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Definition (Aron, Gurariy, Seoane, 2004)

© We say that a subset M of a linear space E is A-lineable if
there exists a A-dimensional subspace V of E such that
V € MuU{0}. If V is infinite-dimensional, we simply say that
M is lineable.

@ A subset M of functions on R is said to be spaceable if
M U {0} contains a closed infinite dimensional subspace.
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nowhere monotone is lineable in C(R).

The set DN M(R) of differentiable functions on R which are
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Definition

Let f : R — R be a positive function which is integrable on each
finite subinterval. We say that f is H—fat (0 < H < o0) if for
each a < b,

1
b—a

-/bf(t)dt < H -min {f(a), f(b)} (1)

H¢ = inf(H) in (1) will be called the fatness of f. We say that f is
fat if it is H-fat for some H € (0,00). A family F of such functions
{f} will be called uniformly fat if Hr = supsc»(Hf) < oco.
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Definition

Let f : R — R be a positive function which is integrable on each
finite subinterval. We say that f is H—fat (0 < H < o0) if for
each a < b,

1
b—a

-/bf(t)dt < H -min {f(a), f(b)} (1)

H¢ = inf(H) in (1) will be called the fatness of f. We say that f is
fat if it is H-fat for some H € (0,00). A family F of such functions
{f} will be called uniformly fat if Hr = supsc»(Hf) < oco.

Definition
A positive continuous even function ¢ on R that is decreasing on
R* is called a scaling function.
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Given a scaling function ¢, if for each b > 0

/ " o(6)dt < K - g(b).
0

then ¢ is fat and H, < 2K.

«40» «4F)» « =)




-
Given a scaling function ¢, if for each b > 0
1

b

[ eod < K- (o),
b Jo
then ¢ is fat and H, < 2K
Proof.

Q@ —b<a<0. Then

-/ Cpleyde < 2. / " ()t < 2K - (1)
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Proposition
Given a scaling function ¢, if for each b > 0

b
5 | et < ko),

then ¢ is fat and H, < 2K.

Proof.
Q@ b<a<0. Then

b b
bia / o(t)dt < 2/0 o(t)dt < 2K - o (b).

@ 0 < a < b. Making a proper linear substitution we have
t(x) > x on [0, b]. Since ¢ is decreasing, ¢(t(x)) < ¢(x).
Therefore

b b Z
: 1 a'/a p(t)dt = 11)/0 p(t(x))dx < 11)/0 p(x)dx < K-p(b).
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The scaling function

p(t) =

V14|t
verifies H, < 4.
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The scaling function

verifies H, < 4.
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Given a scaling function ¢, let L(y) denote the set of functions of
the form

n
V(x) = Z ¢ - p(Aj(x —aj)) where ¢;,A\; >0, and aj €R.
j=1
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Given a scaling function ¢, let L(y) denote the set of functions of
the form

n
V(x) = Z ¢ - p(Aj(x —aj)) where ¢;,A\; >0, and aj €R.
j=1

If a scaling function ¢ is fat, then L(¢) is uniformly fat. Moreover,
Hip) = Hp-
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Proposition (flexibility of L(¢))
Choose an arbitrary scaling function ¢, n € N, n distinct real
numbers {a;}7_;, and intervals {/; = (y;, yj)}7_1, where
0 <y; <yjforeach j=1,2,...,n. Then there exists ¢ € L(¢)
such that the following two conditions are satisfied:

Q Y(oj) €ljforj=1,2,....n

Q (x) < maxi<j<n y; for all x € R.
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Proposition

Let >.°°, W,(x) be a formal series of C1-functions on R, such that
for some xp € R, > 72, W,(xp) converges. For each n, let W/ =1,
and suppose that {¢, : n € N} is a uniformly fat sequence of
positive functions, with Y > ; ¢,(a) converging to s, say, for some
a. Then
Q@ F(x)=>,2, Vu(x) is uniformly convergent on each bounded
subset of R.

