Some open problems in Banach Space Theory

A. J. Guirao¹, V. Montesinos¹, V. Zizler²

¹Instituto de Matemática Pura y Aplicada, Universitat Politècnica de València, Spain MICINN and FEDER Projects MTM2014-57838-C2-1-P, MTM2014-57838-C2-2-P, 19368/PI/14
²University of Alberta, Edmonton, Alberta, Canada

> XIII Encuentro Red de Análisis Funcional Cáceres, 9-11 Marzo 2017

References I

- A. J. Guirao, V. Montesinos, and V. Zizler. Open Problems in the Geometry and Analysis of Banach spaces Springer-Verlag, 2016.
- M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler. Banach Space Theory: the Basis for Linear and Non-Linear Analysis Springer-Verlag, New York, 2011.

 $C \subset X$ Chebyshev $\forall x \in X \exists ! p_C(x) \in C$ at minimum distance from x.

 $C \subset X$ Chebyshev $\forall x \in X \exists ! p_C(x) \in C$ at minimum distance from x.

 $C \subset X$ Chebyshev $\forall x \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Note that Chebyshev \Rightarrow closed.

 $C \subset X$ Chebyshev $\forall x \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Note that Chebyshev \Rightarrow closed.

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev \Leftrightarrow closed convex (and P_C is continuous).

 $C \subset X$ Chebyshev $\forall x \in X \exists ! p_C(x) \in C$ at minimum distance from x.

Note that Chebyshev \Rightarrow closed.

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev \Leftrightarrow closed convex (and P_C is continuous). Easy: X (R) and reflexive \Leftrightarrow every closed convex set $C \subset X$ is Chebyshev.

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

[Bunt'1934, Motzkin'1935, et alt.] X Euclidean plane, then C Chebyshev = closed convex (and P_C is continuous).

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Remark The centers form a (nonconvex) Chebyshev set.

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

[V. Klee'1961] $C \subset \ell_2$ w-closed Chebyshev, then C convex (true for X uniformly convex or uniformly smooth).

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Equivalent problem

 $\exists S$ not singleton $S \subset \ell_2$ st every $x \in \ell_2$ has farthest point in S?

Problem

C Chebyshev in $\ell_2 \Rightarrow C$ convex?

Equivalent problem

 $\exists S$ not singleton $S \subset \ell_2$ st every $x \in \ell_2$ has farthest point in S?

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

Loc. unif. rotunf (LUR)

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

Theorem (Lau'1975)

 $S \subset X$ w-compact. Then $\{x \in X : x \text{ has farthest in } S\} \supset G_{\delta}$ dense.

We gave (with P. and V. Zizler) an alternative, much easier, proof in 2011.

Chebyshev sets

X smooth (i.e., Gâteaux differentiable) finite-dimensional. Then C Chebyshev implies convex, and p_C continuous.

Chebyshev sets

X smooth (i.e., Gâteaux differentiable) finite-dimensional. Then C Chebyshev implies convex, and p_C continuous.

Problem

C Chebyshev in *X* smooth \Rightarrow *C* convex?

Chebyshev sets

X smooth (i.e., Gâteaux differentiable) finite-dimensional. Then C Chebyshev implies convex, and p_C continuous.

Problem

C Chebyshev in *X* smooth \Rightarrow *C* convex?

Theorem (Vlasov'1970)

X such that X^* rotund. *C* Chebyshev, p_C continuous. Then *C* convex.

Tiling of $X: X = \bigcup S_{\gamma}, \emptyset \neq \text{int} S_{\gamma}$ pairwise disjoint.

Tiling of $X: X = \bigcup S_{\gamma}, \emptyset \neq \text{int} S_{\gamma}$ pairwise disjoint.

(M.C. Escher)

Tiling of $X: X = \bigcup S_{\gamma}$, $\emptyset \neq \text{int} S_{\gamma}$ pairwise disjoint.

