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Problem

We study a nonlinear elliptic equation with Dirichlet boundary condition: −div

(
Du

|Du|

)
+ g(u) |Du| = f in Ω ,

u = 0 on ∂Ω ,

Ω ⊂ RN is a bounded open set with Lipschitz boundary ∂Ω,

the datum f is a nonnegative function which belongs to the
Marcinkiewicz space LN,∞(Ω),

function g : [0,∞[→ [0,∞[ is continuous.

p–Laplacian operator: ∆p(u) = div (|∇u|p−2∇u) with 1 ≤ p <∞.
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Introduction

g(s) ≡ 0 −div

(
Du

|Du|

)
= f

F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, 2001.

Properties of solutions:

(i) Existence of BV –solutions is only guaranteed for data small
enough, for large data solutions become infinity in a set of
positive measure.

(ii) There is no uniqueness at all: given a solution u, we also obtain
that h(u) is a solution for every smooth increasing function h.

(iii) Solutions may have jump discontinuities.
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Introduction

g(s) ≡ 1 −div

(
Du

|Du|

)
+ |Du| = f

G. Huisken and T. Ilmanen, 2001.

J.M. Mazón and S. Segura de León, 2013.

Properties of the solution:

(i) There is always a solution, even in the case where the datum is
large.

(ii) An uniqueness result holds.

(iii) Solutions are bounded without jump discontinuities.

Goal

Our purpose is to study the role of the function g and how it affect our
solutions.
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Introduction

L. Boccardo, F. Murat and J.–P. Puel, 1982

p–Laplacian problem:{
−∆p(u) + g(u) |∇u|p = f in Ω ,

u = 0 on ∂Ω .

• 1 < p <∞ : u ∈W 1,p
0 (Ω) and f ∈W−1,p′(Ω).

• p = 1 : u ∈W 1,1
0 (Ω) and f ∈W−1,∞(Ω).
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Introduction

Special features of the 1–Laplacian operator

Natural energy space

A function u : Ω → R is a function of bounded variation BV (Ω) if
u ∈ L1(Ω) and its derivative in the sense of distributions Du is a vector
valued Radon measure with finite total variation.

−div

(
Du

|Du|

)
+ |Du| = 0

We need a vector field z ∈ DM∞(Ω) i.e., z ∈ L∞(Ω;RN) such that
div z is a Radon measure with finite total variation. Moreover, we also
need:

‖z‖L∞(Ω) ≤ 1 and (z,Du) = |Du| .
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Introduction

Definition

Let ϕ ∈ C∞0 (Ω). We define the functional

〈(z,Du), ϕ〉 = −
∫

Ω
ϕ u div z−

∫
Ω
u z · ∇ϕ dx .

This definition was given by G. Anzellotti (1983) and it can be considered
like a generalization of the scalar product of z and Du.

It was introduced to study this kind of equations by F. Andreu,
C. Ballester, V. Caselles and J.M. Mazón (2001).

(z,Du) is a Radon measure with finite total variation if

• u ∈ BV (Ω) ∩ Lp(Ω) ∩ C (Ω) and z ∈ L∞(Ω;RN) with div z ∈ Lp
′
(Ω),

with 1 < p <∞ and p′ = p−1
p . (G. Anzellotti)

• u ∈ BV (Ω) ∩ L∞(Ω) and z ∈ L∞(Ω;RN) with div z ∈ L1(Ω).
(J.M. Mazón and S. Segura de León)
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Introduction

• u ∈ BV (Ω) and z ∈ DM∞(Ω) such that div z = µ+ f for a
Radon measure µ ≥ 0 or µ ≤ 0 and f ∈ LN,∞(Ω).

[z, ν] is the weak trace of the normal component of z on ∂Ω.

• ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω)

• [z, ν] ∈ sign (−u) ⇔ u|∂Ω = 0

Green’s formula:∫
Ω
u div z +

∫
Ω

(z,Du) =

∫
∂Ω

u [z, ν] dHN−1 .

