Pettis operators and their integrals

OSCAR BLASCO, Lech Drewnowski

Universidad Valencia

XIV Encuentro de la red de Análisis Funcional Bilbao 5-10 Marzo 2018

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

 (S,Σ,μ) is a σ -finite measure space,

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

 (S, Σ, μ) is a σ -finite measure space, $L_1(\mu)$ μ -integrable functions

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

 (S, Σ, μ) is a σ -finite measure space, $L_1(\mu)$ μ -integrable functions and $L_{\infty}(\mu) = L_1(\mu)^*$ essentially bounded functions.

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

 (S,Σ,μ) is a σ -finite measure space, $L_1(\mu)$ μ -integrable functions and $L_{\infty}(\mu)=L_1(\mu)^*$ essentially bounded functions. $L_{w^*,w}(X^*,Y)$ weak*-weakly continuous linear operators between Banach spaces X^* and Y.

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

 (S,Σ,μ) is a σ -finite measure space, $L_1(\mu)$ μ -integrable functions and $L_{\infty}(\mu)=L_1(\mu)^*$ essentially bounded functions. $L_{w^*,w}(X^*,Y)$ weak*-weakly continuous linear operators between Banach spaces X^* and Y.

$$L_{w^*,w}(X^*,Y) = \{F \in L(X^*,Y) \text{ such that } F^* \in L(Y^*,X)\}$$

X is a Banach space with its dual space X^* , B(X) the unit ball of X.

 (S,Σ,μ) is a σ -finite measure space, $L_1(\mu)$ μ -integrable functions and $L_{\infty}(\mu)=L_1(\mu)^*$ essentially bounded functions. $L_{w^*,w}(X^*,Y)$ weak*-weakly continuous linear operators between Banach spaces X^* and Y.

$$L_{w^*,w}(X^*,Y) = \{F \in L(X^*,Y) \text{ such that } F^* \in L(Y^*,X)\}$$

$$L_{w^*,w}(X^*,Y) = L_{w^*,w}(Y^*,X)$$
, using

$$\langle x^*, F^*(y^*) \rangle = \langle y^*, F(x^*) \rangle$$
 for all $x^* \in X^*$, $y^* \in Y^*$,

Bochner integrable functions

A strongly measurable function $f: S \to X$ is said to be Bochner $(\mu$ -)integrable if $\int_S ||f|| d\mu < \infty$.

Bochner integrable functions

A strongly measurable function $f: S \to X$ is said to be Bochner $(\mu$ -)integrable if $\int_S ||f|| d\mu < \infty$.

We denote by $L_1(\mu, X)$ the space of Bochner μ -integrable functions f endowed with the norm $||f||_1 = \int_S ||f|| d\mu$.

Bochner integrable functions

A strongly measurable function $f: S \to X$ is said to be Bochner $(\mu$ -)integrable if $\int_S ||f|| d\mu < \infty$.

We denote by $L_1(\mu, X)$ the space of Bochner μ -integrable functions f endowed with the norm $||f||_1 = \int_S ||f|| d\mu$. In particular we can associate a vector-valued measure

$$m_f(A) = (B) - \int_A f d\mu \in X$$

for any $A \in \Sigma$. It is well known that $|m_f| = \int_{\Omega} ||f|| d\mu$.

Also we can associate the operators $T_f: L^{\infty}(\mu) \to X$ and $S_f: X^* \to L_1(\mu)$ defined by

$$T_f(\psi) = (B) - \int_S \psi f d\mu, \quad S_f(x^*) = x^* f.$$

Also we can associate the operators $T_f: L^{\infty}(\mu) \to X$ and $S_f: X^* \to L_1(\mu)$ defined by

$$T_f(\psi) = (B) - \int_S \psi f d\mu, \quad S_f(x^*) = x^* f.$$

• Both operators are compact.

Also we can associate the operators $T_f: L^{\infty}(\mu) \to X$ and $S_f: X^* \to L_1(\mu)$ defined by

$$T_f(\psi) = (B) - \int_S \psi f d\mu, \quad S_f(x^*) = x^* f.$$

- Both operators are compact.
- Both operators are weak*-weakly continuous.

