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Objective

Theorem of Bourdon-Feldman, 2003
Let T be an operator on a topological vector space X and x ∈ X . If
Orb(x ,T ) is somewhere dense in X , then it is dense in X .
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Topological vector space

Definition
A topological vector space (t.v.s) is a vector space X over K = C or R
endowed with a Hausdorff topology such that

+ : X × X → X
(x , y) 7→ x + y

· : K× X → X
(λ, x) 7→ λ · x

are continuous maps.
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Definitions and notation

Notation
Let T : X → X an operator (i.e, a continuous and linear map), and let
x ∈ X . We denote the orbit of x under T the set
Orb(x ,T ) = {x ,Tx ,T 2x ,T 3x , ...} = {T k x ; k ∈ N0}

Definition
Let X be a topological vector space, and let T : X → X be an
operator. We say that T is hypercyclic if there exists some x ∈ X
whose orbit under T is dense in X , i.e, Orb(x ,T ) = X .
We denote HC(T ) the set of all vectors x ∈ X such that
Orb(x ,T ) = X .

It is clear that if T is hypercyclic, then X is separable.
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Definitions and notation

A priori, a weaker property than hypercyclicity is the property of
admitting a somewhere dense orbit.

Definition
A set is called somewhere dense if its closure contains a non empty
open set.

Obviously, if x ∈ HC(T ), then Orb(x ,T ) is somewhere dense.
Our goal is to show that under very few conditions (X is a t.v.s and
T : X → X is an operator), these two notions are equivalent.
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Some properties

Property 1

A set U is a neighbourhood of x ∈ X if and only if ∃W
0-neighbourhood such that x + W ⊂ U.

Proof: We will prove it using a stronger result. That is, given
λ ∈ K \ {0} and y ∈ X , the maps

Mλ : X → X
x 7→ λx

Ty : X → X
x 7→ x + y

are homeomorphisms.
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Some properties

The result follows from the facts that the maps + and · are
continuous, and so Mλ, M 1

λ
, Ty and T−y are continuous, bijective and

M−1
λ = M 1

λ
, T−1

y = T−y .
From this, we obtain the property because a set S is open if and only
if x + S is open (∀x ∈ X ).
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Some properties

Property 2

∀x ∈ X , ∀W 0-neighbourhood, ∃λ > 0 such that x ∈ λW .

Proof: It follows from the continuity of the scalar product map. For
every x ∈ X , ·x : K→ X is a continuous map. Then we find
µ ∈ K \ {0} small enough with ·x(µ) ∈W . We just need to take λ = 1

µ

to obtain x ∈ λW .
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Some properties

Property 3

Let L ⊂ X be a closed subspace. Then, the quotient space
X/L = {x + L : x ∈ X} = {[x ] : x ∈ X} (where x ∼ y ⇔ x − y ∈ L) is
a t.v.s with the quotient topology (so it is Hausdorff).

Proof: We see that X/L is Hausdorff by showing that [0] is a closed
set in X/L. This is because

[0] =
⋂

W∈U0

q(W ) =
⋂

W∈U0

(W + L) = L = L,

where the U0 is an arbitrary basis of 0-neigbourhoods in X .
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Theorem (Ansari, 1995)

Let X be a topological vector space and let T be an operator on X.
Then HC(T ) = HC(T p), for any p ∈ N.

Problem (Herrero, 1992)

If an operator T admits a finite family of orbits whose union is dense
in X , can we extract a single orbit which is dense in X?

Theorem (Costakis-Peris, 2000)

Let X be a topological vector space, T an operator on X and

x1, ..., xn ∈ X. If
n⋃

j=1
Orb(xj ,T ) is dense in X, then there is some

i ∈ {x1, ...xn} such that Orb(xi ,T ) is dense in X

Problem (Peris, 2001)

If an operator T admits a somewhere dense orbit in X , should it be
everywhere dense?
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(i)

If y ∈ D(x)⇒ D(y) ⊂ D(x)

D(x) = Orb(x ,T ) is T -invariant.

