A Dirichlet problem involving the 1–Laplacian operator

Marta Latorre Balado joint work with Sergio Segura de León

Universitat de València

XIV Encuentro de la Red de Análisis Funcional y Aplicaciones

Bilbao, March 8-10, 2018

We study a nonlinear elliptic equation with Dirichlet boundary condition:

$$\left\{ \begin{array}{l} -{\rm div}\, \left(\frac{Du}{|Du|}\right) + g(u)\, |Du| = f \quad {\rm in} \ \Omega\,, \\ \\ u = 0 \qquad \qquad {\rm on} \ \partial\Omega\,, \end{array} \right.$$

We study a nonlinear elliptic equation with Dirichlet boundary condition:

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)\,|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

p-Laplacian operator:
$$\Delta_p(u) = \text{div}(|\nabla u|^{p-2}\nabla u)$$
 with $1 \le p < \infty$.

M. Latorre

We study a nonlinear elliptic equation with Dirichlet boundary condition:

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)\,|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

 $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial \Omega$,

p-Laplacian operator: $\Delta_p(u) = \text{div}(|\nabla u|^{p-2}\nabla u)$ with $1 \le p < \infty$.

We study a nonlinear elliptic equation with Dirichlet boundary condition:

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)\,|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

- ullet $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial \Omega$,
- the datum f is a nonnegative function which belongs to the Marcinkiewicz space $L^{N,\infty}(\Omega)$,

p-Laplacian operator: $\Delta_p(u) = \text{div}(|\nabla u|^{p-2}\nabla u)$ with $1 \le p < \infty$.

M. Latorre

We study a nonlinear elliptic equation with Dirichlet boundary condition:

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)\,|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

- ullet $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial \Omega$,
- the datum f is a nonnegative function which belongs to the Marcinkiewicz space $L^{N,\infty}(\Omega)$,
- function $g:[0,\infty[\to[0,\infty[$ is continuous.

p–Laplacian operator: $\Delta_p(u) = \text{div}(|\nabla u|^{p-2}\nabla u)$ with $1 \le p < \infty$.

- 1 Introduction
- **2** $g \equiv 1$ and $L^{N,\infty}$ -data

3 A general gradient term

4 g(s) touches the s-axis

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{0} \qquad \qquad -\text{div } \left(\frac{\mathbf{D}\mathbf{u}}{|\mathbf{D}\mathbf{u}|} \right) = \mathbf{f}$$

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{0} \qquad \qquad -\text{div } \left(\frac{\mathbf{D}\mathbf{u}}{|\mathbf{D}\mathbf{u}|} \right) = \mathbf{f}$$

F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, 2001.

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{0} \qquad \qquad -\text{div } \left(\frac{\mathbf{D}\mathbf{u}}{|\mathbf{D}\mathbf{u}|} \right) = \mathbf{f}$$

- F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, 2001.
- Properties of solutions:

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{0} \qquad \qquad -\text{div } \left(\frac{\mathbf{D}\mathbf{u}}{|\mathbf{D}\mathbf{u}|} \right) = \mathbf{f}$$

- F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, 2001.
- Properties of solutions:
 - (i) Existence of *BV*-solutions is only guaranteed for data small enough, for large data solutions become infinity in a set of positive measure.

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{0} \qquad \qquad -\mathbf{div} \, \left(\frac{\mathbf{D}\mathbf{u}}{|\mathbf{D}\mathbf{u}|} \right) = \mathbf{f}$$

- F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, 2001.
- Properties of solutions:
 - (i) Existence of BV-solutions is only guaranteed for data small enough, for large data solutions become infinity in a set of positive measure.
 - (ii) There is no uniqueness at all: given a solution u, we also obtain that h(u) is a solution for every smooth increasing function h.

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{0} \qquad \qquad -\mathbf{div} \, \left(\frac{\mathbf{D}\mathbf{u}}{|\mathbf{D}\mathbf{u}|} \right) = \mathbf{f}$$

- F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, 2001.
- Properties of solutions:
 - (i) Existence of BV-solutions is only guaranteed for data small enough, for large data solutions become infinity in a set of positive measure.
 - (ii) There is no uniqueness at all: given a solution u, we also obtain that h(u) is a solution for every smooth increasing function h.
 - (iii) Solutions may have jump discontinuities.

$$\mathbf{g(s)} \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{Du}{|Du|} \right) + |Du| = \mathbf{f}$$

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{\mathsf{D} \mathbf{u}}{|\mathsf{D} \mathbf{u}|} \right) + |\mathsf{D} \mathbf{u}| = \mathbf{f}$$

- G. Huisken and T. Ilmanen, 2001.
- J.M. Mazón and S. Segura de León, 2013.