Also we can associate the operators $T_f: L^{\infty}(\mu) \to X$ and $S_f: X^* \to L_1(\mu)$ defined by

$$T_f(\psi) = (B) - \int_S \psi f d\mu, \quad S_f(x^*) = x^* f.$$

- Both operators are compact.
- Both operators are weak*-weakly continuous.
- $t \to \delta_t$ does not belong to $L_1(m, M(\mathbb{T}))$.

A weakly measurable function $f: S \to X$ is said to be *Pettis* $(\mu$ -)*integrable* if the operator $P_f: X^* \to L_1(\mu)$, given by $x^* \to x^*f$, is weak*-weakly continuous.

A weakly measurable function $f: S \to X$ is said to be *Pettis* $(\mu$ -*)integrable* if the operator $P_f: X^* \to L_1(\mu)$, given by $x^* \to x^*f$, is weak*-weakly continuous.

We denote by $P_1(\mu, X)$ the completion of the space of Pettis μ -integrable functions f endowed with the operator norm $||f|| = ||P_f||$.

A weakly measurable function $f: S \to X$ is said to be *Pettis* $(\mu$ -)integrable if the operator $P_f: X^* \to L_1(\mu)$, given by $x^* \to x^*f$, is weak*-weakly continuous.

We denote by $P_1(\mu, X)$ the completion of the space of Pettis μ -integrable functions f endowed with the operator norm $||f|| = ||P_f||$.

Now, by definition, the (indefinite) *Pettis* (μ -) *integral of f* is the (countably additive) vector measure $m_f: \Sigma \to X$ given by the formula

$$m_f(A) = P_f^*(\chi_A) =: (P) - \int_A f \, d\mu$$
 for all $A \in \Sigma$.

A weakly measurable function $f: S \to X$ is said to be *Pettis* $(\mu$ -)integrable if the operator $P_f: X^* \to L_1(\mu)$, given by $x^* \to x^*f$, is weak*-weakly continuous.

We denote by $P_1(\mu, X)$ the completion of the space of Pettis μ -integrable functions f endowed with the operator norm $||f|| = ||P_f||$.

Now, by definition, the (indefinite) *Pettis* (μ -) *integral of f* is the (countably additive) vector measure $m_f: \Sigma \to X$ given by the formula

$$m_f(A) = P_f^*(\chi_A) =: (P) - \int_A f \, d\mu$$
 for all $A \in \Sigma$.

 $t \to (r_n(t)))_{n \in \mathbb{N}}$, where r_n stand for the Rademacher functions, does not belong to $P_1(m, \ell^{\infty})$.

Preliminaries

Pettis operators versus vector-valued measures

Pettis operators versus vector-valued harmonic functions

The theory of Pettis integration has a number of "weak points"

 the normed spaces of Pettis integrable functions are incomplete.

- the normed spaces of Pettis integrable functions are incomplete.
- Not every Pettis integrable function admits a conditional expectation with respect to a sub- σ -algebra;
- the Radon-Nikodym theorem does not hold even if one restricts to vector measures of bounded variation.

- the normed spaces of Pettis integrable functions are incomplete.
- Not every Pettis integrable function admits a conditional expectation with respect to a sub- σ -algebra;
- the Radon-Nikodym theorem does not hold even if one restricts to vector measures of bounded variation.
- the Fubini theorem fails to hold in a dramatic way.

- the normed spaces of Pettis integrable functions are incomplete.
- Not every Pettis integrable function admits a conditional expectation with respect to a sub- σ -algebra;
- the Radon-Nikodym theorem does not hold even if one restricts to vector measures of bounded variation.
- the Fubini theorem fails to hold in a dramatic way.
- the Fatou theorem for harmonic functions fails. In particular, whenever X is infinite dimensional, there exists a Pettis-integrable function $f: \mathbb{T} \to X$ such that $\lim_{r\to\infty} \|P_r * F(t)\| = \infty$ uniformly in $t \in \mathbb{T}$.

Definition

We shall denote by $\mathbb{P}(X^*, L_1(\mu))$ the space of all weak*-weakly continuous linear operators $F: X^* \to L_1(\mu)$. We shall call them Pettis operators.

Definition

We shall denote by $\mathbb{P}(X^*, L_1(\mu))$ the space of all weak*-weakly continuous linear operators $F: X^* \to L_1(\mu)$. We shall call them Pettis operators.

