp ={x € H:x; € C;}, cartesian product of the sets
and D = {(x,--- ,x) € H: x € H}, closed diagonal subspace of H

m
Thus CND = {(x,--- ,x) e H:x € N (i}
i=1

and in the product space the CFP can be reformulated as finding

| findxe CND | (CFP) |
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Monotropic Programming Problem
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Monotropic Programming Problem

Extended monotropic programming problem:

inf  fi(x1) +f0x2) + - A fn(xm) (P)J
(xlz"‘yxm €S
where f; : X; — R proper convex function, i =1,--- ,m

X; separately locally convex spaces,i=1,--- ,m
S CIT, X; linear closed subspace such that SN[, domf; # 0
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Monotropic Programming Problem

Extended monotropic programming problem:

inf fi(x)+fa(x2) + o+ m) (P)J
(o1, X )ES
where f; : X; — R proper convex function, i =1,--- ,m
X; separately locally convex spaces,i=1,--- ,m
S CIT, X; linear closed subspace such that SN[, domf; # 0
The dual problem is
sup —ff(x]) 5 (53) = =S () <D)J
(XT,--- 7xl*n)€SL

where f*(x*) := sup,.x{ (x*,x) —f(x) } is the Fenchel conjugate function of f
St = {x*: (x*,x) = 0,Vx € S} is the orthogonal subspace of S.
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Monotropic Programming Problem

Extended monotropic programming problem:

inf fi(x) +fa(e2) o Afnlm) = v(P) (P)J

(o1, X )ES

where f; : X; — R proper convex function, i =1,--- ,m

X; separately locally convex spaces,i=1,--- ,m

S CIT, X; linear closed subspace such that SN[, domf; # 0

The dual problem is
sup  —f{(x]) =5 (%) = =) =v(D) <D)J

(fo" 7xrn)esl

where f*(x*) := sup,.x{ (x*,x) —f(x) } is the Fenchel conjugate function of f
St = {x*: (x*,x) = 0,Vx € S} is the orthogonal subspace of S.

the situation v(P) = v(D) is called zero duality gap
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Important results in Monotropic Programming Problems

Rockafellar was the first to prove a zero duality gap result for the original
class of monotropic programs when each space X; is R.

‘ Rockafellar, Network Flows and Monotropic Optimization. Wiley, New York, 1984
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Important results in Monotropic Programming Problems

Rockafellar was the first to prove a zero duality gap result for the original
class of monotropic programs when each space X; is R.

‘ Rockafellar, Network Flows and Monotropic Optimization. Wiley, New York, 1984
Bertsekas generalized Rockafellar’s result to extended monotropic programs

in which the X;’s are finite-dimensional spaces, assuming:

@ f; lower semicontinuous in domf;, foralli=1,--- m,
@ ST +TI", Oefi(x;) closed, Ve > 0, V(x1,- -+, x,) € [T7; domfiNS
where d.f; denotes the e-subdifferential of f;:

_JveH[(vy—x)—e<f(y)—f(x), forallye H} iff(x) ER
Oef (%) '_{ 0 otherwise

‘ Bertsekas, Extended monotropic programming and duality. JOTA. 139, 209-225, 2008
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Important results in Monotropic Programming Problems

Bot and Csetnek extended Bertsekas’ result to the general case:

Zero Duality Gap Theorem ( , 2010)
X; separately locally convex spaces,i=1,---,m
fi : X; — R := (—o0, +-o0] proper convex functions, i = 1,--- ,m

S CIT%, X; linear closed subspace such that [T~ ; domf; NS # 0

g : [T, X; — R defined by g(x1,--- ,x,) = X7, fi(xi),

clf; proper functions and g(x) = clg(x) for all x € domclgN S

St + 117, 9ef;(xi) closed, Ve > 0, V(x1,- -+ ,xy) € [T, domf; NS
then v(P) = v(D).

Q Bot et al., On a zero duality gap result in extended monotropic programming. JOTA 147, 473-482,
2010
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Important results in Monotropic Programming Problems

Bot and Csetnek extended Bertsekas’ result to the general case:

Zero Duality Gap Theorem ( , 2010)
X; separately locally convex spaces,i=1,--- ,m
fi: X; — R := (—o0, +oo| proper convex functions, i =1,--- ,m

S CIT%, X; linear closed subspace such that [T~ ; domf; NS # 0

8 H:n=1 Xi— R defined by g(‘xlﬂ T axm) = Z:nzlf;(xl) @f‘lSC ew
clf; proper functions and g(x) = clg(x) for all x € domclgNS !

ST+ 117, 9ef(x;) closed, Ve > 0, V(x1,- -+ ,xy) € [T, domf; NS
then v(P) = v(D).