M. Latorre Bilbao, March 8–10, 2018 9 / 31



Introduction

• u ∈ BV (Ω) and z ∈ DM∞(Ω) such that div z = µ+ f for a
Radon measure µ ≥ 0 or µ ≤ 0 and f ∈ LN,∞(Ω).

[z, ν] is the weak trace of the normal component of z on ∂Ω.

• ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω)

• [z, ν] ∈ sign (−u) ⇔ u|∂Ω = 0

Green’s formula:∫
Ω
u div z +

∫
Ω

(z,Du) =

∫
∂Ω

u [z, ν] dHN−1 .

M. Latorre Bilbao, March 8–10, 2018 9 / 31



Introduction

• u ∈ BV (Ω) and z ∈ DM∞(Ω) such that div z = µ+ f for a
Radon measure µ ≥ 0 or µ ≤ 0 and f ∈ LN,∞(Ω).

[z, ν] is the weak trace of the normal component of z on ∂Ω.

• ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω)

• [z, ν] ∈ sign (−u) ⇔ u|∂Ω = 0

Green’s formula:∫
Ω
u div z +

∫
Ω

(z,Du) =

∫
∂Ω

u [z, ν] dHN−1 .

M. Latorre Bilbao, March 8–10, 2018 9 / 31



Introduction

• u ∈ BV (Ω) and z ∈ DM∞(Ω) such that div z = µ+ f for a
Radon measure µ ≥ 0 or µ ≤ 0 and f ∈ LN,∞(Ω).

[z, ν] is the weak trace of the normal component of z on ∂Ω.

• ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω)

• [z, ν] ∈ sign (−u)

⇔ u|∂Ω = 0

Green’s formula:∫
Ω
u div z +

∫
Ω

(z,Du) =

∫
∂Ω

u [z, ν] dHN−1 .

M. Latorre Bilbao, March 8–10, 2018 9 / 31



Introduction

• u ∈ BV (Ω) and z ∈ DM∞(Ω) such that div z = µ+ f for a
Radon measure µ ≥ 0 or µ ≤ 0 and f ∈ LN,∞(Ω).

[z, ν] is the weak trace of the normal component of z on ∂Ω.

• ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω)

• [z, ν] ∈ sign (−u) ⇔ u|∂Ω = 0

Green’s formula:∫
Ω
u div z +

∫
Ω

(z,Du) =

∫
∂Ω

u [z, ν] dHN−1 .

M. Latorre Bilbao, March 8–10, 2018 9 / 31



Introduction

• u ∈ BV (Ω) and z ∈ DM∞(Ω) such that div z = µ+ f for a
Radon measure µ ≥ 0 or µ ≤ 0 and f ∈ LN,∞(Ω).

[z, ν] is the weak trace of the normal component of z on ∂Ω.

• ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω)

• [z, ν] ∈ sign (−u) ⇔ u|∂Ω = 0

Green’s formula:∫
Ω
u div z +

∫
Ω

(z,Du) =

∫
∂Ω

u [z, ν] dHN−1 .

M. Latorre Bilbao, March 8–10, 2018 9 / 31



Introduction

We say that x ∈ Ω is an approximate jump point of u ∈ BV (Ω) if
there exist two real numbers u+(x) > u−(x) and νu(x) ∈ SN−1 such
that

ĺım
ρ↓0

1

|B+
ρ (x , νu(x))|

∫
B+
ρ (x,νu(x))

|u(y)− u+(x)| dy = 0 ,

ĺım
ρ↓0

1

|B−ρ (x , νu(x))|

∫
B−ρ (x,νu(x))

|u(y)− u−(x)| dy = 0 ,

where
B+
ρ (x , νu(x)) = {y ∈ Bρ(x) : 〈y − x , νu(x)〉 > 0} ,

B−ρ (x , νu(x)) = {y ∈ Bρ(x) : 〈y − x , νu(x)〉 < 0} .

We denote by Ju the set all approximate jump points of u.

D ju = (u+ − u−)νuHN−1 Ju.
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Introduction

Let 1 < q <∞. The Marcinkiewicz space Lq,∞(Ω) is the space of
all Lebesgue measurable functions u : Ω→ R such that

[u]q = sup
t>0

t |{|u| > t}|1/q < +∞ .