For each Pettis operator F and $A \in \Sigma$ we define the Pettis μ -integral of F over A as

$$(P)-\int_A F\,d\mu=F^*(\chi_A).$$

Definition

We shall denote by $\mathbb{P}(X^*, L_1(\mu))$ the space of all weak*-weakly continuous linear operators $F: X^* \to L_1(\mu)$. We shall call them Pettis operators.

For each Pettis operator F and $A \in \Sigma$ we define the Pettis μ -integral of F over A as

$$(P) - \int_A F \, d\mu = F^*(\chi_A).$$

More generally, for any $\psi \in L_{\infty}(\mu)$ we set $F^*(\psi) = (P) - \int_{\psi} F \, d\mu$, and is a unique element of X such that

$$\left\langle x^*, (P) - \int_{\Psi} F \, d\mu \right\rangle = \int_{\mathcal{S}} \Psi \cdot F(x^*) \, d\mu \qquad \text{ for all } x^* \in X^*.$$

• $P_1(\mu, X) \subseteq \mathbb{P}(X^*, L_1(\mu))$ by means of the embedding $f \to F = P_f$.

- $P_1(\mu, X) \subseteq \mathbb{P}(X^*, L_1(\mu))$ by means of the embedding $f \to F = P_f$.
- If X is a reflexive Banach space and $F: X^* \to L_1(\mu)$ is a bounded linear operator then $F \in \mathbb{P}(X^*, L_1(\mu))$.

- $P_1(\mu, X) \subseteq \mathbb{P}(X^*, L_1(\mu))$ by means of the embedding $f \to F = P_f$.
- If X is a reflexive Banach space and $F: X^* \to L_1(\mu)$ is a bounded linear operator then $F \in \mathbb{P}(X^*, L_1(\mu))$.
- Let $X = L_p([0,1])$ for $1 and let <math>F : L_{p'}([0,1]) \to L_1([0,1])$ be the inclusion map. Then $F \in \mathbb{P}(L_{p'}([0,1]), L_1([0,1]) \setminus P_1(m, L_p([0,1]).$

- $P_1(\mu, X) \subseteq \mathbb{P}(X^*, L_1(\mu))$ by means of the embedding $f \to F = P_f$.
- If X is a reflexive Banach space and $F: X^* \to L_1(\mu)$ is a bounded linear operator then $F \in \mathbb{P}(X^*, L_1(\mu))$.
- Let $X = L_p([0,1])$ for $1 and let <math>F : L_{p'}([0,1]) \to L_1([0,1])$ be the inclusion map. Then $F \in \mathbb{P}(L_{p'}([0,1]), L_1([0,1]) \setminus P_1(m, L_p([0,1]))$.
- Let $X = \ell_{\infty}$ and let $F : (\ell_{\infty})^* \to L_1([0,1])$ the operator defined by

$$x^* \to t \to \langle x^*, (r_n(t)) \rangle$$
.

Then $F \in \mathbb{P}((\ell_{\infty})^*, L_1([0,1])) \setminus P_1(\eta, \ell_{\infty})$.

If $S = \mathbb{N}$ and $\mu = \eta$ the counting measure $P_1(\eta, X)$ can be identified with $\mathbf{x} = (x_n) \in X$ such that the series $\sum_n x_n$ is unconditionally (or subseries) convergent in X.

If $S=\mathbb{N}$ and $\mu=\eta$ the counting measure $P_1(\eta,X)$ can be identified with $\mathbf{x}=(x_n)\in X$ such that the series $\sum_n x_n$ is unconditionally (or subseries) convergent in X. Clearly, the Pettis operator $P_{\mathbf{x}}:X^*\to \ell_1$ associated with \mathbf{x} given by $P_{\mathbf{x}}(x^*)=\big(x^*(x_n)\big)_{n\in\mathbb{N}}$ is weak*-weakly continuous, because $P_{\mathbf{x}}^*:\ell_\infty\to X$.