‘ Bot et al., On a zero duality gap result in extended monotropic programming. JOTA 147, 473-482,
2010
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Convex Feasibility Problem

Cy, C; closed convex sets in X = H, Hilbert space, C; N C; possibly empty

findxe C,NGC, | ? (CFP)J
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Convex Feasibility Problem

Cy, C; closed convex sets in X = H, Hilbert space, C; N C; possibly empty

| findxeCinG, | 7 (CFP) |

To find a best approximation solution to (CFP) we consider:

;2}; dCl (x) + dcz (x)

Martin-Mérquez (US) Convex Feasibility Problems 10 Marzo 2017 9/23



Convex Feasibility Problem

Cy, C; closed convex sets in X = H, Hilbert space, C; N C; possibly empty

| findxeCinG, | 7 (CFP) |

To find a best approximation solution to (CFP) we consider:

Inf de, (x) +de, (x) = d(C, C)
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Convex Feasibility Problem

Cy, C; closed convex sets in X = H, Hilbert space, C; N C; possibly empty

| findxeCinG, | 7 (CFP) |

To find a best approximation solution to (CFP) we consider:
inf dC1 (X) —|-dc2 (X) = d(C] s C2)
x€H

equivalent to the monotropic optimization problem

inf de, (x)+dc,(y) <P>J
x,y)€S

where § = {(x,y) € H* : x =y}
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Convex Feasibility Problem

Cy, C; closed convex sets in X = H, Hilbert space, C; N C; possibly empty

| findxeCinG, | 7 (CFP) |

To find a best approximation solution to (CFP) we consider:
inf dC1 (X) +dc2 (X) = d(C] s C2)
x€H

equivalent to the monotropic optimization problem

inf de, (x) +dc,(y) <P>J
(x,y)es

where § = {(x,y) € H* : x =y}

fi:=dc,(-) and f> := dc, (-) are convex and continuous everywhere
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Convex Feasibility Problem

monotropic optimization problem

( iIl)decl (x) +dC2 (y)

(P)J
X,y)€E
Then the dual problem of (P) is

sup  —dg, (v) —dg,(w) <D)J
(v,w)est

where St = {(v,w) € H? : v+w =0} and di-(v) = oc(v) + 15(v)

oc(v) :=sup(v,y),
yeC

0 ?fx €B indicator function of the unit ball in H
+oo ifx¢B

support function of C
lB(x) :

Victoria Martin-Mdrquez (US)
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Zero duality gap

(P) and (D) satisfy the zero duality gap property J

Consequence of Bot and Csetnek’s result:

@ (; closed and convex = f; = dc, convex and continuous.
= Thus functions f; satisfy the assumptions of Theorem

@ f; real-valued = Jgf;(x;) (x; € H) nonempty and weakly compact
= St + 1", 9efi(x;) is weakly closed

(every weakly closed convex set is closed for the strong topology)
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Strong duality and optimality conditions

To derive strong duality (existence of a dual solution)

and first order optimality conditions for primal-dual problems (P) and (D)

we use these classical primal-dual problems in Fenchel duality

inf(, e f (x,Y) + 8(x,5) <Po>J

SUP(y e —f (VW) = 8" (=v, —w)

(DO)J
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Strong duality and optimality conditions

To derive strong duality (existence of a dual solution)
and first order optimality conditions for primal-dual problems (P) and (D)

we use these classical primal-dual problems in Fenchel duality

infe e f (,9) +8(x.) Po)|

SUP(y,w)eH? —f* (V,W) - g*(—v, _W) (DO)J

Proposition (Strong duality)

f.,g: H> — R proper and lIsc functions such that ‘ 0 € core(dom g — domf)
Then

infoepf(x) +8(x) = —min,epn f*(v) + ¢"(—v)

core(C) :={xe C : cone(C—x)=H}
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Strong duality and optimality conditions

To derive strong duality (existence of a dual solution)
and first order optimality conditions for primal-dual problems (P) and (D)

we use these classical primal-dual problems in Fenchel duality

infe e f (,9) +8(x.) Po)|

SUP(y,w)eH? —f* (V7W> - g*(—v, _W) (DO)J

Theorem (First order optimality conditions)

f.g: H> — R proper and lIsc functions such that dom g Ndomf # 0
Then the following are equivalent:

(i) (x1,x2) solves (Pg), and (v1,v2) solves (Dy)

(i) (vi,v2) € df (x1,x2) and —(vi,v2) € dg(x1,x2)

Victoria Martin-Mdrquez (US)
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Strong duality and optimality conditions

inf de, (x)+dc,(y) (P)
(x.y)€S
sup —dg, (v) —dg, (w) (D)
(v,w)est
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Strong duality and optimality conditions

inf dc, (x)+dc,(y) (P)
(x.y)€s
sup —dg, (v) —dg, (w) (D)
(v,w)est

Lemma
Defining f(x,y) := d¢, (x) + ts(x,y) and g(x,y) :=dc, (y):