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{\mathsf{D}\mathbf{u}}{|\mathsf{D}\mathbf{u}|} \right) + |\mathsf{D}\mathbf{u}| = \mathbf{f}$$

- G. Huisken and T. Ilmanen, 2001.
- J.M. Mazón and S. Segura de León, 2013.
- Properties of the solution:

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{\mathsf{D} u}{|\mathsf{D} u|} \right) + |\mathsf{D} u| = \mathbf{f}$$

- G. Huisken and T. Ilmanen, 2001.
- J.M. Mazón and S. Segura de León, 2013.
- Properties of the solution:
 - (i) There is always a solution, even in the case where the datum is large.

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{D\mathbf{u}}{|D\mathbf{u}|} \right) + |D\mathbf{u}| = \mathbf{f}$$

- G. Huisken and T. Ilmanen, 2001.
- J.M. Mazón and S. Segura de León, 2013.
- Properties of the solution:
 - (i) There is always a solution, even in the case where the datum is large.
 - (ii) An uniqueness result holds.

$$\mathbf{g(s)} \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{\text{D} u}{|\text{D} u|} \right) + |\text{D} u| = \mathbf{f}$$

- G. Huisken and T. Ilmanen, 2001.
- J.M. Mazón and S. Segura de León, 2013.
- Properties of the solution:
 - (i) There is always a solution, even in the case where the datum is large.
 - (ii) An uniqueness result holds.
 - (iii) Solutions are bounded without jump discontinuities.

$$\mathbf{g}(\mathbf{s}) \equiv \mathbf{1} \qquad \qquad -\text{div } \left(\frac{D\mathbf{u}}{|D\mathbf{u}|} \right) + |D\mathbf{u}| = \mathbf{f}$$

- G. Huisken and T. Ilmanen, 2001.
- J.M. Mazón and S. Segura de León, 2013.
- Properties of the solution:
 - (i) There is always a solution, even in the case where the datum is large.
 - (ii) An uniqueness result holds.
 - (iii) Solutions are bounded without jump discontinuities.

Goal

Our purpose is to study the role of the function g and how it affect our solutions.

$$\left\{ \begin{array}{ll} -\Delta_p(u)+g(u)\,|\nabla u|^p=f & \text{in } \Omega\,, \\ \\ u=0 & \text{on } \partial\Omega\,. \end{array} \right.$$

p–Laplacian problem:

$$\left\{ \begin{array}{ll} -\Delta_{p}(u)+g(u)\left|\nabla u\right|^{p}=f & \text{in } \Omega\,, \\ \\ u=0 & \text{on } \partial\Omega\,. \end{array} \right.$$

• 1

p-Laplacian problem:

$$\left\{ \begin{array}{ll} -\Delta_p(u) + g(u) \, |\nabla u|^p = f & \text{in } \Omega \,, \\ \\ u = 0 & \text{on } \partial\Omega \,. \end{array} \right.$$

• 1

p-Laplacian problem:

$$\begin{cases} -\Delta_p(u) + g(u) |\nabla u|^p = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

• $1 : <math>u \in W_0^{1,p}(\Omega)$ and $f \in L^{\frac{N_p}{N_p - N_{+p}}}(\Omega) \subset W^{-1,p'}(\Omega)$.

$$\left\{ \begin{array}{ll} -\Delta_p(u) + g(u) \, |\nabla u|^p = f & \text{in } \Omega \, , \\ \\ u = 0 & \text{on } \partial\Omega \, . \end{array} \right.$$

- $1 : <math>u \in W_0^{1,p}(\Omega)$ and $f \in L^{\frac{N_p}{N_p N_{+p}}}(\Omega) \subset W^{-1,p'}(\Omega)$.
- p=1: $u\in W_0^{1,1}(\Omega)$

$$\left\{ \begin{array}{ll} -\Delta_p(u)+g(u)\left|\nabla u\right|^p=f & \text{in } \Omega\,, \\ \\ u=0 & \text{on } \partial\Omega\,. \end{array} \right.$$

- $1 : <math>u \in W_0^{1,p}(\Omega)$ and $f \in L^{\frac{N_p}{N_p N_{+p}}}(\Omega) \subset W^{-1,p'}(\Omega)$.
- p=1: $u\in W_0^{1,1}(\Omega)$ and $f\in W^{-1,\infty}(\Omega)$.

$$\begin{cases} -\Delta_p(u) + g(u) |\nabla u|^p = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

- $1 : <math>u \in W_0^{1,p}(\Omega)$ and $f \in L^{\frac{N_p}{N_p N + p}}(\Omega) \subset W^{-1,p'}(\Omega)$.
- p=1: $u \in W_0^{1,1}(\Omega)$ and $f \in L^N(\Omega) \subset W^{-1,\infty}(\Omega)$.

$$\left\{ \begin{array}{ll} -\Delta_p(u)+g(u)\left|\nabla u\right|^p=f & \text{in } \Omega\,, \\ \\ u=0 & \text{on } \partial\Omega\,. \end{array} \right.$$

- $1 : <math>u \in W_0^{1,p}(\Omega)$ and $f \in L^{\frac{N_p}{N_p N + p}}(\Omega) \subset W^{-1,p'}(\Omega)$.
- p=1: $u \in \mathcal{W}_0^{1,1}(\Omega)$ and $f \in L^N(\Omega) \subset W^{-1,\infty}(\Omega)$.