If $S=\mathbb{N}$ and $\mu=\eta$ the counting measure $P_1(\eta,X)$ can be identified with $\mathbf{x}=(x_n)\in X$ such that the series $\sum_n x_n$ is unconditionally (or subseries) convergent in X. Clearly, the Pettis operator $P_{\mathbf{x}}:X^*\to \ell_1$ associated with \mathbf{x}

given by $P_{\mathbf{x}}(x^*) = (x^*(x_n))_{n \in \mathbb{N}}$ is weak*-weakly continuous, because $P_{\mathbf{x}}^* : \ell_{\infty} \to X$.

Theorem

$$P_1(\eta, X) = \mathbb{P}(X^*, \ell_1)$$

If $S=\mathbb{N}$ and $\mu=\eta$ the counting measure $P_1(\eta,X)$ can be identified with $\mathbf{x}=(x_n)\in X$ such that the series $\sum_n x_n$ is unconditionally (or subseries) convergent in X. Clearly, the Pettis operator $P_{\mathbf{x}}:X^*\to\ell_1$ associated with \mathbf{x}

Glearly, the Pettis operator $P_{\mathbf{x}}: X^* \to \ell_1$ associated with \mathbf{x} given by $P_{\mathbf{x}}(x^*) = (x^*(x_n))_{n \in \mathbb{N}}$ is weak*-weakly continuous, because $P_{\mathbf{x}}^*: \ell_\infty \to X$.

Theorem

$$P_1(\eta, X) = \mathbb{P}(X^*, \ell_1)$$

Proof. Let $F \in \mathbb{P}(X^*, \ell_1)$ and let (e_n) be the sequence of unit vectors in ℓ_{∞} . Then for each $n \in \mathbb{N}$,

$$x_n =: (P) - \int_{e_n} F d\eta = F^*(e_n) \in X.$$

If $S=\mathbb{N}$ and $\mu=\eta$ the counting measure $P_1(\eta,X)$ can be identified with $\mathbf{x}=(x_n)\in X$ such that the series $\sum_n x_n$ is unconditionally (or subseries) convergent in X. Clearly, the Pettis operator $P_{\mathbf{x}}:X^*\to \ell_1$ associated with \mathbf{x}

Clearly, the Pettis operator $P_{\mathbf{x}}: X^* \to \ell_1$ associated with \mathbf{x} given by $P_{\mathbf{x}}(x^*) = (x^*(x_n))_{n \in \mathbb{N}}$ is weak*-weakly continuous, because $P_{\mathbf{x}}^*: \ell_\infty \to X$.

Theorem

$$P_1(\eta, X) = \mathbb{P}(X^*, \ell_1)$$

Proof. Let $F \in \mathbb{P}(X^*, \ell_1)$ and let (e_n) be the sequence of unit vectors in ℓ_{∞} . Then for each $n \in \mathbb{N}$,

 $x_n =: (P) - \int_{e_n} F \, d\eta = F^*(e_n) \in X$. By the Orlicz-Pettis theorem, the series $\sum_n x_n$ is subseries convergent. Hence $\mathbf{x} \in P_1(n, X)$

Pettis operators versus vector-valued measures

Let us denote by $ca_{\mu}(\Sigma,X)$ the Banach space of all μ -continuous countably additive vector measures $m:\Sigma\to X$, endowed with the norm given by the semivariation $\|m\|=\sup_{\|x^*\|<1}|x^*m|(S)$.

Pettis operators versus vector-valued measures

Let us denote by $ca_{\mu}(\Sigma,X)$ the Banach space of all μ -continuous countably additive vector measures $m:\Sigma\to X$, endowed with the norm given by the semivariation $\|m\|=\sup_{\|x^*\|<1}|x^*m|(S)$.

Theorem

$$\mathbb{P}(X^*, L_1(\mu)) = ca_{\mu}(\Sigma, X)$$
 with equal norms.

Pettis operators versus vector-valued measures

Let us denote by $ca_{\mu}(\Sigma,X)$ the Banach space of all μ -continuous countably additive vector measures $m:\Sigma\to X$, endowed with the norm given by the semivariation $\|m\|=\sup_{\|x^*\|<1}|x^*m|(S)$.

Theorem

$$\mathbb{P}(X^*, L_1(\mu)) = ca_{\mu}(\Sigma, X)$$
 with equal norms.

Theorem

Let $F: X^* \to L_1(\mu)$ be a Pettis operator. Then its indefinite integral $m_F: \Sigma \to X$ is a vector measure of finite or σ -finite variation if and only if the set $F(B(X^*))$ is order bounded in $L^1(\mu)$ or $L_0(\mu)$, respectively.