(a) inf(xy)esdc, (x) +dc, (y) = inf(, e f(x,) +8(x,y)

(b) (z1,22) € S solves (P) if and only if (z1,z2) solves (Py)

(©) sup(ywyest —dg, (v) —dg, (w) = sup(, ez =f* (v, w) — g"(=v, —w)
(d) (u,—u) € H?* solves (D) if and only if (0,u) solves (D).

| \
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Strong duality and optimality conditions

inf de, (x)+dc,(y) (P)
(x.y)€S
sup —dg, (v) —dg, (w) (D)
(v,w)est

Proposition
Problems (P) and (D) satisfy strong duality:

| A\,

the dual problem always has a solution.

(x,y) €S
— (u,v) € S+

{ (x,y) primal solution to (P)
u € ddc,(x),v € ddc, (y)

(u,v) dual solution to (D)

Victoria Martin-Mdrquez (US) Convex Feasibility Problems 10 Marzo 2017



Separation of sets

C1, C; are separated if there exist v € H, ||v|| = 1, and § € R such that
C QHVSB ={x€H:(v,x) <5}

(o) QHVZS ={yeH:(v,y)>6}.
The separating hyperplane is H = H, 5 := {x € H : (v,x) = 6 }.
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Separation of sets

C1, C; are separated if there exist v € H, ||v|| = 1, and § € R such that
C QHVSB ={x€H:(v,x) <5}

(o) QHVZS ={yeH:(v,y)>6}.
The separating hyperplane is H = H, 5 := {x € H : (v,x) = §}. This
separation is said to be:
@ proper if C| and C; are not contained in H;
@ nice if the hyperplane H is disjoint from Cj or Cs;
@ strict if the hyperplane H is disjoint from both C; and C»;
@ strong if there exist € > 0 such that C; + €B is contained in one of the
open half-spaces bounded by H and C, + €B is contained in the other;
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Separation of sets

C1, C; are separated if there exist v € H, ||v|| = 1, and § € R such that
C QHVSB ={x€H:(v,x) <5}

(o) QHVZE ={yeH:(v,y)>6}.
The separating hyperplane is H = H, 5 := {x € H : (v,x) = §}. This
separation is said to be:
@ proper if C| and C; are not contained in H;
@ nice if the hyperplane H is disjoint from Cj or Cs;
@ strict if the hyperplane H is disjoint from both C; and C»;
@ strong if there exist € > 0 such that C; + €B is contained in one of the
open half-spaces bounded by H and C, + €B is contained in the other;

Standard Separation Theorem
C1 and C; nonempty convex sets such that int C; # 0

properly separated < (int C;)NCr =0
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Consistency of CFP and the optimal dual values

The dual problem (D):
sup — de,(v) —dg,(—=v) = sup — [oc, (v) +18(v)] — [0c, (=) +18(—V)]
= Ssup —Og (V) - Gcz(_v)
IvlI<t
= max sup —og,(v) — Gy (=)
1€[0,1] |y =
= —min inf oc¢,(v)+oc,(—v)
t€[0,1] [v[I<t
(1)
= — min {rd(1
min, {ro(1)}
- —o(1)(>0) ifd(l) <0,
- 0 if ®(1)=0.
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Consistency of CFP and the optimal dual values

The dual problem (D):
sup — de,(v) —dg,(—=v) = sup — [oc, (v) +18(v)] — [0c, (=) +18(—V)]

= Ssup —Og (V) - Gcz(_v)

IvlI<t
= max sup —og,(v) — Gy (=)

1€[0,1] |y =
= —min inf oc¢,(v)+oc,(—v)

t€[0,1] [v[I<t

D(1)
= — min {rd(1
min, {ro(1)}
—o(1)(>0) ifd(l) <0,

- 0 if ®(1)=0.

By studying the values of ®(1), we can obtain information about C; N Cy.
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Consistency of CFP and the optimal dual values

The dual problem (D):
sup — de,(v) —dg,(—=v) = sup — [oc, (v) +18(v)] — [0c, (=) +18(—V)]

= Ssup —Og¢, (V) - Gcz(_v)

IvlI<t
— max sup —oc,(v) — 0cy(—)

1€l01] Jy)|=r
= —min inf oc¢,(v)+oc,(—v)

ref0,1] [vlI<t

(1)
= — min {rd(1
lg[gg]{ (D}
—o(1)(>0) ifd(l) <0,

- 0 ifd(1)=0.

By studying the values of ®(1), we can obtain information about C; N Cy.