T (Orb(x ,T )) ⊂ T (Orb(x ,T )) ⊂ Orb(x ,T )

y ∈ D(x)⇒ Orb(y ,T ) ⊂ Orb(x ,T )⇒ Orb(y ,T ) ⊂ Orb(x ,T )
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(ii)

U(x) = U(T k x), ∀k ∈ N

Orb(x ,T ) = {x ,Tx , ...,T k−1x} ∪ Orb(T k x ,T )

We write

Orb(x ,T ) = {x1, . . . , xm} ∪ Orb(T k x ,T )

with xi 6∈ Orb(T k x ,T ), for any i = 1, . . . ,m.
Thus we have, by taking interiors,

U(x) = int(Orb(x ,T )) = int({x1, . . . , xm} ∪ Orb(T k x ,T ))

= int(Orb(T k x ,T )) = U(T k x).
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(iii)

If R : X → X is a continuous map and R conmutes with T , then
R(D(x)) ⊂ D(Rx)

R(Orb(x ,T )) ⊆ R(Orb(x ,T )) = {Rx ,RTx ,RT 2x , ...}

= {Rx ,TRx ,T 2Rx , ...} = Orb(Rx ,T )

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!



Basic properties
Previous lemmas

Bourdon-Feldman Theorem

(iii)

If R : X → X is a continuous map and R conmutes with T , then
R(D(x)) ⊂ D(Rx)

R(Orb(x ,T )) ⊆ R(Orb(x ,T )) = {Rx ,RTx ,RT 2x , ...}

= {Rx ,TRx ,T 2Rx , ...} = Orb(Rx ,T )

Amador, Chiclana, Godoy, Sanchiz, Santacreu and Vasconcelos Linear Dynamics: Somewhere dense orbits are everywhere dense!



Basic properties
Previous lemmas

Bourdon-Feldman Theorem

Lemma 1

Lemma 1
Let T be an operator on a topological vector space X . If T admits a
somewhere dense orbit then, for any nonzero polynomial p, the
operator p(T ) has dense range.

Complex case:
∃a, λ1, . . . , λd ∈ C : p(T ) = a(T − λ1I) · · · (T − λd I).
Let λ ∈ C and L = (T − λI)(X ). Suppose L 6= X .
Let q : X → X/L be the quotient map.
Let S : X/L→ X/L, S[x ] = λ[x ] ∀x ∈ X .
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Lemma 1

q((T − λI)x) = 0⇒ q(Tx) = λq(x) = Sq(x)⇒ q ◦ T = S ◦ q.

There exists x ∈ X such that Orb(x ,T ) is somewhere dense.
Orb([x ],S) = {Sn[x ] : n ∈ N0} = {[T nx ] : n ∈ N0} = q(Orb(x ,T ))
⇒ q(Orb(x ,T )) ⊂ q(Orb(x ,T )) = Orb([x ],S).
Orb([x ],S) = {λn[x ] : n ∈ N0} is somewhere dense.
{λn[x ] : n ∈ N0} ⊂ span{[x ]} ' C.
There exists z ∈ C such that {λnz : n ∈ N0} is somewhere dense.
Contradiction.
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Real case:
If X is a real space, let X̃ = X ⊕ iX and T̃ = T ⊕ iT the
complexifications of X and T .

It suffices to show that T̃ − λI has dense range for all λ ∈ C. Let
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We consider |q| : X → R0

+. Since {T nx : n ∈ N0} is somewhere
dense in X , |q| ({T nx : n ∈ N0}) = {|λ|n |[x ]| : n ∈ N0} is
somewhere dense in R0

+.
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Lemma 2

If Orb(x ,T ) is somewhere dense, then the set
{p(T )x ;p 6= 0 a polynomial} is connected and dense in X .

Proof: The set A := {p(T )x ;p 6= 0 a polynomial} is path connected.
Take p,q nonzero polynomials such that p is not multiple of q then
the path

tp(T )x + (1− t)q(T )x , t ∈ [0,1],

is contained in A. If p is multiple of q, we take a polynomial r that is
not multiple of q.
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... Observe that A is a subspace of X . The element 0 is in A since for
every 0-neighbourhood W we can find a polynomial pW such that

pW (T )x ∈W .

Since A ∪ {0} is a subspace of X we have that A is a subspace of X
since

A ∪ {0} = A ∪ {0} = A.