@ F'(a) exists and F'(a) = s.
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Theorem
Llet0=p<yn<yp<---<y<---—1 LetSoz{a?}j’il be
a countable set of distinct real numbers and, for each i € N, let

Si = {aj(.i)}r:"l be a finite set of distinct real numbers. Suppose
further that the sets {5;}2°, are pairwise disjoint. Then, there
exists a differentiable function F on R such that

O Fi(ai)) =y forallj=1,2,...,mjandi=1,2,...
@ F(a!”) =1 forallj e N.
© 0< F'(x) <1, forall x € R.
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Proof. For each i and each interval l; = (yj_1,y;), consider a
strictly increasing sequence (y; ;) such that (y;;) € /; and
lim; o0 yij = ¥i- Let ¢ be a fat scaling function on R.
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Proof. For each i and each interval l; = (yj_1,y;), consider a
strictly increasing sequence (y; ;) such that (y;;) € /; and
lim; oo ¥ij = yi- Let © be a fat scaling function on R. By the
previous proposition there exists f; = ¥1 € L(¢p) such that:

1L ¢1(a) € (yr0,y11) for j=1,2,...,my.

12. 1(a?) € (y1,0,¥1,1), and
13. 91(x) < y11 for all x € R.
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Proof. For each i and each interval l; = (yj_1,y;), consider a
strictly increasing sequence (y; ;) such that (y;;) € /; and
lim; o yij = yi- Let ¢ be a fat scaling function on R. By the
previous proposition there exists f; = ¥1 € L(¢p) such that:

1. ¢1(ozj(-1)) € (y1,0,y11) forj=1,2,...,my.

12. 1(a?) € (y1,0,¥1,1), and

13. 91(x) < y11 for all x € R.
By the same argument, we can choose 1 € L(¢) such that if

= 11 + 15, then the following hold:
1. f2( (1 )) € (yi1,y12) forj=1,2,...,m.
( ) € (y2,1,¥22), for j=1,2,...,mo.
2. fH(« ) (y2,1,¥2,2) for j =1,2, and
3. (X)<y22, for all x € R.
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Continuing in this fashion we obtain a sequence (f,), where
fo=> " 1%i,n=1,2,..., and where each ¢; € L(¢) is such
that the following conditions hold:
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Continuing in this fashion we obtain a sequence (f,), where
fo=> " 1%i,n=1,2,..., and where each ¢; € L(¢) is such
that the following conditions hold:

N1.

N2.
N3.

f,,(ozj(-l)) € (Yi,n—1,y1,n), for j=1,2,...,m.
f,,(aj(-z)) € (Yo,n—1,)2,n), for j=1,2,..., mo.

f,,(aj(-n)) € (Wnn—1,Ynn), for j=1,2,... ., mp.

fn(a})) € (Ynn—1,Ynn) for j=1,2,... n.
fa(x) < Ynn, for all x € R.
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Continuing in this fashion we obtain a sequence (f,), where
fo=> " 1%i,n=1,2,..., and where each ¢; € L(¢) is such
that the following conditions hold:
N1. f,,(aj(-l)) € (Yi,n—1,y1,n), for j=1,2,...,m.

f,,(aj(-z)) € (Yo,n—1,)2,n), for j=1,2,..., mo.
f,,(aj(” ) € (Yn,n—1,Ynn), for j=1,2,...,m,.
N2. £:(a?) € (Ynn-1,¥nn) for j=1,2,...,n
N3. fo(x) < ¥n,n, for all x € R.
Since fp(x) < 1 and ¥p,(x) > 0 for all x, the series

P(x) = >_02 1 ¥n(x) converges for all x € R.
It foIIows from the previous theorem that the function

= [o° ¥(x)dx satisfies all the assertions in the statement of
the theorem
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Theorem

Let AT, A=, A% be pairwise disjoint countable sets in R. There

exists a differentiable function F on R such that F'(x) <1 for all
x € R and such that:

Q F(x)>0, xeA".
Q@ F(x)<0,xeA.
Q@ F'(x)=0, x€ A%
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Theorem

Let AT, A=, A% be pairwise disjoint countable sets in R. There
exists a differentiable function F on R such that F'(x) <1 for all
x € R and such that:

Q@ F'(x) >0, xe A .
Q F'(x)<0, xeA .
© F'(x)=0, xec A,

Proof.

Q@ H'(x)=1forxe At UA? H/(x) <1 forx € A, and
0< H'(x)<1forxeR.
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Theorem

Let AT, A=, A% be pairwise disjoint countable sets in R. There
exists a differentiable function F on R such that F'(x) <1 for all
x € R and such that:

@ F/(x) >0, x € A*.
Q F'(x)<0, xeA .
© F'(x)=0, xec A,

Proof.