Natural energy space

A function $u:\Omega\to\mathbb{R}$ is a function of **bounded variation** $BV(\Omega)$ if $u\in L^1(\Omega)$ and its derivative in the sense of distributions Du is a vector valued Radon measure with finite total variation.

Natural energy space

A function $u: \Omega \to \mathbb{R}$ is a function of **bounded variation** $BV(\Omega)$ if $u \in L^1(\Omega)$ and its derivative in the sense of distributions Du is a vector valued Radon measure with finite total variation.

$$-\text{div }\left(\frac{\text{D} u}{|\text{D} u|}\right) + |\text{D} u| = 0$$

Natural energy space

A function $u:\Omega\to\mathbb{R}$ is a function of **bounded variation** $BV(\Omega)$ if $u\in L^1(\Omega)$ and its derivative in the sense of distributions Du is a vector valued Radon measure with finite total variation.

$$-\text{div }\left(\frac{\text{Du}}{|\text{Du}|}\right)+|\text{Du}|=0$$

■ We need a vector field $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ i.e., $\mathbf{z} \in L^{\infty}(\Omega; \mathbb{R}^N)$ such that div \mathbf{z} is a Radon measure with finite total variation.

Natural energy space

A function $u:\Omega\to\mathbb{R}$ is a function of **bounded variation** $BV(\Omega)$ if $u\in L^1(\Omega)$ and its derivative in the sense of distributions Du is a vector valued Radon measure with finite total variation.

$$-\text{div }\left(\frac{\text{D} u}{|\text{D} u|}\right) + |\text{D} u| = 0$$

■ We need a vector field $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ i.e., $\mathbf{z} \in L^{\infty}(\Omega; \mathbb{R}^N)$ such that div \mathbf{z} is a Radon measure with finite total variation. Moreover, we also need:

$$\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$$

Natural energy space

A function $u:\Omega\to\mathbb{R}$ is a function of **bounded variation** $BV(\Omega)$ if $u\in L^1(\Omega)$ and its derivative in the sense of distributions Du is a vector valued Radon measure with finite total variation.

$$-\text{div }\left(\frac{\text{D} u}{|\text{D} u|}\right) + |\text{D} u| = 0$$

■ We need a vector field $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ i.e., $\mathbf{z} \in L^{\infty}(\Omega; \mathbb{R}^N)$ such that div \mathbf{z} is a Radon measure with finite total variation. Moreover, we also need:

$$\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$$
 and $(\mathbf{z}, Du) = |Du|$.

Definition

Let $\varphi \in C_0^{\infty}(\Omega)$. We define the functional

$$\langle (\mathbf{z}, Du), \varphi \rangle = -\int_{\Omega} \varphi \, u \, \text{div} \, \mathbf{z} - \int_{\Omega} u \, \mathbf{z} \cdot \nabla \varphi \, dx \,.$$

Definition

Let $\varphi \in C_0^{\infty}(\Omega)$. We define the functional

$$\langle (\mathbf{z}, Du), \varphi \rangle = -\int_{\Omega} \varphi \, u \, \mathrm{div} \, \mathbf{z} - \int_{\Omega} u \, \mathbf{z} \cdot \nabla \varphi \, dx \,.$$

This definition was given by G. Anzellotti (1983) and it can be considered like a generalization of the scalar product of z and Du.

Definition

Let $\varphi \in C_0^{\infty}(\Omega)$. We define the functional

$$\langle (\mathbf{z}, Du), \varphi \rangle = -\int_{\Omega} \varphi \, u \, \text{div} \, \mathbf{z} - \int_{\Omega} u \, \mathbf{z} \cdot \nabla \varphi \, dx \, .$$

This definition was given by G. Anzellotti (1983) and it can be considered like a generalization of the scalar product of z and Du.

It was introduced to study this kind of equations by F. Andreu,
 C. Ballester, V. Caselles and J.M. Mazón (2001).

Let $\varphi \in C_0^{\infty}(\Omega)$. We define the functional

$$\langle (\mathbf{z}, Du), \varphi \rangle = -\int_{\Omega} \varphi \, u \, \text{div} \, \mathbf{z} - \int_{\Omega} u \, \mathbf{z} \cdot \nabla \varphi \, dx \,.$$

This definition was given by G. Anzellotti (1983) and it can be considered like a generalization of the scalar product of z and Du.