Here $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$, $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ and $\mu_{\mathbb{T}}$ the Lebesgue measure on \mathbb{T} .

Here $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$, $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ and $\mu_{\mathbb{T}}$ the Lebesgue measure on \mathbb{T} .

For $z \in \mathbb{D}$, we denote by $P : \mathbb{D} \to \mathbb{R}^+$ the harmonic function $P(z) = \Re \frac{1+z}{1-z}$ and by P_z the *Poisson kernel* on \mathbb{T} as

$$P_z(\xi) = P(z\bar{\xi}) = \frac{1-|z|^2}{|1-z\bar{\xi}|^2}$$
 $(\xi \in \mathbb{T}).$

Here $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$, $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ and $\mu_{\mathbb{T}}$ the Lebesgue measure on \mathbb{T} .

For $z \in \mathbb{D}$, we denote by $P : \mathbb{D} \to \mathbb{R}^+$ the harmonic function $P(z) = \Re \frac{1+z}{1-z}$ and by P_z the *Poisson kernel* on \mathbb{T} as

$$P_z(\xi) = P(z\bar{\xi}) = \frac{1-|z|^2}{|1-z\bar{\xi}|^2} \qquad (\xi \in \mathbb{T}).$$

For a bounded linear operator $T:C(\mathbb{T})\to X$ we define the *Poisson integral of* T by the formula

$$P(T)(z) = T(P_z), \quad z \in \mathbb{D}.$$
 (1)

Here $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$, $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ and $\mu_{\mathbb{T}}$ the Lebesgue measure on \mathbb{T} .

For $z \in \mathbb{D}$, we denote by $P : \mathbb{D} \to \mathbb{R}^+$ the harmonic function $P(z) = \mathfrak{R} \frac{1+z}{1-z}$ and by P_z the *Poisson kernel* on \mathbb{T} as

$$P_z(\xi) = P(z\bar{\xi}) = \frac{1-|z|^2}{|1-z\bar{\xi}|^2} \qquad (\xi \in \mathbb{T}).$$

For a bounded linear operator $T:C(\mathbb{T})\to X$ we define the *Poisson integral of* T by the formula

$$P(T)(z) = T(P_z), \quad z \in \mathbb{D}.$$
 (1)

Then P(T) is a vector-valued harmonic function.

200

On weak Hardy spaces of harmonic functions

Let $h^1(\mathbb{D})$ and $H^1_{max}(\mathbb{D})$ stand for the spaces of harmonic functions ϕ in the unit disc such that $\|\phi\|_{h^1} = \sup_{0 < r < 1} \|\phi_r\|_1 < \infty$ and that the Poisson maximal function $P^*\phi(\xi) = \sup_{0 < r < 1} |\phi_r(\xi)| \in L_1(\mathbb{T})$ respectively, with $\|\phi\|_{H^1_{max}} = \|P^*\phi\|_1$, where $\phi_r(z) = \phi(rz)$.

On weak Hardy spaces of harmonic functions

Let $h^1(\mathbb{D})$ and $H^1_{max}(\mathbb{D})$ stand for the spaces of harmonic functions ϕ in the unit disc such that $\|\phi\|_{h^1} = \sup_{0 < r < 1} \|\phi_r\|_1 < \infty$ and that the Poisson maximal function $P^*\phi(\xi) = \sup_{0 < r < 1} |\phi_r(\xi)| \in L_1(\mathbb{T})$ respectively, with $\|\phi\|_{H^1_{max}} = \|P^*\phi\|_1$, where $\phi_r(z) = \phi(rz)$.

A well known fact is that $\phi \in H^1_{max}(\mathbb{D})$ then there exists $\phi^{\circ}(\xi) = \lim_{r \to 1} \phi_r(\xi)$ a.e and $\phi^{\circ} \in L^1(\mathbb{T})$.