Q@ H'(x)=1forxe At UA? H/(x) <1 forx € A, and
0< H'(x)<1forxeR.

Q@ G'(x)=1forxe A~ UA? G'(x) <1 for x € A", and
0< G'(x) <1forxeR.
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Theorem

Let AT, A=, A% be pairwise disjoint countable sets in R. There
exists a differentiable function F on R such that F'(x) <1 for all
x € R and such that:

@ F/(x) >0, x € A*.
@ F/(x) <0, x €A
© F'(x)=0, xec A,

Proof.

Q@ H'(x)=1forxe At UA? H/(x) <1 forx € A, and
0< H'(x)<1forxeR.

Q@ G'(x)=1forxe A~ UA? G'(x) <1 for x € A", and
0< G'(x)<1forxeR.

The function F(x) = H(x) — G(x) satisfies the conditions of the
theorem.
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The set DN M(R) is lineable in C(R). I

it
v




Motivation DN M ES ADD

Theorem (Aron, Gurariy, Seoane, 2004)
The set DN'M(R) is lineable in C(R).

Proof. Let's consider the sequence on triples of pairwise disjoint
sets {Aj,A;,Ag} with the following properties:

@ Each of the three sets in each triple is dense in R.

@ Each of the three sets in the triple {A}, A, A%} is a subset of

0
Ap_1-

By the previous theorem , for each k there exists an everywhere
differentiable function fx(x) on R such that

Q f(x)>0, xe Al

Q fi(x)<0,xeA,.

@ f(x)=0, xe A%
Obviously each fi is nowhere monotone and the sequence {f}5° is
linearly independent.
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Let us show that if £ ="} _; axfk, with {ax}] not all zero, then f
is nowhere monotone. Without loss, we may suppose that a, # 0.
On A} all f/ vanish for k < n, and so f" = a,f,, which implies that
f is nowhere monotone. This proves the lineability of DAVM(R).
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If all elements of a subspace E of C [0, 1] are differentiable on
[0,1], then E is finite dimensional.

it
v
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[0,1], then E is finite dimensional.

S —
If all elements of a subspace E of C [0, 1] are differentiable on

For finite a, b the set DN M|a, b] is lineable and not spaceable in
Cla, b].
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interval | C R.

Given a function f : R — R, we say that f is everywhere
surjective (denoted f € ES) if f(/) = R for every non-trivial
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(i) Every non-zero element of A is an onto function, and
(i) dim(A)= 2-.

There exists a vector space A C R¥ enjoying the following two
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Proof. Given any non-empty subset C C R, let us define
He : RN — R as follows:

oo
HC(y7X17X27X37 0o ) =Yy HXc(Xi)-
i=1
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Proof. Given any non-empty subset C C R, let us define
He : RN — R as follows:

o0
He(y, x1, X2, X3, ...) =y - HXC(X,').
i=1

The strategy is to show the following:
@ VC C R, Hc¢ is onto.
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Proof. Given any non-empty subset C C R, let us define
He : RN — R as follows:

o0
HC(y)X1>X27X37 s ) =y HXC(Xi)'
i=1
The strategy is to show the following:

Q@ VC C R, Hc¢ is onto.
@ The family {H¢c : C C R} is linearly independent.

Taller IV LINEABILITY



Motivation DN M ES ADD

Proof. Given any non-empty subset C C R, let us define
He : RN — R as follows:

o0
He(y, x1, X2, X3, ...) =y - HXC(X,').
i=1

The strategy is to show the following:
Q@ VC C R, Hc¢ is onto.
@ The family {H¢c : C C R} is linearly independent.
© Every 0 # g € span({Hc : C C R}) is onto.
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Proof. Given any non-empty subset C C R, let us define
He : RN — R as follows:

o0
He(y, x1, X2, X3, ...) =y - HXC(X,').
i=1

The strategy is to show the following:
Q@ VC C R, Hc¢ is onto.
@ The family {H¢c : C C R} is linearly independent.
© Every 0 # g € span({Hc : C C R}) is onto.

Thus, we have that dim(span{H¢ : C C R}) = 2°. Since there
exists a bijection between R and RY, we can construct the vector
space that we are looking for.
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The set

is 2°-lineable.