- It was introduced to study this kind of equations by F. Andreu,
 C. Ballester, V. Caselles and J.M. Mazón (2001).
- (z, Du) is a Radon measure with finite total variation if

Let $\varphi \in C_0^{\infty}(\Omega)$. We define the functional

$$\langle (\mathbf{z}, Du), \varphi \rangle = -\int_{\Omega} \varphi \, u \, \text{div} \, \mathbf{z} - \int_{\Omega} u \, \mathbf{z} \cdot \nabla \varphi \, dx \,.$$

This definition was given by G. Anzellotti (1983) and it can be considered like a generalization of the scalar product of \mathbf{z} and Du.

- It was introduced to study this kind of equations by F. Andreu,
 C. Ballester, V. Caselles and J.M. Mazón (2001).
- \mathbf{z} (\mathbf{z} , Du) is a Radon measure with finite total variation if
 - $u \in BV(\Omega) \cap L^p(\Omega) \cap C(\Omega)$ and $\mathbf{z} \in L^{\infty}(\Omega; \mathbb{R}^N)$ with div $\mathbf{z} \in L^{p'}(\Omega)$, with $1 and <math>p' = \frac{p-1}{p}$. (G. Anzellotti)

Let $\varphi \in C_0^{\infty}(\Omega)$. We define the functional

$$\langle (\mathbf{z}, Du), \varphi \rangle = -\int_{\Omega} \varphi \, u \operatorname{div} \mathbf{z} - \int_{\Omega} u \, \mathbf{z} \cdot \nabla \varphi \, dx \,.$$

This definition was given by G. Anzellotti (1983) and it can be considered like a generalization of the scalar product of z and Du.

- It was introduced to study this kind of equations by F. Andreu,
 C. Ballester, V. Caselles and J.M. Mazón (2001).
- \mathbf{z} (\mathbf{z} , Du) is a Radon measure with finite total variation if
 - $u \in BV(\Omega) \cap L^p(\Omega) \cap C(\Omega)$ and $\mathbf{z} \in L^{\infty}(\Omega; \mathbb{R}^N)$ with div $\mathbf{z} \in L^{p'}(\Omega)$, with $1 and <math>p' = \frac{p-1}{p}$. (G. Anzellotti)
 - $u \in BV(\Omega) \cap L^{\infty}(\Omega)$ and $\mathbf{z} \in L^{\infty}(\Omega; \mathbb{R}^N)$ with div $\mathbf{z} \in L^1(\Omega)$. (J.M. Mazón and S. Segura de León)

8 / 31

M. Latorre Bilbao, March 8-10, 2018

• $u \in BV(\Omega)$ and $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ such that $\operatorname{div} \mathbf{z} = \mu + f$ for a Radon measure $\mu \geq 0$ or $\mu \leq 0$ and $f \in L^{N,\infty}(\Omega)$.

- $u \in BV(\Omega)$ and $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ such that div $\mathbf{z} = \mu + f$ for a Radon measure $\mu \geq 0$ or $\mu \leq 0$ and $f \in L^{N,\infty}(\Omega)$.
- \blacksquare [**z**, ν] is the weak trace of the normal component of **z** on $\partial\Omega$.

- $u \in BV(\Omega)$ and $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ such that div $\mathbf{z} = \mu + f$ for a Radon measure $\mu \geq 0$ or $\mu \leq 0$ and $f \in L^{N,\infty}(\Omega)$.
- \mathbf{z}, ν is the weak trace of the normal component of \mathbf{z} on $\partial\Omega$.
 - $\|[\mathbf{z}, \nu]\|_{L^{\infty}(\partial\Omega)} \leq \|\mathbf{z}\|_{L^{\infty}(\Omega)}$

- $u \in BV(\Omega)$ and $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ such that div $\mathbf{z} = \mu + f$ for a Radon measure $\mu \geq 0$ or $\mu \leq 0$ and $f \in L^{N,\infty}(\Omega)$.
- ${f z}$ [${f z},
 u$] is the weak trace of the normal component of ${f z}$ on $\partial \Omega$.
 - $\|[\mathbf{z}, \nu]\|_{L^{\infty}(\partial\Omega)} \leq \|\mathbf{z}\|_{L^{\infty}(\Omega)}$
 - $[\mathbf{z}, \nu] \in \operatorname{sign}(-u)$

