Algebraic Structures and Modes of Convergence

Pablo José Gerlach Mena

09 de marzo de 2018

INDEX

1 LINEABILITY

2 Some Known Results

3 New Results

DEFINITION

Let *X* be a topological vector space (t.v.s.), $A \subset X$.

DEFINITION

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

• A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.

DEFINITION

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.

DEFINITION

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Definition

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

DEFINITION

Let A be a Banach algebra and $B \subset A$.

DEFINITION

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Definition

Let A be a Banach algebra and $B \subset A$. We say that

• \mathcal{B} is algebrable if $\exists \mathcal{C} \subset \mathcal{A}$ so that $\mathcal{C} \subset \mathcal{B} \cup \{0\}$ and the cardinality of any system of generators of \mathcal{C} is infinite.

DEFINITION

Let X be a topological vector space (t.v.s.), $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Definition

Let A be a Banach algebra and $B \subset A$. We say that

- \mathcal{B} is algebrable if $\exists \mathcal{C} \subset \mathcal{A}$ so that $\mathcal{C} \subset \mathcal{B} \cup \{0\}$ and the cardinality of any system of generators of \mathcal{C} is infinite.
- If in addition, \mathcal{A} is a commutative algebra, we say that \mathcal{B} is strongly algebrable if $\mathcal{B} \cup \{0\}$ contains generated algebra which is isomorphic to a free algebra.

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

EXAMPLE

• Let $\{I_n\}_{n\in\mathbb{N}}=\{(a_n,b_n)\}_{n\in\mathbb{N}}$ where $a_n,b_n\in\mathbb{Q}\ \forall n\in\mathbb{N}.$

Recall that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}}=\{(a_n,b_n)\}_{n\in\mathbb{N}}$ where $a_n,b_n\in\mathbb{Q}\ \forall n\in\mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .

Recall that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}}=\{(a_n,b_n)\}_{n\in\mathbb{N}}$ where $a_n,b_n\in\mathbb{Q}\ \forall n\in\mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .
- We construct $\{C_n\}_{n\in\mathbb{N}}$ such that $C_n\subset I_n\setminus\left(\bigcup_{k=1}^{n-1}C_k\right)$.

Recall that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}}=\{(a_n,b_n)\}_{n\in\mathbb{N}}$ where $a_n,b_n\in\mathbb{Q}\ \forall n\in\mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .
- We construct $\{C_n\}_{n\in\mathbb{N}}$ such that $C_n\subset I_n\setminus \left(\bigcup_{k=1}^{n-1}C_k\right)$.
- Take any bijection $\Phi_n: C_n \longrightarrow \mathbb{R}$.

Recall that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}}=\{(a_n,b_n)\}_{n\in\mathbb{N}}$ where $a_n,b_n\in\mathbb{Q}\ \forall n\in\mathbb{N}$.
- I₁ contents a Cantor type subset, denote it C₁.
- We construct $\{C_n\}_{n\in\mathbb{N}}$ such that $C_n\subset I_n\setminus\left(\bigcup_{k=1}^{n-1}C_k\right)$.
- Take any bijection $\Phi_n : C_n \longrightarrow \mathbb{R}$.
- $egin{aligned} ullet & \mathsf{Define} \ f: \mathbb{R} \longrightarrow \mathbb{R} \ \mathsf{by} \ & f(x) := \left\{egin{aligned} \Phi_n(x) & \mathsf{if} \ x \in C_n, \ 0 & \mathsf{in} \ \mathsf{other} \ \mathsf{case}. \end{aligned}
 ight. \end{aligned}$

THEOREM (Araújo, Bernal, Muñoz, Prado and Seoane, 2017)

The set of measureable everywhere surjective functions \mathcal{MES} is c-lineable.

THEOREM (Araújo, Bernal, Muñoz, Prado and Seoane, 2017)

The set of measureable everywhere surjective functions \mathcal{MES} is $\mathfrak{c}\text{-lineable}.$

THEOREM (A, B, M, P and S, 2017)

The family of sequences $(f_n)_{n\in\mathbb{N}}$ of Lebesgue measurable functions such that $f_n \longrightarrow 0$ pointwise and $f_n \in \mathcal{MES}$ is \mathfrak{c} -lineable.

Measure versus Pointwise a.e. Convergence

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\left\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\right\}\right)\longrightarrow 0, \quad (n\to\infty).$$

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\left\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\right\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (Riesz)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

Measure versus Pointwise A.E. Convergence

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\left\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\right\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (Riesz)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\left\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\right\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (Riesz)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that $f_n \longrightarrow 0$ in measure

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\left\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\right\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (Riesz)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

$$f_n \longrightarrow 0$$
 in measure

 $f_n \not\longrightarrow 0$ pointwise almost everywhere

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\left\{x\in X: |f_n(x)-f(x)|\geq \varepsilon\right\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (Riesz)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

$$f_n \longrightarrow 0$$
 in measure

 $f_n \not\longrightarrow 0$ pointwise almost everywhere

is maximal-dense-lineable.

