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Definition (Aron, Gurariy, Seoane, 2004)

1 We say that a subset M of a linear space E is λ-lineable if
there exists a λ-dimensional subspace V of E such that
V ⊂ M ∪ {0}. If V is infinite-dimensional, we simply say that
M is lineable.

2 A subset M of functions on R is said to be spaceable if
M ∪ {0} contains a closed infinite dimensional subspace.
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Theorem (Aron, Gurariy, Seoane, 2004)

The set DNM(R) of differentiable functions on R which are
nowhere monotone is lineable in C(R).
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Definition

Let f : R→ R be a positive function which is integrable on each
finite subinterval. We say that f is H−fat (0 < H <∞) if for
each a < b,

1

b − a
·
∫ b

a
f (t)dt ≤ H ·min {f (a), f (b)} (1)

Hf = inf(H) in (1) will be called the fatness of f . We say that f is
fat if it is H-fat for some H ∈ (0,∞). A family F of such functions
{f } will be called uniformly fat if HF = supf ∈F (Hf ) <∞.

Definition

A positive continuous even function ϕ on R that is decreasing on
R+ is called a scaling function.
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Proposition

Given a scaling function ϕ, if for each b > 0

1

b
·
∫ b

0
ϕ(t)dt ≤ K · ϕ(b),

then ϕ is fat and Hϕ ≤ 2K .

Proof.
1 −b < a ≤ 0. Then

1

b − a
·
∫ b

a
ϕ(t)dt ≤ 2

b
·
∫ b

0
ϕ(t)dt ≤ 2K · ϕ(b).

2 0 < a < b. Making a proper linear substitution we have
t(x) ≥ x on [0, b]. Since ϕ is decreasing, ϕ(t(x)) ≤ ϕ(x).
Therefore

1

b − a
·
∫ b

a
ϕ(t)dt =

1

b
·
∫ b

0
ϕ(t(x))dx ≤ 1

b
·
∫ b

0
ϕ(x)dx ≤ K ·ϕ(b).
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Example

The scaling function

ϕ(t) =
1√

1 + |t|

verifies Hϕ ≤ 4.
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Definition (ϕ-wavelet)

Given a scaling function ϕ, let L(ϕ) denote the set of functions of
the form

Ψ(x) =
n∑

j=1

cj · ϕ(λj(x − αj)) where cj , λj > 0, and αj ∈ R.

Proposition

If a scaling function ϕ is fat, then L(ϕ) is uniformly fat. Moreover,
HL(ϕ) = Hϕ.
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Proposition (flexibility of L(ϕ))

Choose an arbitrary scaling function ϕ, n ∈ N, n distinct real
numbers {αj}nj=1, and intervals {Ij = (yj , ỹj)}nj=1, where
0 < yj < ỹj for each j = 1, 2, . . . , n. Then there exists ψ ∈ L(ϕ)
such that the following two conditions are satisfied:

1 ψ(αj) ∈ Ij for j = 1, 2, . . . , n.

2 ψ(x) < max1≤j≤n ỹj for all x ∈ R.
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Proposition

Let
∑∞

n=1 Ψn(x) be a formal series of C1-functions on R, such that
for some x0 ∈ R,

∑∞
n=1 Ψn(x0) converges. For each n, let Ψ′n = ψn

and suppose that {ψn : n ∈ N} is a uniformly fat sequence of
positive functions, with

∑∞
n=1 ψn(a) converging to s, say, for some

a. Then

1 F (x) ≡
∑∞

n=1 Ψn(x) is uniformly convergent on each bounded
subset of R.