On weak Hardy spaces of harmonic functions

Let $h^1(\mathbb{D})$ and $H^1_{max}(\mathbb{D})$ stand for the spaces of harmonic functions ϕ in the unit disc such that $\|\phi\|_{h^1} = \sup_{0 < r < 1} \|\phi_r\|_1 < \infty$ and that the Poisson maximal function $P^*\phi(\xi) = \sup_{0 \le r \le 1} |\phi_r(\xi)| \in L_1(\mathbb{T})$ respectively, with $\|\phi\|_{H^1_{max}} = \|P^*\phi\|_1$, where $\phi_r(z) = \phi(rz)$. A well known fact is that $\phi \in H^1_{max}(\mathbb{D})$ then there exists $\phi^{\circ}(\xi) = \lim_{r \to 1} \phi_r(\xi)$ a.e and $\phi^{\circ} \in L^1(\mathbb{T})$. The "weak" vector-valued versions $wh^1(\mathbb{D},X)$ and $wH^1_{max}(\mathbb{D},X)$ consist of those functions $f:\mathbb{D}\to X$ such that $x^*f \in h^1(\mathbb{D})$ and $x^*f \in H^1_{max}(\mathbb{D})$ for all $x^* \in X^*$, respectively, where $x^*f(z) = \langle x^*, f(z) \rangle$ for each $z \in \mathbb{D}$.

Proposition

Let
$$F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$$
. Then (a) $f = P(F^*) \in wh^1(\mathbb{D}, X)$.

Proposition

Let
$$F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$$
. Then (a) $f = P(F^*) \in wh^1(\mathbb{D}, X)$.

(b) $\lim_{r\to 1} P_{f_r} = F$ in the strong operator topology, i.e.

$$\lim_{r\to 1} P_{f_r}(x^*) = F(x^*)$$
 for all $x^* \in X^*$.

Proposition

Let $F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$. Then

(a)
$$f = P(F^*) \in wh^1(\mathbb{D}, X)$$
.

(b) $\lim_{r\to 1} P_{f_r} = F$ in the strong operator topology, i.e.

$$\lim_{r\to 1} P_{f_r}(x^*) = F(x^*)$$
 for all $x^* \in X^*$.

(c) If F is compact, then $\lim_{r\to 1} P_{f_r} = F$ in the uniform norm of operators.

Proposition

Let $F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$. Then

(a)
$$f = P(F^*) \in wh^1(\mathbb{D}, X)$$
.

(b) $\lim_{r\to 1} P_{f_r} = F$ in the strong operator topology, i.e.

$$\lim_{r\to 1} P_{f_r}(x^*) = F(x^*)$$
 for all $x^* \in X^*$.

(c) If F is compact, then $\lim_{r\to 1} P_{f_r} = F$ in the uniform norm of operators.

It was shown (Blasco, 1987) that $wh^1(\mathbb{D},X) = L(X^*,M(\mathbb{T}))$

Proposition

Let $F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$. Then

(a)
$$f = P(F^*) \in wh^1(\mathbb{D}, X)$$
.

(b) $\lim_{r\to 1} P_{f_r} = F$ in the strong operator topology, i.e.

$$\lim_{r\to 1} P_{f_r}(x^*) = F(x^*)$$
 for all $x^* \in X^*$.

(c) If F is compact, then $\lim_{r\to 1} P_{f_r} = F$ in the uniform norm of operators.

It was shown (Blasco, 1987) that $wh^1(\mathbb{D},X) = L(X^*,M(\mathbb{T}))$ What can be said for functions in $wH^1_{max}(\mathbb{D},X)$?

Theorem

If $f \in wH^1_{max}(\mathbb{D},X)$ then there exists $F \in \mathbb{P}(X^*,L_1(\mathbb{T}))$ such that $f = P(F^*)$.

Proof: Let us define $F: X^* \to L_1(\mathbb{T})$ by $F(x^*) = (x^*f)^\circ$ where we have used the inclusion $H^1_{max}(\mathbb{D}) \subseteq L_1(\mathbb{T})$ given $\phi \to \phi^\circ$. Hence for 0 < r < 1 and $\xi \in \mathbb{T}$,

$$\langle x^*, f(r\xi) \rangle = P_r * (x^*f)^{\circ}(\xi).$$

Theorem

If $f \in wH^1_{max}(\mathbb{D},X)$ then there exists $F \in \mathbb{P}(X^*,L_1(\mathbb{T}))$ such that $f = P(F^*)$.