- $u \in BV(\Omega)$ and $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ such that div $\mathbf{z} = \mu + f$ for a Radon measure $\mu \geq 0$ or $\mu \leq 0$ and $f \in L^{N,\infty}(\Omega)$.
- ${f z}$ [${f z},
 u$] is the weak trace of the normal component of ${f z}$ on $\partial \Omega$.
 - $\|[\mathbf{z}, \nu]\|_{L^{\infty}(\partial\Omega)} \leq \|\mathbf{z}\|_{L^{\infty}(\Omega)}$
 - $[\mathbf{z}, \nu] \in \operatorname{sign}(-u) \Leftrightarrow u|_{\partial\Omega} = 0$

- $u \in BV(\Omega)$ and $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ such that div $\mathbf{z} = \mu + f$ for a Radon measure $\mu \geq 0$ or $\mu \leq 0$ and $f \in L^{N,\infty}(\Omega)$.
- \mathbf{z}, ν is the weak trace of the normal component of \mathbf{z} on $\partial\Omega$.
 - $\|[\mathbf{z}, \nu]\|_{L^{\infty}(\partial\Omega)} \leq \|\mathbf{z}\|_{L^{\infty}(\Omega)}$
 - $[\mathbf{z}, \nu] \in \operatorname{sign}(-u) \Leftrightarrow u|_{\partial\Omega} = 0$
- Green's formula:

$$\int_{\Omega} u \operatorname{div} \mathbf{z} + \int_{\Omega} (\mathbf{z}, Du) = \int_{\partial \Omega} u [\mathbf{z},
u] d\mathcal{H}^{N-1}.$$

■ We say that $x \in \Omega$ is an **approximate jump point** of $u \in BV(\Omega)$ if there exist two real numbers $u_+(x) > u_-(x)$ and $\nu_u(x) \in S^{N-1}$ such that

$$\begin{split} & \lim_{\rho \downarrow 0} \frac{1}{|B_{\rho}^{+}(x,\nu_{u}(x))|} \int_{B_{\rho}^{+}(x,\nu_{u}(x))} |u(y)-u_{+}(x)| \, dy = 0 \, , \\ & \lim_{\rho \downarrow 0} \frac{1}{|B_{\rho}^{-}(x,\nu_{u}(x))|} \int_{B_{\rho}^{-}(x,\nu_{u}(x))} |u(y)-u_{-}(x)| \, dy = 0 \, , \end{split}$$

where

$$\begin{split} & \mathcal{B}_{\rho}^{+}(x,\nu_{u}(x)) = \left\{y \in \mathcal{B}_{\rho}(x) : \left\langle y - x, \nu_{u}(x) \right\rangle > 0 \right\}, \\ & \mathcal{B}_{\rho}^{-}(x,\nu_{u}(x)) = \left\{y \in \mathcal{B}_{\rho}(x) : \left\langle y - x, \nu_{u}(x) \right\rangle < 0 \right\}. \end{split}$$

- We denote by J_u the set all approximate jump points of u.
- $D^j u = (u^+ u^-) \nu_u \mathcal{H}^{N-1} \bot J_u.$

■ Let $1 < q < \infty$. The Marcinkiewicz space $L^{q,\infty}(\Omega)$ is the space of all Lebesgue measurable functions $u : \Omega \to \mathbb{R}$ such that

$$[u]_q = \sup_{t>0} t \, |\{|u|>t\}|^{1/q} < +\infty \, .$$

The relationship with Lebesgue spaces is given by the following inclusions

$$L^q(\Omega) \hookrightarrow L^{q,\infty}(\Omega) \hookrightarrow L^{q-\epsilon}(\Omega)$$
.

$$g \equiv 1$$
 and $L^{N,\infty}$ -data

Let $f \in L^{N,\infty}(\Omega)$ with $f \geq 0$. We say that u is a **weak solution** to our problem if

• $u \in BV(\Omega)$ with $D^j u = 0$,

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + |Du| = f$ in $\mathcal{D}'(\Omega)$,

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + |Du| = f$ in $\mathcal{D}'(\Omega)$,
 - (ii) $(\mathbf{z}, Du) = |Du|$ as measures in Ω ,

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + |Du| = f$ in $\mathcal{D}'(\Omega)$,
 - (ii) $(\mathbf{z}, Du) = |Du|$ as measures in Ω ,
 - (iii) $u|_{\partial\Omega}=0$.

Let $f \in L^{N,\infty}(\Omega)$ with $f \geq 0$. There is a $u \in BV(\Omega)$ solution to problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + |Du| = f & {\rm in} \ \Omega\,, \\ \\ u = 0 & {\rm on} \ \partial\Omega\,. \end{array} \right.$$

Let $f \in L^{N,\infty}(\Omega)$ with $f \geq 0$. There is a $u \in BV(\Omega)$ solution to problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + |Du| = f & {\rm in} \ \Omega\,, \\ u = 0 & {\rm on} \ \partial\Omega\,. \end{array} \right.$$

Comparison principle

Let f_1 and $f_2 \in L^{N,\infty}(\Omega)$ with $0 \le f_1 \le f_2$. If u_1 and u_2 are the solution to problem with data f_1 and f_2 , respectively, then, $u_1 \le u_2$.