{f eRE: f(I) =R for every | C R}
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cardinal number:

Let F C RR. The additivity of F is defined as the following

A(F) = min({card(F) : F CR® o+ F ¢ F,Vp € RR} U {(2°)"})

440> «F» «E» « E)» = Q>
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Definition
Let 7 C RR. The additivity of F is defined as the following
cardinal number:

A(F) = min({card(F) : FCRR o+ F ¢ F,Vp e RR} U {(29)T})

Proposition
Let F,G C RE. The additivity verifies the following properties:
Q@ 1< A(F) < (297,
Q If F C G then A(F) < A(9),
@ A(F)=1ifandonly if F =0,
Q A(F) = (2°)* if and only if F = RE,
Q@ A(F) =2 ifand only if F — F # RE,
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Definition
Given a function f: R — R, we say that:

O f is perfectly everywhere surjective (f € PES) if f(P) =R
for every perfect set P C R.

@ f is a Jones function (f € J) if CNf # () for every closed
C C R? with 7,(C) (i.e., projection of C on the first
coordinate) has cardinality continuum c.
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A(PES\ J) < c. l

Proof. Let F = C(R). Since |C(R)|= ¢, we shall see that
h+ C(R) ¢ PES\ J for every h € RE.

Suppose h + C(R) C PES \ J for some h € RE,
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Theorem (Ciesielski, Gdmez, Natkaniec, Seoane, 2018)
A(PES\ J) <.

Proof. Let F = C(R). Since |C(R)|= ¢, we shall see that

h+ C(R) ¢ PES\ J for every h € RE.

Suppose h+ C(R) C PES\ J for some h € RX.

Then, clearly, h € h+ C(R) C PES\ J and, thus, h ¢ J.
Therefore, 3C C R? closed such that |7 (C)| = ¢ and CNh = ().
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Theorem (Ciesielski, Gamez, Natkaniec, Seoane, 2018)
A(PES\ J) <.

Proof. Let F = C(R). Since |C(R)|= ¢, we shall see that

h+ C(R) ¢ PES\ J for every h € RE.

Suppose h+ C(R) C PES\ J for some h € RX.

Then, clearly, h € h+ C(R) C PES\ J and, thus, h ¢ J.
Therefore, 3C C R? closed such that |7 (C)| = ¢ and CNh = ().
The function 7y : m(C) — R given by v(x) = inf{y : (x,y) € C}is
Borel. Thus, 3P C 7x(C) compact perfect such that v [ P is
continuous [M. Morayne, 1985].
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Theorem (Ciesielski, Gamez, Natkaniec, Seoane, 2018)
A(PES\ J) <.

Proof. Let F = C(R). Since |C(R)|= ¢, we shall see that

h+ C(R) ¢ PES\ J for every h € RE.

Suppose h+ C(R) C PES\ J for some h € RX.

Then, clearly, h € h+ C(R) C PES\ J and, thus, h ¢ J.
Therefore, 3C C R? closed such that |7 (C)| = ¢ and CNh = ().
The function 7y : m(C) — R given by v(x) = inf{y : (x,y) € C}is
Borel. Thus, 3P C 7x(C) compact perfect such that v [ P is
continuous [M. Morayne, 1985].

By Tietze's Extension Theorem, 3f € C(R) extension of v [ P.
However, 0 & (h — f)(P), since h is disjoint with C D~ [ P.
Therefore h — f ¢ PES and we are done.

Taller IV LINEABILITY



Let F,G C RE such that G — G C G and ¥y < card(G) < A(F)

then there exists z € F \ G such that z+ G C F.
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o
Let F,G C RE such that G — G C G and ¥y < card(G) < A(F)
then there exists z € F \ G such that z+ G C F.

Let F C RF star-like, that is, aF C F for all o € R.
If ¢ < A(F) <25 then F is A(F)-lineable.
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Lemma

Let 7, G C RR such that G — G C G and R < card(G) < A(F)
then there exists z € F\ G such that z+ G C F.

Theorem (Gdmez, Mufioz, Seoane, 2010)

Let F C RR star-like, that is, aF C F for all a € R.
If ¢ < A(F) <2 then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn's Lemma, we obtain that there exists a maximal linear
space X contained in F. We have card(X) = max{dim(X), c}.
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Lemma

Let 7, G C RR such that G — G C G and R < card(G) < A(F)
then there exists z € F\ G such that z+ G C F.