2 F ′(a) exists and F ′(a) = s.
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Theorem

Let 0 = y0 < y1 < y2 < · · · < yn < · · · → 1. Let S0 = {α0
j }∞j=1 be

a countable set of distinct real numbers and, for each i ∈ N, let

Si = {α(i)
j }

mi
j=1 be a finite set of distinct real numbers. Suppose

further that the sets {Si}∞i=0 are pairwise disjoint. Then, there
exists a differentiable function F on R such that

1 F ′(α
(i)
j ) = yj for all j = 1, 2, . . . ,mi and i = 1, 2, . . .

2 F ′(α
(0)
j ) = 1 for all j ∈ N.

3 0 < F ′(x) ≤ 1, for all x ∈ R.
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Proof. For each i and each interval Ii = (yi−1, yi ), consider a
strictly increasing sequence (yi ,j) such that (yi ,j) ∈ Ii and
limj→∞ yi ,j = yi . Let ϕ be a fat scaling function on R.

By the
previous proposition there exists f1 = ψ1 ∈ L(ϕ) such that:

I1. ψ1(α
(1)
j ) ∈ (y1,0, y1,1) for j = 1, 2, . . . ,m1.

I2. ψ1(α0
1) ∈ (y1,0, y1,1), and

I3. ψ1(x) < y1,1 for all x ∈ R.

By the same argument, we can choose ψ2 ∈ L(ϕ) such that if
f2 = ψ1 + ψ2, then the following hold:

II1. f2(α
(1)
j ) ∈ (y1,1, y1,2), for j = 1, 2, . . . ,m1.

f2(α
(2)
j ) ∈ (y2,1, y2,2), for j = 1, 2, . . . ,m2.

II2. f2(α0
j ) ∈ (y2,1, y2,2) for j = 1, 2, and

II3. f2(x) < y2,2, for all x ∈ R.
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Continuing in this fashion we obtain a sequence (fn), where
fn =

∑n
i=1 ψi , n = 1, 2, . . . , and where each ψi ∈ L(ϕ) is such

that the following conditions hold:

N1. fn(α
(1)
j ) ∈ (y1,n−1, y1,n), for j = 1, 2, . . . ,m1.

fn(α
(2)
j ) ∈ (y2,n−1, y2,n), for j = 1, 2, . . . ,m2.

...
fn(α

(n)
j ) ∈ (yn,n−1, yn,n), for j = 1, 2, . . . ,mn.

N2. fn(α0
j ) ∈ (yn,n−1, yn,n) for j = 1, 2, . . . , n.

N3. fn(x) < yn,n, for all x ∈ R.

Since fn(x) ≤ 1 and ψn(x) > 0 for all x , the series
ψ(x) =

∑∞
n=1 ψn(x) converges for all x ∈ R.

It follows from the previous theorem that the function
F (x) =

∫∞
0 ψ(x)dx satisfies all the assertions in the statement of

the theorem.
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Theorem

Let A+, A−, A0 be pairwise disjoint countable sets in R. There
exists a differentiable function F on R such that F ′(x) ≤ 1 for all
x ∈ R and such that:

1 F ′(x) > 0, x ∈ A+.

2 F ′(x) < 0, x ∈ A−.

3 F ′(x) = 0, x ∈ A0.

Proof.

1 H ′(x) = 1 for x ∈ A+ ∪ A0, H ′(x) < 1 for x ∈ A−, and
0 < H ′(x) ≤ 1 for x ∈ R.

2 G ′(x) = 1 for x ∈ A− ∪ A0, G ′(x) < 1 for x ∈ A+, and
0 < G ′(x) ≤ 1 for x ∈ R.

The function F (x) = H(x)− G (x) satisfies the conditions of the
theorem.
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Theorem (Aron, Gurariy, Seoane, 2004)

The set DNM(R) is lineable in C (R).

Proof. Let’s consider the sequence on triples of pairwise disjoint
sets {A+

k ,A
−
k ,A

0
k} with the following properties:

1 Each of the three sets in each triple is dense in R.

2 Each of the three sets in the triple {A+
k ,A

−
k ,A

0
k} is a subset of

A0
k−1.

By the previous theorem , for each k there exists an everywhere
differentiable function fk(x) on R such that

1 f ′k(x) > 0, x ∈ A+
k .

2 f ′k(x) < 0, x ∈ A−k .