Recall the construction of Klee:

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Tiling of X: $X = \bigcup S_{\gamma}$, $\emptyset \neq \text{int} S_{\gamma}$ pairwise disjoint.

Recall the construction of Klee:

Theorem (V. Klee'1961)

If $\#\Gamma = c$, then $\ell_1(\Gamma)$ can be covered by pairwise disjoint shifts of its closed unit ball.

Problem

[Fonf, Lindenstrauss] \exists reflexive X tiled by shifts of a single closed convex S with nonempty interior?

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

The converse is not true (Klee, Troyanski).

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

The converse is not true (Klee, Troyanski).

Theorem (Guirao-M-Zizler'2012)

X nonreflexive, $X \subset WCG$, then $\exists \| \cdot \| LUR$, Gâteaux, $\| \cdot \| ^*$ not rotund. If moreover, X Asplund, then $\| \cdot \|$ even Fréchet, and $w = w^*$ on dual sphere.

Theorem (Šmulyan)

X* rotund, then X Gâteaux.

The converse is not true (Klee, Troyanski).

Theorem (Guirao-M-Zizler'2012)

X nonreflexive, $X \subset WCG$, then $\exists \| \| \cdot \| \| LUR$, Gâteaux, $\| \| \cdot \| \|^*$ not rotund. If moreover, *X* Asplund, then $\| \| \cdot \| \|$ even Fréchet, and $w = w^*$ on dual sphere.

Problem

[Troyanski] X (uncountable) unconditional basis and Gâteaux norm. Has X^* dual rotund renorming?

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ w^* -linearly dense is called Markushevich basis (M-basis).

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ w^* -linearly dense is called Markushevich basis (M-basis).

Theorem (Markushevich'1943)

Every separable Banach space has an M-basis

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ *w**-linearly dense is called Markushevich basis (M-basis).

Theorem (Markushevich'1943)

Every separable Banach space has an M-basis (even a norming M-basis).

M-bases

X Banach. $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ biorthogonal, $\{x_{\gamma}\}$ linearly dense, $\{x_{\gamma}^*\}$ w^* -linearly dense is called Markushevich basis (M-basis).

Theorem (Markushevich'1943)

Every separable Banach space has an M-basis (even a norming M-basis). If X separable Asplund, even a shrinking M-basis.

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $||x_{\gamma}|| . ||x_{\gamma}^*|| \le K$ for all γ .

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $\|x_{\gamma}\| \|x_{\gamma}^*\| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $\|x_{\gamma}\| \|x_{\gamma}^*\| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis.

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $\|x_{\gamma}\| \|x_{\gamma}^*\| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis. His argument works only for strong M-bases.

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $\|x_{\gamma}\| \|x_{\gamma}^*\| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis. His argument works only for strong M-bases. For general M-bases we proved:

Theorem (Hájek-M.'2010)

X with M-basis, $\varepsilon > 0$, then *X* has a $(2(1 + \sqrt{2}) + \varepsilon)$ -bounded M-basis (and keeping the spans).

An M-basis $\{x_{\gamma}, x_{\gamma}^*\}$ is (K-) bounded if $\|x_{\gamma}\| \|x_{\gamma}^*\| \le K$ for all γ .

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

[Plichko'1979] claimed X with M-basis \Rightarrow has a bounded M-basis. His argument works only for strong M-bases. For general M-bases we proved:

Theorem (Hájek-M.'2010)

X with M-basis, $\varepsilon > 0$, then *X* has a $(2(1 + \sqrt{2}) + \varepsilon)$ -bounded M-basis (and keeping the spans).

Problem

Can the constant be diminished to $2 + \varepsilon$, for all $\varepsilon > 0$?

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $\|x_{\gamma}\| = \|x_{\gamma}^*\| = 1$ for all $\gamma \in \Gamma$.

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $\|x_{\gamma}\| = \|x_{\gamma}^*\| = 1$ for all $\gamma \in \Gamma$.