Theorem (Gdmez, Mufioz, Seoane, 2010)

Let F C RR star-like, that is, aF C F for all a € R.
If ¢ < A(F) <2 then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn's Lemma, we obtain that there exists a maximal linear
space X contained in F. We have card(X) = max{dim(X), c}.

If the statement does not hold, we shall have card(X) < A(F)
and,
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Lemma

Let 7, G C RR such that G — G C G and R < card(G) < A(F)
then there exists z € F\ G such that z+ G C F.

Theorem (Gdmez, Mufioz, Seoane, 2010)

Let F C RR star-like, that is, aF C F for all a € R.
If ¢ < A(F) <2 then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn's Lemma, we obtain that there exists a maximal linear
space X contained in F. We have card(X) = max{dim(X), c}.

If the statement does not hold, we shall have card(X) < A(F)
and, by the previous result, there exists g € F \ X such that

g+ X CF.
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Lemma

Let 7, G C RR such that G — G C G and R < card(G) < A(F)
then there exists z € F\ G such that z+ G C F.

Theorem (Gdmez, Mufioz, Seoane, 2010)

Let F C RR star-like, that is, aF C F for all a € R.
If ¢ < A(F) <2 then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn's Lemma, we obtain that there exists a maximal linear
space X contained in F. We have card(X) = max{dim(X), c}.

If the statement does not hold, we shall have card(X) < A(F)
and, by the previous result, there exists g € F \ X such that

g+ X C F. Define Y = [g] + X, where [g] denotes the linear
span of g. Using that F is star-like, it is easy to see that Y C F,
in plain contradiction with the maximality of X.
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I
Let 7 C R be a star-like with A(F) > ¢. Then F is lineable. I
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o
Let 7 C R be a star-like with A(F) > ¢. Then F is lineable.

A(J) = e where

e = min{card(F) : F C RE (Vp € RR)(If € F)(card(fNy) < ¢)}
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o
Let 7 C R be a star-like with A(F) > ¢. Then F is lineable.
A(J) = e where
e = min{card(F) : F C RE (Vp € RR)(If € F)(card(fNy) < ¢)}
and ¢ < e < 2%




Let 7 C R be a star-like with A(F) > ¢. Then F is lineable.
A(J) = e where

and ¢ < e < 2°.

e = min{card(F) : F C RE (Vp € RR)(If € F)(card(fNy) < ¢)}
Jis 2°

-lineable. l




A(M) = max{x : M U {0} contains a vector space of dimension x}. I
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Definition
A(M) = max{x : M U {0} contains a vector space of dimension «}.

Definition
Let M be a subset of some vector space W. The lineability
cardinality number of M is defined as

L(M) = min{x : MU{0} contains no vector space of dimension k}.

If A(M) exists, then L(M) = (A\(M))T.
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Theorem (Bartoszewicz, Gtab, 2013)

Let 2 < k < p and let K be a field with |K|= p. Also, let V be a
K-vector space with dim(V) = 2" and 1 < A < (2#)". There
exists a star-like family F C V such that:

Q « < AF) <k

Q@ L(F)=A\

Taller IV LINEABILITY



Motivation DN M ES ADD

References

o

(2]

Aron, R.M_; Bernal, L.; Pellegrino, D.M.; Seoane, J.B.
Lineability: the search for linearity in mathematics. Monographs
and Research Notes in Mathematics. CRC Press (2016).

Aron, R.M.; Gurariy, V. |.; Seoane, J.B. Lineability and spaceability
of sets of functions on R. Proc. Amer. Math. Soc. 133 (2005)
795-803.

Ciesielski, K.C.; Gdmez, J.L; Natkaniec, T.; Seoane, J.B;

On functions that are almost continuous and perfectly everywhere
surjective but not Jones. Lineability and additivity.

Topology Appl. 235 (2018), 73-82.

Gamez, J.L.; Munoz, G.A.; Seoane, J.B.
Lineability and additivity in R¥.

J. Math. Anal. Appl. 369 (2010), no. 1, 265-272.
Gurariy, V.I.

Subspaces and bases in spaces of continuous functions.
Dokl. Akad. Nauk SSSR 167 (1966) 971-973.

Taller IV LINEABILITY



Motivation DN M ES ADD

THANK YOU
FOR YOUR ATTENTION!!!
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