Let $f \in L^{N,\infty}(\Omega)$ with $f \geq 0$. There is a $u \in BV(\Omega)$ solution to problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + |Du| = f & {\rm in} \ \Omega\,, \\ u = 0 & {\rm on} \ \partial\Omega\,. \end{array} \right.$$

Comparison principle

Let f_1 and $f_2 \in L^{N,\infty}(\Omega)$ with $0 \le f_1 \le f_2$. If u_1 and u_2 are the solution to problem with data f_1 and f_2 , respectively, then, $u_1 \le u_2$.

There is a **unique solution** to our problem.

Let $f \in L^{N,\infty}(\Omega)$ with $f \geq 0$. There is a $u \in BV(\Omega)$ solution to problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + |Du| = f & {\rm in} \ \Omega\,, \\ u = 0 & {\rm on} \ \partial\Omega\,. \end{array} \right.$$

Comparison principle

Let f_1 and $f_2 \in L^{N,\infty}(\Omega)$ with $0 \le f_1 \le f_2$. If u_1 and u_2 are the solution to problem with data f_1 and f_2 , respectively, then, $u_1 \le u_2$.

There is a **unique solution** to our problem.

Theorem

Moreover, $u \in L^q(\Omega)$ for all $1 < q < \infty$.

Example

Let R > 0 and $\Omega = B_R(0)$. We consider

$$\left\{ \begin{array}{ll} -{\rm div} \left(\frac{Du}{|Du|} \right) + |Du| = \frac{\lambda}{|x|} & \text{in } \Omega \,, \\[0.2cm] u = 0 & \text{on } \partial \Omega \,, \end{array} \right.$$

with $\lambda > N-1$.

Example

Let R > 0 and $\Omega = B_R(0)$. We consider

$$\left\{ \begin{array}{ll} -{\rm div} \left(\frac{Du}{|Du|} \right) + |Du| = \frac{\lambda}{|x|} & \text{in } \Omega \,, \\[0.2cm] u = 0 & \text{on } \partial \Omega \,, \end{array} \right.$$

with $\lambda > N-1$.

■ The solution is given by $u(x) = (N - 1 - \lambda) \log \left(\frac{|x|}{R}\right)$.

M. Latorre

Approximate problems for 1

$$\left\{ \begin{array}{ll} -{\rm div}\, \left(|\nabla u|^{p-2}\nabla u\right) + |\nabla u|^p = \lambda \frac{u^{p-1}}{|x|^p} & \text{in } \Omega\,, \\ u = 0 & \text{on } \partial\Omega\,. \end{array} \right.$$

B. Abdellaoui, I. Peral, A. Primo (2007) proved that:

$$-\Delta u + |\nabla u|^2 = \lambda \frac{u}{|x|^2}$$
 There is a solution for all $\lambda > 0$.

Approximate problems for 1

$$\left\{ \begin{array}{ll} -{\rm div}\, \left(|\nabla u|^{p-2} \nabla u \right) + |\nabla u|^p = \lambda \frac{u^{p-1}}{|x|^p} & \text{in } \Omega\,, \\ u = 0 & \text{on } \partial \Omega \end{array} \right.$$

B. Abdellaoui, I. Peral, A. Primo (2007) proved that:

$$-\Delta u + |\nabla u|^2 = \lambda \frac{u}{|x|^2} \qquad \text{There is a solution for all } \lambda > 0.$$

$$-\Delta u = \lambda \frac{u}{|x|^2}$$
 There is a solution for $\lambda > 0$ small enough.

A general gradient term

$$\begin{cases} -\operatorname{div}\left(\frac{Du}{|Du|}\right) + \mathbf{g(u)}|Du| = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

■ $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial\Omega$,

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)|Du|=f & {\rm in} \ \Omega\,, \\ \\ u=0 & {\rm on} \ \partial\Omega\,, \end{array} \right.$$

- ullet $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial \Omega$,
- the datum f is a nonnegative function which belongs to the Marcinkiewicz space $L^{N,\infty}(\Omega)$,

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

- ullet $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial \Omega$,
- the datum f is a nonnegative function which belongs to the Marcinkiewicz space $L^{N,\infty}(\Omega)$,
- $g:[0,\infty[\to[0,\infty[$ is continuous.