Theorem (Auerbach)

X finite-dimensional. Then X has an Auerbach basis

Theorem (Pełczyński'1976, Plichko'1977)

X separable, $\varepsilon > 0$. Then $\exists (1 + \varepsilon)$ -bounded (countable) *M*-basis, i.e., $||x_n|| \cdot ||x_n^*|| < 1 + \varepsilon$ for all $n \in \mathbb{N}$.

X Banach, $\{x_{\gamma}, x_{\gamma}^*\}_{\gamma \in \Gamma}$ M-basis is Auerbach if $||x_{\gamma}|| = ||x_{\gamma}^*|| = 1$ for all $\gamma \in \Gamma$.

Theorem (Auerbach)

X finite-dimensional. Then X has an Auerbach basis

Problem

[Pełczyński] X separable. Does X has an Auerbach basis?

Problem

[Pełczyński] X separable. Does X has an Auerbach basis?

Theorem (Day)

Every infinite-dimensional Banach has an infinite-dimensional subspace with Auerbach basis.

```
X Banach. N \subset X^* is norming (1-norming) if |||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\} is an equivalent norm (is the original norm).
```

```
X Banach. N \subset X^* is norming (1-norming) if |||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\} is an equivalent norm (is the original norm).
```

Natural examples:

 \bigcirc $X \subset X^{**}$ is 1-norming for X^* .

X Banach. $N \subset X^*$ is norming (1-norming) if $|||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\}$ is an equivalent norm (is the original norm).

Natural examples:

- \bigcirc $X \subset X^{**}$ is 1-norming for X^* .
- ② If $x^{**} \in X^{**} \setminus X$ then $\ker x^{**} \subset X^{*}$ is norming.

X Banach. $N \subset X^*$ is norming (1-norming) if $|||x||| := \sup\{\langle x, x^* \rangle : x^* \in N, ||x^*|| \le 1\}$ is an equivalent norm (is the original norm).

Natural examples:

- \bigcirc $X \subset X^{**}$ is 1-norming for X^* .
- ② If $x^{**} \in X^{**} \setminus X$ then $\ker x^{**} \subset X^{*}$ is norming.
- If $\{e_n; e_n^*\}$ is a Schauder basis, then $\overline{\operatorname{span}}\{e_n^*\}$ is norming.

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and \overline{RNK} = sequential closure (RNK).

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and \overline{RNK} = sequential closure (RNK).

Theorem (Guirao-M-Zizler, 2015)

X Banach (B_{X^*}, w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and \overline{RNK} = sequential closure (RNK).

Theorem (Guirao-M-Zizler, 2015)

X Banach (B_{X^*}, w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

(i) $(X, \mu(X, Y))$ complete.

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and \overline{RNK} = sequential closure (RNK).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*} , w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

- (i) $(X, \mu(X, Y))$ complete.
- (ii) (Y, w*) Mazur.

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and \overline{RNK} = sequential closure (RNK).

Theorem (Guirao–M–Zizler, 2015)

X Banach (B_{X^*} , w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

- (i) $(X, \mu(X, Y))$ complete.
- (ii) (Y, w*) Mazur.
- (iii) Y norming.

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and $\overline{RNK} =$ sequential closure (RNK).

Theorem (Guirao-M-Zizler, 2015)

X Banach (B_{X^*} , w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

- (i) $(X, \mu(X, Y))$ complete.
- (ii) (Y, w*) Mazur.
- (iii) Y norming.

Example [Bonet–Cascales (answering Kunze–Arendt)]:

$$X := \ell_1[0,1], Y := C[0,1]. \mu(X,Y)$$
 non-complete.

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and $\overline{RNK} =$ sequential closure (RNK).

Theorem (Guirao-M-Zizler, 2015)

X Banach (B_{X^*} , w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

- (i) $(X, \mu(X, Y))$ complete.
- (ii) (Y, w*) Mazur.
- (iii) Y norming.

Example [Bonet–Cascales (answering Kunze–Arendt)]:

$$X := \ell_1[0,1], \ Y := C[0,1]. \ \mu(X,Y)$$
 non-complete.