Measure versus Pointwise a.e. Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

Measure versus Pointwise a.e. Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that $f_n \longrightarrow 0$ in measure

Measure versus Pointwise A.E. Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

 $f_n \longrightarrow 0$ in measure

 $f_n \not\longrightarrow 0$ pointwise almost everywhere

Measure versus Pointwise A.E. Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

 $f_n \longrightarrow 0$ in measure

 $f_n \not\longrightarrow 0$ pointwise almost everywhere

is strongly-algebrable.

Measure versus Pointwise A.E. Convergence

Sketch of the Proof

• Let (p_i) be the increasing sequence of prime numbers

Sketch of the Proof

- Let (p_i) be the increasing sequence of prime numbers
- Consider the functions $f_{n,j}$ given by:

$$f_{n,j}(x) = x^{\log(p_j)} T_n(x),$$

where
$$T_n(x) = \chi_{\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]}$$
 with $n = 2^k + j$, $0 \le j < 2^k$

Sketch of the Proof

- Let (p_i) be the increasing sequence of prime numbers
- Consider the functions $f_{n,i}$ given by:

$$f_{n,j}(x) = x^{\log(p_j)} T_n(x),$$

where
$$T_n(x) = \chi_{\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]}$$
 with $n = 2^k + j$, $0 \le j < 2^k$

Consider now the monic monomial m given by

$$m(x_1,x_2,\ldots,x_s)=\prod_{i=1}^s x_i^{\alpha_i}.$$

Sketch of the Proof

- Let (p_i) be the increasing sequence of prime numbers
- Consider the functions $f_{n,j}$ given by:

$$f_{n,j}(x) = x^{\log(p_j)} T_n(x),$$

where
$$T_n(x) = \chi_{\left[\frac{j}{2^k}, \frac{j+1}{2^k}\right]}$$
 with $n = 2^k + j$, $0 \le j < 2^k$

Consider now the monic monomial m given by

$$m(x_1,x_2,\ldots,x_s)=\prod_{i=1}^s x_i^{\alpha_i}.$$

• Define the index as $idx(m) = \prod_{i=1}^{s} p_i^{\alpha_i}$.

Measure versus Pointwise A.E. Convergence

SKETCH OF THE PROOF

Evaluating we get

$$m(f_{n,j_1},f_{n,j_2},\ldots,f_{n,j_s})=x^{\log(\mathrm{idx}(m))}\chi_{[j/2^k,(j+1)/2^k]}(x)$$

SKETCH OF THE PROOF

- Evaluating we get $m(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = x^{\log(idx(m))} \chi_{[j/2^k, (j+1)/2^k]}(x)$
- Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

Measure versus Pointwise A.E. Convergence

Sketch of the Proof

- Evaluating we get $m(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = x^{\log(idx(m))} \chi_{[j/2^k, (j+1)/2^k]}(x)$
- Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

• $p(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = 0$ if and only if $\lambda_t = 0$.

Measure versus Pointwise A.E. Convergence

- Evaluating we get $m(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = x^{\log(idx(m))} \chi_{[j/2^k, (j+1)/2^k]}(x)$
- Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

- $p(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = 0$ if and only if $\lambda_t = 0$.
- Thus, A is strongly-algebrable.

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that $f_n \longrightarrow 0$ pointwise

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

 $f_n \longrightarrow 0$ pointwise

 $f_n \not\longrightarrow 0$ uniformly

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

 $f_n \longrightarrow 0$ pointwise

 $f_n \not\longrightarrow 0$ uniformly

is maximal-dense-lineable.

• Let
$$f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$$
.

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}.$

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$

SKETCH OF THE PROOF

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.

SKETCH OF THE PROOF

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$,

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$, $B = \widetilde{L} := \{ \Phi = (f_n) \in L_0^{\mathbb{N}} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \geq N \}$

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$, $B = \widetilde{L} := \{\Phi = (f_n) \in L_0^{\mathbb{N}} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \geq N \}$ and A the family of sequences.

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$, $B = \widetilde{L} := \{ \Phi = (f_n) \in L_0^{\mathbb{N}} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \geq N \}$ and A the family of sequences.
- Thus, A is maximal-dense-lineable.

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that $f_n \longrightarrow 0$ pointwise

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

 $f_n \longrightarrow 0$ pointwise

 $f_n \not\longrightarrow 0$ uniformly

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,1]$ such that

 $f_n \longrightarrow 0$ pointwise

 $f_n \not\longrightarrow 0$ uniformly

is strongly-algebrable.

Sketch of the Proof

• Let (p_i) be the increasing sequence of prime numbers.

- Let (p_i) be the increasing sequence of prime numbers.
- Let $f_n(x) = n(nx)^{\log(p_j)} \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.