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right)+g(u)|Du|=f & {\rm in}\ \Omega\,, \\ \\ u=0 & {\rm on}\ \partial\Omega\,, \end{array} \right.$$

- $\Omega \subset \mathbb{R}^N$ is a bounded open set with Lipschitz boundary $\partial \Omega$,
- the datum f is a nonnegative function which belongs to the Marcinkiewicz space $L^{N,\infty}(\Omega)$,
- $g:[0,\infty[\to[0,\infty[$ is continuous.
- First case: there exists m > 0 such that g(s) > m > 0.

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

• $u \in BV(\Omega)$ with $D^j u = 0$,

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that

(i)
$$-\operatorname{div} \mathbf{z} + \mathbf{g}(\mathbf{u})|D\mathbf{u}| = f \text{ in } \mathcal{D}'(\Omega),$$

Definition

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + \mathbf{g}(\mathbf{u})|D\mathbf{u}| = f \text{ in } \mathcal{D}'(\Omega),$
 - (ii) $(\mathbf{z}, Du) = |Du|$ as measures in Ω ,

Definition

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + \mathbf{g}(\mathbf{u})|D\mathbf{u}| = f \text{ in } \mathcal{D}'(\Omega),$
 - (ii) (z, Du) = |Du| as measures in Ω ,
 - (iii) $u|_{\partial\Omega}=0$.

Definition

Let $f \in L^{N,\infty}(\Omega)$ with $f \ge 0$ and let g be a continuous function such that g(s) > m > 0 for all s > 0. We say that u is a **weak solution** to our problem if

- $u \in BV(\Omega)$ with $D^j u = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + \mathbf{g}(\mathbf{u})|D\mathbf{u}| = f \text{ in } \mathcal{D}'(\Omega),$
 - (ii) $(\mathbf{z}, Du) = |Du|$ as measures in Ω ,
 - (iii) $u|_{\partial\Omega}=0$.

Theorem

There is a **unique solution** to this problem when g is a continuous function such that there exists m > 0 with g(s) > m for all s > 0.

g(s) touches the s-axis

Problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + g(u)|Du| = f & {\rm in} \ \Omega\,, \\ \\ u = 0 & {\rm on} \ \partial\Omega\,, \end{array} \right.$$

g is continuous and such that g(s) > 0 for almost every s > 0.

Problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + g(u)|Du| = f & {\rm in} \ \Omega\,, \\ \\ u = 0 & {\rm on} \ \partial\Omega\,, \end{array} \right.$$

- **g** is continuous and such that g(s) > 0 for almost every s > 0.
- Particular case: $\exists m, t_0 > 0$ with $\mathbf{g}(\mathbf{s}) > \mathbf{m} > \mathbf{0}$ for all $\mathbf{s} \geq \mathbf{t_0}$.

Problem

$$\left\{ \begin{array}{ll} - \mathrm{div} \left(\frac{Du}{|Du|} \right) + g(u) |Du| = f & \text{in } \Omega \,, \\ u = 0 & \text{on } \partial \Omega \,, \end{array} \right.$$

- **g** is continuous and such that g(s) > 0 for almost every s > 0.
- Particular case: $\exists m, t_0 > 0$ with $\mathbf{g}(\mathbf{s}) > \mathbf{m} > \mathbf{0}$ for all $\mathbf{s} \geq \mathbf{t_0}$.

Theorem

With the function g defined as above, there exists a **unique solution** to our problem.

Example

Let $\Omega = B_1(0)$. Consider problem

$$\left\{ \begin{array}{ll} -{\rm div}\left(\frac{Du}{|Du|}\right) + g(u)|Du| = \frac{\lambda}{|x|} & \quad \text{in } \; \Omega\,, \\ u = 0 & \quad \text{on } \; \partial\Omega \end{array} \right.$$

with
$$g(s) = \frac{1}{1+s}$$
.

■ The solution for $\lambda > N-1$ is

$$u(x) = |x|^{N-1-\lambda} - 1.$$

■ The solution for $\lambda > N-1$ is

$$u(x) = |x|^{N-1-\lambda} - 1.$$

■ Nevertheless, for $\lambda > 2(N-1)$ we have $u \notin BV(\Omega)$ because

$$|Du| = (N - 1 - \lambda)|x|^{N - 2 - \lambda}$$

is no integrable.

