
Linear dynamics: Somewhere dense
orbits are everywhere dense!
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This course will deal with some surprising results on the dynamics of a linear
and continuous map (from now on, operator) T : X → X on a general topological
vector space X .

We recall that the orbit of x ∈ X under T is

Orb(x, T ) = {x, Tx, T 2x, . . . },

and x is a hypercyclic vector for T (in this case, T is called a hypercyclic operator)
if Orb(x, T ) is dense in X , i.e., Orb(x, T ) = X .

We will consider the following problems, which, a priori, do not involve lin-
earity.

• If T has a dense orbit, does then every power T p also have a dense orbit?

• Suppose that the union of a finite collection of orbits is dense. Will then at
least one of these orbits be actually dense?

• If an orbit is somewhere dense, is it (everywhere) dense? We recall that a
set is called somewhere dense if its closure contains a nonempty open set.

Each of these questions has a negative answer for arbitrary, nonlinear maps. It
is therefore even more surprising that they all have a positive answer for (linear)
operators, and that without any restrictions. The proofs depend in a crucial way
on connectedness arguments.
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