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If f is a locally integrable function we define the Hardy-Littlewood
maximal operator as

Mf(x) = sup — / f(y)|dy.
Q3x |Q| ‘ |

Theorem (B. Muckenhoupt, 1972)
Let1 < p < oo then

/(Mf)”w(x)dx < c,,,W/mPW(x)dx

if and only if

supQ (Kl?‘ /Q W(X)dx) (’(1?' /Q W(X)_l/(p_l)dx>p_1 < oo0.

if the last inequality holds we say that w belongs to Ap.
If%eL“wesayweAl
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The Hilbert transform:

1, 1
Hf (x) = 7Tllmsﬁo/ f(y)dy.

x—y|>e X —Y

Hunt, Muckenhoupt and Wheeden (1973) proved that (1 < p < o0)

IHF [ o(wy < ClIfll ()

if and only if w € A,



Calderén-Zygmund operators

Definition

A Calderén-Zygmund operator T (CZO) is an operator bounded on
L?(R") that admits the following representation

TF(x) = / K(x, y)F(y)dy

with f € C2°(R") and x ¢ supp f and where
K :R" x R"\ {(x,x) : x € R"} — R has the following properties

Size condition: |K(x,y)| < Czﬁ x # 0.

Smoothness condition (Holder-Lipschitz):

_ 5|6
K(x,y) = K(x.2)| < G ‘X'yyli'w Sx—yl >y 2|
K(x,y) = Kz, y)| < GEZ dx—y] > x— 2]

where C; > 0 and G, > 0 are constants independent of x, y, z.




R. Coifman y C. Fefferman (1974) proved that (1 < p < o0)
if w € A, then any CZO operator T safisfies



R. Coifman y C. Fefferman (1974) proved that (1 < p < o0)
if w € A, then any CZO operator T safisfies

[ T o(w) < CTowllfllLo(w)



R. Coifman y C. Fefferman (1974) proved that (1 < p < o0)
if w € A, then any CZO operator T safisfies

[ T o(w) < CTowllfllLo(w)

If T is the Riesz transform then A, is also a necessary condition for the
LP(w) boundedness.



R. Coifman y C. Fefferman (1974) proved that (1 < p < o0)
if w € A, then any CZO operator T safisfies

[ T o(w) < CTowllfllLo(w)

If T is the Riesz transform then A, is also a necessary condition for the
LP(w) boundedness.

Coifman-Fefferman estimate, if 0 < r < oo and v is a "good” weight, then

/Tf|rv(x)dx < Cp7\,//\/lf’v(x)dx
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Theorem (Rubio de Francia, 1984)

Fixed 1 < pg < oo, if T is a bounded operator on LP°(w) for every
w € Ap,.
Then for every 1 < p < oo and for all w € Ap; T is bounded on LP(w).

New proofs, variants and very useful extensions have been widely studied
by J. Garcia-Cuerva, J. L. Torrea, J. Duoandikoetxea, D. Cruz-Uribe, J. M.
Martell, and C. Pérez between others...

- It can be consider a pair of functions (f, g), where, in particular, g could
be Tf...
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1 llow) = SUP{lg]] v, =1} / Iflg
Given g > 0 with HgHLp/(o) =1, define

o

Z 2||M||L2(a)

k=0

Then g <Rg, [|Rgll12(s) < 2, and Rg € As.

/ITflg

/ ITFRg < ClIfllxre)

<
< Clflleew) IRl (o)
< 2C[[f |l o(w)-
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let T:S(R") x S(R") — S’(R"). T is an bilinear Calderén-Zygmund operator if,
for some 1 < g1, g2 < 0o and 1 < g < oo satisfying % = &+ it extends to a
bounded bilinear operator from L% x L% to L9, and if there exists K defined off
the diagonal x = y; = y, in (R")3 satisfying

TR B = [ Kl m)h(a)02) diache
(R)?
for all x ¢ ﬁlesuppf-;
A

2 2n;
(3 =l
k,I=0

|K(y0,y1,¥2)| <

Alyr — y1|°
5 2n+e’
Zk,/:o vk — il

for some € > 0 and all 0 < j < m, whenever |y; — y{| < $maxo<k<aly; — |-

|K (0, y1,¥2) — K(y0, ¥1, ¥2)| <
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-Multilinear Calderén-Zygmund were widely studied by R. Coifman and Y.
Meyer in the 70'th and 80'th

-L. Grafakos and R. Torres in several works (since 2000)

If we denote w = (wy, wn); vy = qu/qlwzq/q2 and then if 1 < g; and
w; € Ag, I = 1,2, then bilinear Calderén-Zygmund operator T maps

L9 (w1) x LR (wn) — LI(vyz)

As a consequence of a “control” of the way...