Proof: Let us define $F: X^* \to L_1(\mathbb{T})$ by $F(x^*) = (x^*f)^\circ$ where we have used the inclusion $H^1_{max}(\mathbb{D}) \subseteq L_1(\mathbb{T})$ given $\phi \to \phi^{\circ}$. Hence for 0 < r < 1 and $\xi \in \mathbb{T}$.

$$\langle x^*, f(r\xi) \rangle = P_r * (x^*f)^{\circ}(\xi).$$

Observe that

$$\langle x^*, f(z) \rangle = (x^*f)(z) = P((x^*f)^\circ)(z) = \langle P_z, F(x^*) \rangle = \langle F^*(P_z), x^* \rangle.$$

Hence for $x^* \in X^*$ and $z \in \mathbb{D}$ one has $F^*(P_z) \in X$ and $F^*(P_z) = f(z)$. We shall show that $F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$.

Theorem

If $f \in wH^1_{max}(\mathbb{D},X)$ then there exists $F \in \mathbb{P}(X^*,L_1(\mathbb{T}))$ such that $f = P(F^*)$.

Proof: Let us define $F: X^* \to L_1(\mathbb{T})$ by $F(x^*) = (x^*f)^\circ$ where we have used the inclusion $H^1_{max}(\mathbb{D}) \subseteq L_1(\mathbb{T})$ given $\phi \to \phi^{\circ}$. Hence for 0 < r < 1 and $\xi \in \mathbb{T}$.

$$\langle x^*, f(r\xi) \rangle = P_r * (x^*f)^{\circ}(\xi).$$

Observe that

$$\langle x^*, f(z) \rangle = (x^*f)(z) = P((x^*f)^\circ)(z) = \langle P_z, F(x^*) \rangle = \langle F^*(P_z), x^* \rangle.$$

Hence for $x^* \in X^*$ and $z \in \mathbb{D}$ one has $F^*(P_z) \in X$ and $F^*(P_z) = f(z)$. We shall show that $F \in \mathbb{P}(X^*, L_1(\mathbb{T}))$.

Let (s_n) be a sequence converging to 1 and consider $F_n=P_{s_n}*F$. Notice that $F_n^*=F^**P_{s_n}:L_\infty(\mathbb{T})\to X^{**}$ and one can show that

$$\langle F_n^*(\psi), x^* \rangle = \langle x^*, \int \psi(\xi) f(s_n \xi) d\mu_{\mathbb{T}}(\xi) \rangle.$$

Hence $F_n^*(\psi) = \int \psi(\xi) f(s_n \xi) d\mu_{\mathbb{T}}(\xi) \in X$. This gives that F_n are Pettis operators.

Let (s_n) be a sequence converging to 1 and consider $F_n = P_{s_n} * F$. Notice that $F_n^* = F^* * P_{s_n} : L_{\infty}(\mathbb{T}) \to X^{**}$ and one can show that

$$\langle F_n^*(\psi), x^* \rangle = \langle x^*, \int \psi(\xi) f(s_n \xi) d\mu_{\mathbb{T}}(\xi) \rangle.$$

Hence $F_n^*(\psi) = \int \psi(\xi) f(s_n \xi) d\mu_{\mathbb{T}}(\xi) \in X$. This gives that F_n are Pettis operators. On the other hand, since $f \in H^1_{max}(\mathbb{D},X)$, for each $x^* \in X^*$

$$\lim_{n}\langle x^*, f(s_n\xi)\rangle = (x^*f)^{\circ}(\xi), \quad a.e.$$

and for each $\psi \in L_{\infty}(\mathbb{T})$ one has

$$\sup_{n} |\psi(\xi)\langle x^*, f(s_n\xi)\rangle| \in L_1(\mathbb{T}).$$

This allows us to conclude that $F_n^*(\psi)$ is weakly convergent to $F^*(\psi)$ for any $\psi \in L_{\infty}(\mathbb{T})$. Hence F is a Pettis operator.

O. Blasco, Boundary values of vector-valued harmonic functions considered as operators, Studia Math. 86 (1987), 19-33.

O. Blasco, L. Drewnowsky Extension of Pettis integration: Pettis operators and their integrals Submitted

THANKS!

THANKS! GRACIES!

THANKS! GRACIES!

THANKS! GRACIES! GRACIAS! ESKERRIK ASKO!