- Let (p_i) be the increasing sequence of prime numbers.
- Let $f_n(x) = n(nx)^{\log(p_j)} \chi_{\left\lceil \frac{1}{n+1}, \frac{1}{n} \right\rceil}(x)$.
- Evaluating we get $m(f_{n,j_1},f_{n,j_2},\ldots,f_{n,j_s})=n^s(nx)^{\log(\mathrm{idx}(m))}$

- Let (p_i) be the increasing sequence of prime numbers.
- Let $f_n(x) = n(nx)^{\log(p_j)} \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Evaluating we get $m(f_{n,j_1},f_{n,j_2},\ldots,f_{n,j_s})=n^s(nx)^{\log(\mathrm{id}x(m))}$
- Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

Sketch of the Proof

- Let (p_i) be the increasing sequence of prime numbers.
- Let $f_n(x) = n(nx)^{\log(p_j)} \chi_{\lceil \frac{1}{n+1}, \frac{1}{n} \rceil}(x)$.
- Evaluating we get $m(f_{n,j_1},f_{n,j_2},\ldots,f_{n,j_s})=n^s(nx)^{\log(\mathrm{idx}(m))}$
- Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

• $p(f_{n,i_1}, f_{n,i_2}, \dots, f_{n,i_s}) = 0$ if and only if $\lambda_t = 0$.

- Let (p_i) be the increasing sequence of prime numbers.
- Let $f_n(x) = n(nx)^{\log(p_j)} \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Evaluating we get $m(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = n^s(nx)^{\log(\operatorname{idx}(m))}$
- Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

- $p(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = 0$ if and only if $\lambda_t = 0$.
- Thus, A is strongly-algebrable.

Uniformly versus L¹ Norm Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

Uniformly versus L¹ Norm Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

 $f_n \longrightarrow 0$ uniformly

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

$$f_n \longrightarrow 0$$
 uniformly

$$f_n \not\longrightarrow 0$$
 in $\|\cdot\|_{L^1}$ norm

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

$$f_n \longrightarrow 0$$
 uniformly

$$f_n \not\longrightarrow 0$$
 in $\|\cdot\|_{L^1}$ norm

is c-lineable.

SKETCH OF THE PROOF

SKETCH OF THE PROOF

• Let
$$f_n = \frac{1}{n} \chi_{[n,2n]}$$
.

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt) = \frac{1}{n}\chi_{[n,2n]}(x-nt) = \frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x), \ t \in [0,1).$$

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt)=\frac{1}{n}\chi_{[n,2n]}(x-nt)=\frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x),\ t\in[0,1).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in [0,1)\}.$

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt)=\frac{1}{n}\chi_{[n,2n]}(x-nt)=\frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x),\ t\in[0,1).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in [0,1)\}$. Then $\dim(M) = \mathfrak{c}$

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt)=\frac{1}{n}\chi_{[n,2n]}(x-nt)=\frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x),\ t\in[0,1).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in [0,1)\}$. Then $\dim(M) = \mathfrak{c}$, so A is \mathfrak{c} -lineable.

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

 $f_n \longrightarrow 0$ uniformly

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^{\mathbb{N}}[0,+\infty)$ such that

$$f_n \longrightarrow 0$$
 uniformly

$$f_n \not\longrightarrow 0$$
 in $\|\cdot\|_{L^1}$ norm

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \in L_0^\mathbb{N}[0,+\infty)$ such that

 $f_n \longrightarrow 0$ uniformly

 $f_n \not\longrightarrow 0$ in $\|\cdot\|_{L^1}$ norm

is strongly-algebrable.

Sketch of the Proof

Sketch of the Proof

• Let (p_i) be the increasing sequence of prime numbers.

SKETCH OF THE PROOF

- Let (p_i) be the increasing sequence of prime numbers.
- Consider the functions $f_{n,j}$ given by:

$$f_{n,j}(x) = \frac{1}{n^{\log(p_j)}} \chi_{[0,e^n]}(x),$$

SKETCH OF THE PROOF

- Let (p_i) be the increasing sequence of prime numbers.
- Consider the functions $f_{n,j}$ given by:

$$f_{n,j}(x) = \frac{1}{n^{\log(p_j)}} \chi_{[0,e^n]}(x),$$

• Evaluating we get $m(f_{n,j_1},f_{n,j_2},\ldots,f_{n,j_s}) = \frac{1}{x^{\log(\operatorname{idx}(m))}} \chi_{[0,e^n]}(x)$

SKETCH OF THE PROOF

Sketch of the Proof

• Consider the algebraic combination *p* given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

SKETCH OF THE PROOF

• Consider the algebraic combination *p* given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

• $p(f_{n,j_1}, f_{n,j_2}, ..., f_{n,j_s}) = 0$ if and only if $\lambda_t = 0$.

Sketch of the Proof

• Consider the algebraic combination p given by

$$p = \sum_{t=1}^{l} \lambda_t m_t.$$

- $p(f_{n,j_1}, f_{n,j_2}, \dots, f_{n,j_s}) = 0$ if and only if $\lambda_t = 0$.
- Thus, A is strongly-algebrable.

Thank you very much for your attention