3 f ′k(x) = 0, x ∈ A0
k .

Obviously each fk is nowhere monotone and the sequence {fk}∞1 is
linearly independent.
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Let us show that if f =
∑n

k=1 αk fk , with {αk}n1 not all zero, then f
is nowhere monotone. Without loss, we may suppose that αn 6= 0.
On A+

n all f ′k vanish for k < n, and so f ′ = αnf
′
n, which implies that

f is nowhere monotone. This proves the lineability of DNM(R).
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Theorem (Gurariy,1966)

If all elements of a subspace E of C [0, 1] are differentiable on
[0, 1], then E is finite dimensional.

Proposition

For finite a, b the set DNM[a, b] is lineable and not spaceable in
C [a, b].
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Definition

Given a function f : R→ R, we say that f is everywhere
surjective (denoted f ∈ ES) if f (I ) = R for every non-trivial
interval I ⊂ R.
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Proposition

There exists a vector space Λ ⊂ RR enjoying the following two
properties:
(i) Every non-zero element of Λ is an onto function, and
(ii) dim(Λ)= 2c.
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Proof. Given any non-empty subset C ⊂ R, let us define
HC : RN −→ R as follows:

HC (y , x1, x2, x3, . . . ) = y ·
∞∏
i=1

χ
C

(xi ).

The strategy is to show the following:

1 ∀C ⊂ R, HC is onto.

2 The family {HC : C ⊂ R} is linearly independent.

3 Every 0 6= g ∈ span({HC : C ⊂ R}) is onto.

Thus, we have that dim(span{HC : C ⊂ R}) = 2c. Since there
exists a bijection between R and RN, we can construct the vector
space that we are looking for.
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Theorem (Aron, Gurariy, Seoane, 2004)

The set
{f ∈ RR : f (I ) = R for every I ⊂ R}

is 2c-lineable.
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Definition

Let F ⊂ RR. The additivity of F is defined as the following
cardinal number:

A(F) = min({card(F ) : F ⊂ RR, ϕ+ F * F ,∀ϕ ∈ RR} ∪ {(2c)+})

Proposition

Let F ,G ⊂ RR. The additivity verifies the following properties:

1 1 ≤ A(F) ≤ (2c)+,

2 If F ⊂ G then A(F) ≤ A(G),

3 A(F) = 1 if and only if F = ∅,
4 A(F) = (2c)+ if and only if F = RR,

5 A(F) = 2 if and only if F − F 6= RR.
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Definition

Given a function f : R→ R, we say that:

1 f is perfectly everywhere surjective (f ∈ PES) if f (P) = R
for every perfect set P ⊂ R.

2 f is a Jones function (f ∈ J) if C ∩ f 6= ∅ for every closed
C ⊂ R2 with πx(C ) (i.e., projection of C on the first
coordinate) has cardinality continuum c.
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Theorem (Ciesielski, Gámez, Natkaniec, Seoane, 2018)

A(PES \ J) ≤ c.

Proof. Let F = C (R). Since |C (R)|= c, we shall see that
h + C (R) 6⊂ PES \ J for every h ∈ RR.
Suppose h + C (R) ⊂ PES \ J for some h ∈ RR.
Then, clearly, h ∈ h + C (R) ⊂ PES \ J and, thus, h /∈ J.
Therefore, ∃C ⊂ R2 closed such that |πx(C )| = c and C ∩ h = ∅.
The function γ : πx(C )→ R given by γ(x) = inf{y : (x , y) ∈ C} is
Borel. Thus, ∃P ⊂ πx(C ) compact perfect such that γ � P is
continuous [M. Morayne, 1985].
By Tietze’s Extension Theorem, ∃f ∈ C (R) extension of γ � P.
However, 0 6∈ (h − f )(P), since h is disjoint with C ⊃ γ � P.
Therefore h − f /∈ PES and we are done.
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Lemma

Let F ,G ( RR such that G − G ⊂ G and ℵ0 < card(G ) < A(F)
then there exists z ∈ F \ G such that z + G ⊂ F .