T(f, f) = MfiM#f,



Theorem (Grafakos and Martell, 2004)

Letl < n,mn < oo and % = rll + % Assume that

2
T (s )l (ugy < € TT Iillis
i=1

holds for all (w1, w») € (Ar, Ar,). Then

2
IT(A, 2y < C [T I1filloi gy
i=1

holds for all (w1, ws) € (Ap,, Ap,) with 1 < p1,pr < 0o and % = i + é.

V.
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M(f1, )(x) = sup / fi(yi)|dyi.
( XeQH\Qr 1)

T(fi,H) 2 M(fi,h)
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Let vy = qu/q1W2q/q2 Let 1 < g1,92 < oo and g such that % = % + %

We say that w = (wy, w») satisfies the multilinear Az condition if
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—q' l/q,' . . _
when ¢g; = 1, (ﬁ fQ W,-1 q’) is understood as (infow;) L.

Theorem (LOPTT, 2009)

Let 1 < q1,qo < 00 and q such that £ = ql + = then w satisfies A

condition if and only if M maps L9 (wy) x L% (q ») into L9(vy)

Then, if w satisfies Az a bilinear Calderon-Zygmund operator T also maps
L9 (wy) x L92(ws) into L9(vy)
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Some remarks on multiple Az weights

-From the characterization, one can see that Ay, X Ag, C Ag.

It is easy to check that (|x|™",1) € A(1,1), however, |x|~" is not even
locally integrable, so of course |[x|~" ¢ Aq for any g > 1.

-Moreover other general properties as monotonicity and (reasonable)
factorization are not true for the clases Az .

-All these facts kept open the extrapolation theorem related to multiple Az
weights...



Extrapolation for multiple A; weights

Theorem (K. Li, J. M. Martell, O., 2018)
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Theorem (K. Li, J. M. Martell, O., 2018)

Let F be a collection of 3-tuples of non-negative functions. Let
p = (p1, p2), with 1 < p1, p2 < 00, such that given any w € Aj the
inequality

2
11|y < C(0Wa,) [T I6iller )
i=1
P
holds for every (f, f, f2)_‘€ F, where %.:: i + é.and W= H,?:1 w
Then for all exponents G = (q1, q2), with q; > 1, i = 1,2, and for all
weights V € Az the inequality

2
1Flliaqy < C([7a5) T T Il coicy
i=1

9q
holds for every (f,fi,f) € F, % = é + é and v = [T2_, v{".




Moreover, for the same family of exponents and weights, and for all
exponents §= (s1,s) withs; >1,i=1,2,

H(EJ:(fj)s>i }

for all {(f,f,f)}; c F, where 1 := i + L.

2

1

(Z(ﬁj)g) si

J

| < C([Map 11
v i=1

L9i(v;)
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How can we build A(; 1) weights?
It is known (w1, w2) € Ay if and only if

1 1 11
wi € Ap wy € Ay and wiwg € A;.

However, it is very useful the following: (w1, w2) € A(1 1) if and only

1 1 1
wi € At and  wy € Ay(wy).
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A (very) rough idea of the proof

-Bearing in mind that, we can follow Duoandikoetxea's off-diagonal
extrapolation theorem...
We study the extrapolation from (p1, p2) to (g1, g2) by a two-step
consideration: first (p1, p2) to (p1,g2) and then to (g1, g2).
We can actually rewrite ||g|low) < Cllfull e (wn)ll 2]l L2 (ws) @S
L o
18l 2 < Cl[fllLe2(wy), Where & = gwq™ and f = [[fi][1o1 (wy) o
LP(W2P2)
Since p; and wy are fixed, we can seek for some characterization of wy

when assuming w € A(p, py)-----
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Theorem (D. Carando, M. Mazzitelli, S.O., 2016)

Let T be a bilinear Calderon-Zygmund operator. Let 1 < r < 2 and let
l<qgi,qp<o0ifr=2orl<qi,q <rifl<r<2. Then for
W= (Wl7 W2) E Ac_f there holds

(grear)],,,=cl(E)

(;w)'

La(w) L91(wy) L92 (wy

q q

1_1 1 — T 02
Whereq—q1+q2 and w = w;" w,”.

Now, by using extrapolation we can remove the restriction g1, q> < r

Let T be bilinear Calderén-Zygmund operator. Given 1 < r < 2 and
1 < g1, G2 < 00, then previous inequality holds for all w = (w1, w2) € Ag.
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-Actually, the results also hold in the context of the classes Az 7 (good
weights for more singular operators as the bilinear Hilbert transform and
commutators of the the bilinear Hilbert transform)

f(x—t)g(x+1)
t

BH(f,g)(x) = p.v./ dt

-From A. Culiuc, F. Di Plinio and Y. Ou (2016) we can go to the
quasi-Banach range and to recover several recent results of
Benea-Muscalu.
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iMuchas gracias!

al Barcelona por tan buen futbol :) :)...
y al Madrid también!!!