Moreover Orb(x ,T ) ⊆ A.
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Lemma 2

... Using the hypothesis, there is some x0 ∈ X and a 0-neighbourhood
W such that x0 + W ⊂ A.

Thus, for any y ∈ X , there is a scalar λ with y ∈ λW .
Then, since λx0 ∈ A and λ(x0 + W ) ⊂ A we have that

y ∈ λ(x0 + W )− λx0 ⊂ A.

Therefore A = X .
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Bourdon-Feldman Theorem

Theorem
Let T be an operator on a topological vector space X and x ∈ X . If
Orb(x ,T ) is somewhere dense in X , then it is dense in X .

Step 1. T (X \ U(x)) ⊂ X \ U(x).
Step 2. For any z ∈ X \ U(x), D(z) ⊂ X \ U(x).
Step 3. For any polynomial p 6= 0, p(T )x ∈ X \ ∂D(x).
Step 4. D(x) = X .
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Bourdon-Feldman Theorem

Proof

Step 1

T (X\U(x)) ⊂ X\U(x)

We show,equivalently, that T−1(U(x)) ⊂ U(x).

There exists m ∈ N0 such that xm := T mx ∈ U(x).
Let y ∈ T−1(U(x)), and let V be an arbitrary neighbourhood of y .
A := {q(T )xm : q 6= 0 a polynomial} is dense in X , which implies
that there is p 6= 0 polynomial such that
p(T )xm ∈ V ∩ T−1(U(x)).
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Bourdon-Feldman Theorem

Proof

We will show p(T )xm ∈ V ∩ D(x). Note that

p(T )xm ∈ p(T )(U(x)) = p(T )(U(T m+1x)) ⊂ p(T )(D(T m+1x)), (1)

and
p(T )(D(T m+1x)) ⊂ D(p(T )T m+1x) = D(Tp(T )xm). (2)

By (1) and (2), we have

p(T )xm ∈ D(Tp(T )xm).

Since

p(T )xm ∈ T−1(U(x))⇒ Tp(T )xm ∈ U(x) ⊂ D(x),

which implies

p(T )xm ∈ D(x)⇒ p(T )xm ∈ V ∩ D(x).
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Proof

Since V is an arbitrary neighbourhood of y and D(x) is closed, we
deduce that y ∈ D(x). Also, U(x) is open and T is continuous, which
yields T−1(U(x)) ⊂ U(x).

Step 2

For any z ∈ X\U(x), D(z) ⊂ X\U(x).

By Step 1, X\U(x) is T -invariant, and we have that T mz ∈ X\U(x)
for all m ∈ N0. Therefore Orb(z,T ) ⊂ X\U(x). Since X\U(x) is
closed, we deduce that

D(z) ⊂ X\U(x).
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Proof

Step 3

For any polynomial p 6= 0, p(T )x ∈ X \ ∂D(x)

Suppose that p(T )x ∈ ∂D(x) for some polynomial p 6= 0.
There exists some y ∈ X such that p(T )y ∈ U(x).
p(T )(D(x)) ⊆ D(p(T )x) ⊆ X \ U(x).
y ∈ X \ D(x).
There exists some polynomial q 6= 0 such that

q(T )x ∈ X \ D(x) & p(T )q(T )x ∈ U(x)

q(T )p(T )x ∈ q(T )(D(x)) ⊆ D(q(T )x) ⊆ X \ U(x).
Which is a contradiction.
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There exists some y ∈ X such that p(T )y ∈ U(x).
p(T )(D(x)) ⊆ D(p(T )x) ⊆ X \ U(x).
y ∈ X \ D(x).
There exists some polynomial q 6= 0 such that

q(T )x ∈ X \ D(x) & p(T )q(T )x ∈ U(x)

q(T )p(T )x ∈ q(T )(D(x)) ⊆ D(q(T )x) ⊆ X \ U(x).
Which is a contradiction.
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Step 4

D(x) = X

We recall that the set

A = {p(T )x : p 6= 0 is a polynomial}

is connected and dense in X . We know by Step 3 that

A ⊆ U(x) ∪ (X \ D(x)),

where U(x) and X \ D(x) are open disjoint sets.
A ∩ U(x) 6= ∅.
X \ D(x) = ∅.

Which implies that D(x) = X , as desired.
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