[Davis–Lindenstrauss'72] If X^{**}/X infinite-dimensional, then \exists w^* -dense non-norming subspace.

A space T is angelic (Fremlin) if all RNK $\subset T$ are RK and \overline{RNK} = sequential closure (RNK).

Theorem (Guirao-M-Zizler, 2015)

X Banach (B_{X^*} , w^*) angelic, $Y \subset X^*$ w^* -dense, $\|\cdot\|$ -closed subspace. TFAE:

- (i) $(X, \mu(X, Y))$ complete.
- (ii) (Y, w*) Mazur.
- (iii) Y norming.

Example [Bonet–Cascales (answering Kunze–Arendt)]: $X := \ell_1[0, 1], Y := C[0, 1], \mu(X, Y)$ non-complete.

[Davis–Lindenstrauss'72] If X^{**}/X infinite-dimensional, then \exists w^* -dense non-norming subspace. Then there are plenty of counterexamples.

X separable Asplund.

X separable Asplund. Then X has a norm with no proper closed 1-norming subspace

X separable Asplund. Then X has a norm with no proper closed 1-norming subspace (any Fréchet norm).

X separable Asplund. Then X has a norm with no proper closed 1-norming subspace (any Fréchet norm).

X separable Asplund. Then X has a norm with no proper closed 1-norming subspace (any Fréchet norm).

Problem [Godefroy-Kalton]

X non-separable Asplund. $\exists \| \cdot \|$ with no proper closed 1-norming subspace?

X separable Asplund. Then X has a norm with no proper closed 1-norming subspace (any Fréchet norm).

Problem [Godefroy-Kalton]

X non-separable Asplund. $\exists \| \cdot \|$ with no proper closed 1-norming subspace?

Every non-reflexive space has a proper closed norming subspace (the kernel of $x^{**} \in (X^{**} \setminus X)$).

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\operatorname{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\operatorname{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable *X* has a norming M-basis.

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\operatorname{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable *X* has a norming M-basis.

Problem [K. John]

X WCG. Does it has a norming M-basis?

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\operatorname{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable *X* has a norming M-basis.

Problem [K. John]

X WCG. Does it has a norming M-basis?

Theorem (Troyanski)

∃ WCG without 1-norming M-basis.

Norming M-bases

An M-basis $\{e_{\gamma}; e_{\gamma}^*\}$ is norming whenever $\overline{\operatorname{span}}\{e_{\gamma}^*: \gamma \in \Gamma\}$ is norming.

Every separable *X* has a norming M-basis.

Problem [K. John]

X WCG. Does it has a norming M-basis?

Theorem (Troyanski)

∃ WCG without 1-norming M-basis.

Problem [Godefroy]

X Asplund with norming M-basis. Is X WCG?

Problem

X** WCG. Is X WCG?

Problem

 X^{**} WCG. Is X WCG?

Theorem (Rosenthal'1974)

WCG is not hereditary.

Problem

X** WCG. Is X WCG?

Theorem (Rosenthal'1974)

WCG is not hereditary. The example is a C(K) space.

Problem

X** WCG. Is X WCG?

Theorem (Rosenthal'1974)

WCG is not hereditary. The example is a C(K) space.

Problem [Fabian]

Characterize K compact st C(K) hereditary WCG.

Fréchet norm then X Asplund.

Fréchet norm then X Asplund.

Fréchet norm then *X* Asplund. Lipschitz Fréchet bump then *X* Asplund.

Fréchet norm then *X* Asplund. Lipschitz Fréchet bump then *X* Asplund.

Problem

X Asplund.

Fréchet norm then *X* Asplund. Lipschitz Fréchet bump then *X* Asplund.

Problem

X Asplund.

Does there exists a Lipschitz Fréchet bump?

Fréchet norm then *X* Asplund. Lipschitz Fréchet bump then *X* Asplund.

Problem

X Asplund.

Does there exists a Lipschitz Fréchet bump?

Does there exists a Fréchet bump?