Theorem (Gámez, Muñoz, Seoane, 2010)

Let F ( RR star-like, that is, αF ⊂ F for all α ∈ R.
If c < A(F) ≤ 2c, then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn’s Lemma, we obtain that there exists a maximal linear
space X contained in F . We have card(X ) = max{dim(X ), c}.
If the statement does not hold, we shall have card(X ) < A(F)
and, by the previous result, there exists g ∈ F \ X such that
g + X ⊂ F . Define Y = [g ] + X , where [g ] denotes the linear
span of g . Using that F is star-like, it is easy to see that Y ⊂ F ,
in plain contradiction with the maximality of X .
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Theorem (Gámez, Muñoz, Seoane, 2010)

Let F ( RR star-like, that is, αF ⊂ F for all α ∈ R.
If c < A(F) ≤ 2c, then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn’s Lemma, we obtain that there exists a maximal linear
space X contained in F . We have card(X ) = max{dim(X ), c}.
If the statement does not hold, we shall have card(X ) < A(F)
and,

by the previous result, there exists g ∈ F \ X such that
g + X ⊂ F . Define Y = [g ] + X , where [g ] denotes the linear
span of g . Using that F is star-like, it is easy to see that Y ⊂ F ,
in plain contradiction with the maximality of X .

Taller IV LINEABILITY



Motivation DNM ES ADD

Lemma

Let F ,G ( RR such that G − G ⊂ G and ℵ0 < card(G ) < A(F)
then there exists z ∈ F \ G such that z + G ⊂ F .

Theorem (Gámez, Muñoz, Seoane, 2010)

Let F ( RR star-like, that is, αF ⊂ F for all α ∈ R.
If c < A(F) ≤ 2c, then F is A(F)-lineable.

Proof. Obviously, F contains a linear space (namely, {0}) and,
using Zorn’s Lemma, we obtain that there exists a maximal linear
space X contained in F . We have card(X ) = max{dim(X ), c}.
If the statement does not hold, we shall have card(X ) < A(F)
and, by the previous result, there exists g ∈ F \ X such that
g + X ⊂ F .

Define Y = [g ] + X , where [g ] denotes the linear
span of g . Using that F is star-like, it is easy to see that Y ⊂ F ,
in plain contradiction with the maximality of X .

Taller IV LINEABILITY



Motivation DNM ES ADD

Lemma

Let F ,G ( RR such that G − G ⊂ G and ℵ0 < card(G ) < A(F)
then there exists z ∈ F \ G such that z + G ⊂ F .
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Corollary

Let F ( RR be a star-like with A(F) > c. Then F is lineable.

Theorem (Gámez, Muñoz, Seoane, 2010)

A(J) = ec where
ec = min{card(F ) : F ⊂ RR, (∀ϕ ∈ RR)(∃f ∈ F )(card(f ∩ϕ) < c)}
and c < ec ≤ 2c.

Theorem (Gámez, 2011)

J is 2c-lineable.
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Theorem (Gámez, 2011)

J is 2c-lineable.

Taller IV LINEABILITY



Motivation DNM ES ADD

Corollary

Let F ( RR be a star-like with A(F) > c. Then F is lineable.
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Definition

λ(M) = max{κ : M ∪ {0} contains a vector space of dimensionκ}.

Definition

Let M be a subset of some vector space W . The lineability
cardinality number of M is defined as

L(M) = min{κ : M∪{0} contains no vector space of dimension κ}.

If λ(M) exists, then L(M) = (λ(M))+.
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Theorem (Bartoszewicz, G lab, 2013)

Let 2 ≤ κ ≤ µ and let K be a field with |K|= µ. Also, let V be a
K-vector space with dim(V ) = 2µ and 1 < λ ≤ (2µ)+. There
exists a star-like family F ⊂ V such that:

1 κ ≤ A(F) ≤ κ+.

2 L(F) = λ.
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