The key point is the relation between @ and the infimal convolution of the
support functions
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Consistency of CFP and the optimal dual values

(0c,0oc,)(0) = infien{oc, (v) +0c,(—v)}
inf;~q inf\|v||§t {Gcl (V) + O¢, (—v)}
= infyyg t(b( 1 ) .
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Consistency of CFP and the optimal dual values

(0c,0oc,)(0) = infien{oc, (v) +0c,(—v)}
inf;~q ianVHSl {Gcl (v) + O¢, (—V)}
= infyyg tq)( 1 ) .

1. If ®(1) <0, then|C;NC, =0

Cj and C; are strongly separated
2. If®(1)=0:
2.1 If (o¢,dog, )(-) is not lower-semicontinuous at 0 then .

Cj and C; are separated but not strongly

2.2 If (o¢,0oc, )(+) is lower-semicontinuous at O then | C; NC, # 0|,
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Separation of sets

° &(1)<0:

Strong sepa\ration
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Separation of sets

® P(1)<0: B / \\
Strong sepa\ration
e &(1)=0:
C
e (o¢,0oc,)(0) not Isc / c
Nice separation Strict separation
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Separation of sets

® P(1)<0: ‘
Strong separation
e &(1)=0:
C
o (6¢,00¢,)(0) not Isc / c
Nice separation Strict separation
@ (0¢,Uog,)(0) Isc
_ Cz
No nice separation No separation
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Characterization of C; — C;

The value of ®(1) in the dual problem (D) characterizes also the Minkowski
difference set

C,—Cy:={x—yeH:xe€Cyye Ci}.

Theorem

(i) @(1) < 0if and only if 0 ¢ C, — C; the closure of C, — C;.

(i) @(1) =0and (o¢,doc,)(0) not Isc if and only if 0 € Bd (C, — Cy), the
boundary of C, — Cj.

(iii) @(1) =0 and (o¢,0oc,)(0) Isc if and only if O € int (C, — C}), the
interior of C; — Cj.

Victoria Martin-Mdrquez (US)
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Lower semicontinuity of infimal convolution
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Lower semicontinuity of infimal convolution

Geometric Condition for the lower semicontinuity of the infimal convolution:

Corollary

If (o¢,0oc, )(0) > —eo then (0,0, ) is proper, and the following
statements are equivalent and satisfied:

(i) CiNGCy #0,
(i) (oc,0Ooc,) islscat 0,
(iii) {0} xRN epi (o¢,0oc,) = {0} xR+
Consequently, if epi o¢, + epi O, is closed, then C; N C, # 0.
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Consistency of CFP and dual solutions

We have seen that
@ (D) always has a solution.
@ If v(D) is positive then CFP has no solution (strong separation).

@ If v(D) = 0, CFP may or may not have solution.

Martin-Mérquez (US) Convex Feasibility Problems 10 Marzo 2017 20/23



Consistency of CFP and dual solutions

We have seen that
@ (D) always has a solution.
@ If v(D) is positive then CFP has no solution (strong separation).
@ If v(D) = 0, CFP may or may not have solution.

The following result gives us information about consistency of the CFP when
v(D) = 0.
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Consistency of CFP and dual solutions

We have seen that
@ (D) always has a solution.
@ If v(D) is positive then CFP has no solution (strong separation).
@ If v(D) = 0, CFP may or may not have solution.
The following result gives us information about consistency of the CFP when
v(D) = 0.
Corollary
Assume that v(D) =0

(a) v =0 unique solution to the dual problem (D) < C;NC; # 0.

(b) The dual problem (D) has multiple solutions < C;NCy = 0.

In this situation, every nonzero dual solution induces a separation of the
sets.
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Consistency of CFP and primal solutions
Assume that problem (P) has a solution

we study the set C; N C; in terms of the location of the solutions

For that the subdifferential of the distance function d¢ is given by

0 if x €intC,
N, xﬂB ifxeBd C,
ifx¢ C,

||x Pc( )l

where Pc¢(x) is the metric projection of x onto C.
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Consistency of CFP and primal solutions
Assume that problem (P) has a solution

we study the set C; N C; in terms of the location of the solutions

For that the subdifferential of the distance function d¢ is given by

0 if x €intC,
N, xﬁB ifxeBd C,
ifx¢ C,

||x Pc( )l

where Pc¢(x) is the metric projection of x onto C.

(@) infren [|Pc, (x) = P, (x)[| = d(C1, Cr).
(b) The set of solutions of (P) is the set

sol(P) = {x € H : d(C1,C2) = ||Pe, (x) - Pe, ).

Victoria Martin-Mdrquez (US)
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Consistency of CFP and primal solutions

Corollary

Assume that d(Cy, C,) = 0. In this situation, the following statements are
equivalent.

(i) (P) has no solutions.
(i) 0ecl(Cr—C2)\ (C1—Ca).
(i) oc,0o¢, is not Isc at 0.
(iv) CiNnC, =0
(v) {0} x R__n epi (o¢,0oc,) # 0.

22/23
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