Fréchet norm then *X* Asplund. Lipschitz Fréchet bump then *X* Asplund.

Problem

X Asplund.

Does there exists a Lipschitz Fréchet bump?

Does there exists a Fréchet bump?

Problem

X with a Fréchet bump. Does there exists a Lipschitz Fréchet bump?

Problem

X separable, $\ell_1 \not\hookrightarrow X$, is $X^* \langle LUR \rangle$?

Problem

X separable, $\ell_1 \not\hookrightarrow X$, is $X^* \langle LUR \rangle$?

Note that LUR⇒K⇒KK.

Problem

X separable, $\ell_1 \not\hookrightarrow X$, is $X^* \langle LUR \rangle$?

Note that LUR⇒K⇒KK.

Problem

X separable, $\ell_1 \not\hookrightarrow X$, is $X^* \langle LUR \rangle$?

Note that LUR⇒K⇒KK.

Problem [Hájek-Talponen' 2013]

X separable, $\ell_1 \not\hookrightarrow X$, is $X^* \langle KK \rangle$?

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h\in S_X$.

$$\|\cdot\|$$
 is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h\in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

$$\|\cdot\|$$
 is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h\in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

Theorem (Jiménez–Moreno'97)

Under CH, ∃ Asplund X without Mazur Intersection Property

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h\in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

Theorem (Jiménez–Moreno'97)

Under CH, \exists Asplund X without Mazur Intersection Property (Godefroy: with no SSD norm).

 $\|\cdot\|$ is SSD (strongly subdifferentiable) if $\exists \lim_{t\to 0+} (\|x+th\|-\|x\|)/t$ uniformly on $h\in S_X$.

Theorem (Godefroy)

 $X SSD \Rightarrow Asplund.$

Theorem (Jiménez-Moreno'97)

Under CH, \exists Asplund X without Mazur Intersection Property (Godefroy: with no SSD norm).

Problem [Godefroy]

In ZFC, ∃ Asplund with no SSD norm?

Theorem (Godefroy-M-Zizler'94)

X separable. *X* non-Asplund $\Rightarrow \exists \| \cdot \|$ nowhere SSD.

Theorem (Godefroy-M-Zizler'94)

X separable. *X* non-Asplund $\Rightarrow \exists \| \cdot \|$ nowhere SSD.

Problem

X nonseparable non-Asplund. $\exists \| \cdot \|$ nowhere SSD?

Norm-attaining

Theorem (Bishop-Phelps'1961)

X Banach. Then NA(X) is $\|\cdot\|$ -dense in X^* .

Norm-attaining

Theorem (Bishop-Phelps'1961)

X Banach. Then NA(X) is $\|\cdot\|$ -dense in X^* .

Theorem (James'1957)

 $X \text{ reflexive} \Leftrightarrow NA(X) = X^*.$

X separable nonreflexive. Then $\exists \| \cdot \|$ st NA(X) has empty interior.

X separable nonreflexive. Then $\exists \| \cdot \|$ st NA(X) has empty interior.

Theorem (Acosta–Kadec'2011)

The same without separability.

X separable nonreflexive. Then $\exists \| \cdot \|$ st NA(X) has empty interior.

Theorem (Acosta-Kadec'2011)

The same without separability.

Problem

[Bandyopadhyay–Godefroy'2006] \exists nonreflexive X st NA(X^*) is vector subspace of X^{**} ?

X separable nonreflexive. Then $\exists \| \cdot \|$ st NA(X) has empty interior.

Theorem (Acosta-Kadec'2011)

The same without separability.

Problem

[Bandyopadhyay–Godefroy'2006] \exists nonreflexive X st NA(X^*) is vector subspace of X^{**} ?

Theorem (Rmoutil'2015, question of Godefroy)

 \exists X Banach, NA(X) does not contain any 2-dimensional subspace.