The relationship with Lebesgue spaces is given by the following
inclusions

Lq(Ω) ↪→ Lq,∞(Ω) ↪→ Lq−ε(Ω) .
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g ≡ 1 and LN,∞–data

Definition

Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u is a weak solution to our
problem if

u ∈ BV (Ω) with D ju = 0,

there exists z ∈ DM∞(Ω) with ‖z‖L∞(Ω) ≤ 1 such that

(i) −div z + |Du| = f in D′(Ω),

(ii) (z,Du) = |Du| as measures in Ω,

(iii) u|∂Ω = 0.
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g ≡ 1 and LN,∞–data

Theorem

Let f ∈ LN,∞(Ω) with f ≥ 0. There is a u ∈ BV (Ω) solution to problem −div

(
Du

|Du|

)
+ |Du| = f in Ω ,

u = 0 on ∂Ω .

Comparison principle

Let f1 and f2 ∈ LN,∞(Ω) with 0 ≤ f1 ≤ f2. If u1 and u2 are the solution to
problem with data f1 and f2, respectively, then, u1 ≤ u2.

There is a unique solution to our problem.

Theorem

Moreover, u ∈ Lq(Ω) for all 1 ≤ q <∞.
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g ≡ 1 and LN,∞–data

Example

Let R > 0 and Ω = BR(0). We consider −div

(
Du

|Du|

)
+ |Du| =

λ

|x |
in Ω ,

u = 0 on ∂Ω ,

with λ > N − 1.

The solution is given by u(x) = (N − 1− λ) log

(
|x |
R

)
.
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g ≡ 1 and LN,∞–data

Approximate problems for 1 < p <∞ −div
(
|∇u|p−2∇u

)
+ |∇u|p = λ

up−1

|x |p
in Ω ,

u = 0 on ∂Ω .

B. Abdellaoui, I. Peral, A. Primo (2007) proved that:

−∆u + |∇u|2 = λ
u

|x |2
There is a solution for all λ > 0.

−∆u = λ
u

|x |2
There is a solution for
λ > 0 small enough.
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A general gradient term
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A general gradient term

Problem  −div

(
Du

|Du|

)
+ g(u)|Du| = f in Ω ,

u = 0 on ∂Ω ,

Ω ⊂ RN is a bounded open set with Lipschitz boundary ∂Ω,

the datum f is a nonnegative function which belongs to the
Marcinkiewicz space LN,∞(Ω),

g : [0,∞[→ [0,∞[ is continuous.

First case: there exists m > 0 such that g(s) > m > 0.
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A general gradient term

Definition

Let f ∈ LN,∞(Ω) with f ≥ 0 and let g be a continuous function such that
g(s) > m > 0 for all s > 0. We say that u is a weak solution to our
problem if

u ∈ BV (Ω) with D ju = 0,

there exists z ∈ DM∞(Ω) with ‖z‖L∞(Ω) ≤ 1 such that

(i) −div z + |Du| = f in D′(Ω),

(ii) (z,Du) = |Du| as measures in Ω,

(iii) u|∂Ω = 0.

Theorem

There is a unique solution to this problem when g is a continuous function
such that there exists m > 0 with g(s) > m for all s > 0.
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g(s) touches the s–axis

Problem  −div

(
Du

|Du|

)
+ g(u)|Du| = f in Ω ,

u = 0 on ∂Ω ,

g is continuous and such that g(s) > 0 for almost every s > 0.

Particular case: ∃m, t0 > 0 with g(s) > m > 0 for all s ≥ t0.

Theorem

With the function g defined as above, there exists a unique solution to our
problem.
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g(s) touches the s–axis

Example

Let Ω = B1(0). Consider problem −div

(
Du

|Du|

)
+ g(u)|Du| =

λ

|x |
in Ω ,

u = 0 on ∂Ω ,

with g(s) =
1

1 + s
.
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g(s) touches the s–axis

The solution for λ > N − 1 is

u(x) = |x |N−1−λ − 1 .