Definition

Definition

Let $f \in L^{N,\infty}(\Omega)$ with $f \geq 0$. We say that u is a **weak solution** to our problem if

■ $G(u) \in BV(\Omega)$ with $D^jG(u) = 0$,

Definition

- $G(u) \in BV(\Omega)$ with $D^jG(u) = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that

Definition

- $G(u) \in BV(\Omega)$ with $D^jG(u) = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that

(i)
$$-\operatorname{div} \mathbf{z} + g(u)|Du| = f \text{ in } \mathcal{D}'(\Omega),$$

Definition

- $G(u) \in BV(\Omega)$ with $D^jG(u) = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + g(u)|Du| = f$ in $\mathcal{D}'(\Omega)$,
 - (ii) $(\mathbf{z}, DG(u)) = |DG(u)|$ as measures in Ω ,

Definition

- $G(u) \in BV(\Omega)$ with $D^jG(u) = 0$,
- there exists $\mathbf{z} \in \mathcal{DM}^{\infty}(\Omega)$ with $\|\mathbf{z}\|_{L^{\infty}(\Omega)} \leq 1$ such that
 - (i) $-\operatorname{div} \mathbf{z} + g(u)|Du| = f \text{ in } \mathcal{D}'(\Omega),$
 - (ii) $(\mathbf{z}, DG(u)) = |DG(u)|$ as measures in Ω ,
 - (iii) $u|_{\partial\Omega}=0$.

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$.

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$. Then, there is a **unique solution** to our problem.

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 **a.e.** in $[0, \infty[$. Then, there is a **unique solution** to our problem.

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$. Then, there is a **unique solution** to our problem.

Other cases:

■ *g* integrable:

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.
 - If $||f||_{L^{N,\infty}(\Omega)} > CS_N$, then there is no solution.

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 **a.e.** in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.
 - If $||f||_{L^{N,\infty}(\Omega)} > CS_N$, then there is no solution.
- $\mathbf{g} = 0$ on an interval:

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 **a.e.** in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.
 - If $||f||_{L^{N,\infty}(\Omega)} > CS_N$, then there is no solution.
- $\mathbf{g} = 0$ on an interval:

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.
 - If $||f||_{L^{N,\infty}(\Omega)} > CS_N$, then there is no solution.
- $\mathbf{g} = 0$ on an interval:
 - There is not uniqueness in any way,

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 **a.e.** in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.
 - If $||f||_{L^{N,\infty}(\Omega)} > CS_N$, then there is no solution.
- $\mathbf{g} = 0$ on an interval:
 - There is not uniqueness in any way,
 - the solution may have jump part and

Assume that the function g is **continuous**, and **no integrable** with g(s) > 0 a.e. in $[0, \infty[$. Then, there is a **unique solution** to our problem.

- g integrable:
 - If $||f||_{L^{N,\infty}(\Omega)} \leq S_N$, then the trivial solution is obtained.
 - If $||f||_{L^{N,\infty}(\Omega)} > CS_N$, then there is no solution.
- $\mathbf{g} = 0$ on an interval:
 - There is not uniqueness in any way,
 - the solution may have jump part and
 - we cannot assure that the boundary condition holds.

Example

Let $\Omega = B_1(0)$. Consider problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + g(u)\,|Du| = \frac{{\it N}}{|x|} & {\rm in} \ \Omega\,, \\ \\ u = 0 & {\rm on} \ \partial\Omega\,, \end{array} \right.$$

with
$$g(s) = \begin{cases} 0 & \text{if } 0 \leq s \leq 1, \\ s-1 & \text{if } 1 < s. \end{cases}$$

◆ロ > ◆部 > ◆差 > ◆差 > 差 め Q (*)

■ The solution is

The solution is

■ Although $u|_{\partial\Omega} = 1$, the solution achieves the boundary weakly:

$$[\mathbf{z}, \nu] = -\frac{x}{|x|} \frac{x}{|x|} = -1 = \operatorname{sign}(-u).$$

Example

Let $\Omega = B_1(0)$. Consider problem

$$\left\{ \begin{array}{ll} -{\rm div}\,\left(\frac{Du}{|Du|}\right) + g(u)\,|Du| = \frac{N}{|x|} & {\rm in} \ \Omega\,, \\[0.2cm] u = 0 & {\rm on} \ \partial\Omega\,, \end{array} \right.$$

with
$$g(s) = \begin{cases} 1-s & \text{if } 0 \le s < 1, \\ 0 & \text{if } 1 \le s \le 2, \\ s-2 & \text{if } 2 < s. \end{cases}$$

■ The solution is given by

which has jump part.

Function g	Existence and uniqueness	Regularity
$0 < m \leq g(s)$	For all data	$D^j u = 0,$ $u \in L^q(\Omega)$ for $1 \le q < \infty$
$0 < m < g(s) \text{ for } s > t_0$	For all data	$D^j u = 0$
$g(s)>0$ a.e. in $[0,\infty[$	For all data, with other concept of solution	$D^{j}u=0$
$\mathbf{g} \in L^1([0,\infty[)$	For data small enough	$D^{j}u=0$
$\mathbf{g}(\mathbf{s}) = 0$ in an interval	No uniqueness	$D^{j}u \neq 0, \ u\big _{\partial\Omega} \neq 0$

Thank you for your attention