Norm attaining operators

Theorem (Lindenstrauss'1963)

 $\{T: X \to Y: T^{**} \text{ attains the norm}\}\ dense in L(X, Y).$

Norm attaining operators

Theorem (Lindenstrauss'1963)

 $\{T: X \to Y: T^{**} \text{ attains the norm}\}\ dense in L(X, Y).$

Theorem (Zizler'1973)

 $\{T: X \to Y: T^* \text{ attains the norm}\}\ dense in L(X, Y).$

Norm attaining operators

Theorem (Lindenstrauss'1963)

 $\{T: X \to Y: T^{**} \text{ attains the norm}\}\ dense in L(X, Y).$

Theorem (Zizler'1973)

 $\{T: X \to Y: T^* \text{ attains the norm}\}\ dense in L(X, Y).$

Problem

[Ostrovski] Does there exists X infinite-dimensional separable such that every $T: X \to X$ bounded attains its norm?

$$A: X_1 \times \ldots \times X_n \to Y$$
.

$$A: X_1 \times \ldots \times X_n \to Y.$$

 $\tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n})$

$$A: X_1 \times \ldots \times X_n \to Y.$$

 $\tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n})$

Theorem (Acosta-García-Maestre'2006)

 $\{A: \tilde{A} \text{ attains the norm}\}\ dense\ in\ L(X_1,\ldots,X_n;\ Y).$

$$A: X_1 \times \ldots \times X_n \to Y.$$

 $\tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n})$

Theorem (Acosta-García-Maestre'2006)

 $\{A: \tilde{A} \text{ attains the norm}\}\ dense\ in\ L(X_1,\ldots,X_n;\ Y).$

$$\tilde{P}(z) = \tilde{A}(z,\ldots,z).$$

Norm attaining (multilinear)

$$A: X_1 \times \ldots \times X_n \to Y.$$

 $\tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n})$

Theorem (Acosta-García-Maestre'2006)

 $\{A: \tilde{A} \text{ attains the norm}\}\ dense\ in\ L(X_1,\ldots,X_n;\ Y).$

$$\tilde{P}(z) = \tilde{A}(z,\ldots,z).$$

Theorem (Aron–García–Maestre'2002)

 $\{P: \tilde{P} \text{ attains the norm}\}$ dense in $\mathcal{P}(^2X)$ (the 2-homogeneous polynomials).

Norm attaining (multilinear)

$$A: X_1 \times \ldots \times X_n \to Y.$$

 $\tilde{A}(z_1, \ldots, z_n) = \lim_{\alpha_1} \ldots \lim_{\alpha_n} A(x_{1,\alpha_1} \ldots x_{n,\alpha_n})$

Theorem (Acosta-García-Maestre'2006)

 $\{A: \tilde{A} \text{ attains the norm}\}\ dense\ in\ L(X_1,\ldots,X_n;\ Y).$

$$\tilde{P}(z) = \tilde{A}(z,\ldots,z).$$

Theorem (Aron-García-Maestre'2002)

 $\{P: \tilde{P} \text{ attains the norm}\}\$ dense in $\mathcal{P}(^2X)$ (the 2-homogeneous polynomials).

Problem

What if n > 2?

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

Theorem (Morris'83)

X separable $c_0 \subset X$, then \exists (R) $||| \cdot |||$ st all $x \in S_X$ are unpreserved.

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

Theorem (Morris'83)

X separable $c_0 \subset X$, then \exists (R) $||| \cdot |||$ st all $x \in S_X$ are unpreserved.

 $x \in B_X$ is preserved extreme if it is extreme of $B_{X^{**}}$.

Theorem (Morris'83)

X separable $c_0 \subset X$, then \exists (R) $||| \cdot |||$ st all $x \in S_X$ are unpreserved.

Theorem (Guirao-M-Zizler'2013)

X separable polyhedral, then \exists \mathbb{C}^{∞} -smooth (\mathbb{R}) norm $||| \cdot |||$ all $x \in S_X$ unpreserved.

Theorem (Fonf'1980-81, Hájek)

X separable polyhedral $\Leftrightarrow \exists \parallel \cdot \parallel$ depending locally of finitely many coordinates.