Nevertheless, for λ > 2(N − 1) we have u 6∈ BV (Ω) because

|Du| = (N − 1− λ)|x |N−2−λ

is no integrable.
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g(s) touches the s–axis

We define G (s) =

∫ s

0
g(σ) dσ.

Definition

Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u is a weak solution to our
problem if

G (u) ∈ BV (Ω) with D jG (u) = 0,

there exists z ∈ DM∞(Ω) with ‖z‖L∞(Ω) ≤ 1 such that

(i) −div z + g(u)|Du| = f in D′(Ω),

(ii) (z,DG (u)) = |DG (u)| as measures in Ω,

(iii) u|∂Ω = 0.

M. Latorre Bilbao, March 8–10, 2018 24 / 31



g(s) touches the s–axis

We define G (s) =

∫ s

0
g(σ) dσ.

Definition

Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u is a weak solution to our
problem if

G (u) ∈ BV (Ω) with D jG (u) = 0,

there exists z ∈ DM∞(Ω) with ‖z‖L∞(Ω) ≤ 1 such that

(i) −div z + g(u)|Du| = f in D′(Ω),

(ii) (z,DG (u)) = |DG (u)| as measures in Ω,

(iii) u|∂Ω = 0.

M. Latorre Bilbao, March 8–10, 2018 24 / 31



g(s) touches the s–axis

We define G (s) =

∫ s

0
g(σ) dσ.

Definition

Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u is a weak solution to our
problem if

G (u) ∈ BV (Ω) with D jG (u) = 0,

there exists z ∈ DM∞(Ω) with ‖z‖L∞(Ω) ≤ 1 such that

(i) −div z + g(u)|Du| = f in D′(Ω),

(ii) (z,DG (u)) = |DG (u)| as measures in Ω,

(iii) u|∂Ω = 0.

M. Latorre Bilbao, March 8–10, 2018 24 / 31



g(s) touches the s–axis

We define G (s) =

∫ s

0
g(σ) dσ.

Definition

Let f ∈ LN,∞(Ω) with f ≥ 0. We say that u is a weak solution to our
problem if

G (u) ∈ BV (Ω) with D jG (u) = 0,
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g(s) touches the s–axis

Theorem

Assume that the function g is continuous, and no integrable with g(s) > 0
a.e. in [0,∞[.

Then, there is a unique solution to our problem.

Other cases:

g integrable:

• If ‖f ‖LN,∞(Ω) ≤ SN , then the trivial solution is obtained.

• If ‖f ‖LN,∞(Ω) > CSN , then there is no solution.

g = 0 on an interval:

• There is not uniqueness in any way,

• the solution may have jump part and

• we cannot assure that the boundary condition holds.
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g(s) touches the s–axis

Example

Let Ω = B1(0). Consider problem −div

(
Du

|Du|

)
+ g(u) |Du| =

N

|x |
in Ω ,

u = 0 on ∂Ω ,

with g(s) =

{
0 if 0 ≤ s ≤ 1 ,
s − 1 if 1 < s .
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g(s) touches the s–axis

The solution is

Although u
∣∣
∂Ω

= 1, the solution achieves the boundary weakly:

[z, ν] = − x

|x |
x

|x |
= −1 = sign (−u) .
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Example

Let Ω = B1(0). Consider problem −div

(
Du

|Du|

)
+ g(u) |Du| =

N

|x |
in Ω ,

u = 0 on ∂Ω ,

with g(s) =


1− s if 0 ≤ s < 1 ,
0 if 1 ≤ s ≤ 2 ,
s − 2 if 2 < s .
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g(s) touches the s–axis

The solution is given by

which has jump part.
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Conclusions

Function g
Existence and

uniqueness
Regularity

0 < m ≤ g(s) For all data
D ju = 0,

u ∈ Lq(Ω) for 1 ≤ q <∞

0 < m < g(s) for s > t0 For all data D ju = 0

g(s) > 0 a.e. in [0,∞[
For all data, with other

concept of solution
D ju = 0

g ∈ L1([0,∞[) For data small enough D ju = 0

g(s) = 0 in an interval No uniqueness D ju 6= 0, u
∣∣
∂Ω
6= 0
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Conclusions

Thank you
for your attention
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