Theorem (Fonf'1980-81, Hájek)

X separable polyhedral $\Leftrightarrow \exists \parallel \cdot \parallel$ depending locally of finitely many coordinates.

Problem

X nonseparable. *X* polyhedral $\Leftrightarrow \exists \| \cdot \|$ depending locally on finitely many coordinates?

Theorem (Fonf'1980-81, Hájek)

X separable polyhedral $\Leftrightarrow \exists \parallel \cdot \parallel$ depending locally of finitely many coordinates.

Problem

X nonseparable. *X* polyhedral $\Leftrightarrow \exists \| \cdot \|$ depending locally on finitely many coordinates?

Problem

X separable with a bump that depends locally on finitely many coordinates. Is X polyhedral?

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C$, x_0 is proper support point, i.e., $\exists f \in X^*$

$$f(x_0) = \inf\{f(x): x \in C\} < \sup\{f(x): x \in C\}.$$

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C$, x_0 is proper support point, i.e., $\exists f \in X^*$

 $f(x_0) = \inf\{f(x): x \in C\} < \sup\{f(x): x \in C\}.$

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C$, x_0 is proper support point, i.e., $\exists f \in X^*$

$$f(x_0) = \inf\{f(x): x \in C\} < \sup\{f(x): x \in C\}.$$

Theorem (Rolewicz'1978)

If X separable, then there are no (bounded) support sets.

 $C \subset X$ convex, closed, is a support set whenever $\forall x_0 \in C$, x_0 is proper support point, i.e., $\exists f \in X^*$

$$f(x_0) = \inf\{f(x): x \in C\} < \sup\{f(x): x \in C\}.$$

Theorem (Rolewicz'1978)

If X separable, then there are no (bounded) support sets.

Theorem (Rolewicz'1978)

If X separable, then there are no (bounded) support sets.

Problem

[Rolewicz] *X* nonseparable Banach. Do there exist support sets?

Theorem (M.'1985)

 $C[0,1]^*$ has support sets. For Γ infinite, $\ell_{\infty}(\Gamma)$ has support sets. $\ell_1(\Gamma) \subset X$, then X^* has support sets.

Theorem (M.'1985)

 $C[0,1]^*$ has support sets. For Γ infinite, $\ell_{\infty}(\Gamma)$ has support sets. $\ell_1(\Gamma) \subset X$, then X^* has support sets.

Theorem (Kutzarova, Lazar, M., Borwein, Vanderwerff)

X has an uncountable biorthogonal system, then *X* has support sets.

Theorem (M.'1985)

 $C[0,1]^*$ has support sets. For Γ infinite, $\ell_{\infty}(\Gamma)$ has support sets. $\ell_1(\Gamma) \subset X$, then X^* has support sets.

Theorem (Kutzarova, Lazar, M., Borwein, Vanderwerff)

X has an uncountable biorthogonal system, then X has support sets.

Theorem (Granero, Jiménez, Moreno' 98)

K compact, \exists regular measure nonseparable. Then C(K) has a support set.

Theorem (Todorcevic' 2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic' 2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic, Koszmider' 2009)

Under another axiom compatible with ZFC, C(K) with density \aleph_1 may have not support sets.

Theorem (Todorcevic' 2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic, Koszmider' 2009)

Under another axiom compatible with ZFC, C(K) with density \aleph_1 may have not support sets.

Theorem (Todorcevic'2006)

If C(K) has density $> \aleph_1$ then C(K) has a support set.

Theorem (Todorcevic' 2006)

Under (MM), X nonseparable has support set.

Theorem (Todorcevic, Koszmider' 2009)

Under another axiom compatible with ZFC, C(K) with density \aleph_1 may have not support sets.

Theorem (Todorcevic'2006)

If C(K) has density $> \aleph_1$ then C(K) has a support set.

Problem

[Todorcevic] X with density $> \aleph_1$ has a support set?

