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A problem coming from geometry

Problem

Given a distribution of points in R2, A, when is A uniquely
determined from its information on certain lines?

Theorem (Cramér-Wold, 1936)

If, A and B are finite sets, and we define δA =
∑

a∈A δa.

δ̂A = δ̂B on Rθ, ∀θ ∈ S1 =⇒ A = B.
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Heisenberg Uniqueness Pairs

Question: Is there any way to reduce the number of lines if the
sets of points are supported in a manifold?

Definition (Hedenmaln,Montes-Rodŕıguez, 2011)

Let M⊂ Rdmanifold , Σ ⊂ Rd . (M,Σ) is a Heisenberg
Uniqueness Pairs (HUP) if the only finite measure µ supported on
M such that µ̂ = 0 in Σ is µ = 0.
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Example:
M = T unit circle in R2. Σ = L1 ∪ L2, Li = R(cos θi , sin θi )
We consider α = 1

π×(angle between L1 and L2).

Lev, Sjölin 2011

(M,Σ) is a HUP ⇐⇒ α /∈ Q

Jaming and Kellay generalize this result to different manifolds
(hyperbola, polygon, ellipse...) and the same set Σ.

Jaming, Kellay 2013

There exists a set E of positive measure such that
(θ1, θ2) ∈ E =⇒ (M,Σ) is HUP

Gröchenig-Jaming 2016: Extension to d > 2 replacing lines by
hyperplanes.
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Goal of this talk

We will look at this example M = Sd−1 from a PDE point of view,
since µ supported on Sd−1 implies that u = µ̂ solves ∆u + u = 0.

Theorem (Cheng 1976, Lev,Sjölin 2011, Gröchenig-Jaming 2016)

θ1, θ2 ∈ Sd−1 such that 1
π arccos(θ1, θ2) 6∈ Q. Let u be solution of

∆u + k2u = 0 on Rd . Assume that there exists µ s.t.{
u = µ̂,
u = 0, x ∈ θ⊥1 ∪ θ⊥2 .

Then u ≡ 0.
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We will consider the following problems:

P1: Can we remove the condition u = µ̂?

P2: Can we consider solutions on domains Ω (bounded,
connected, 0 ∈ Ω)?

P3: Can we replace the Dirichlet conditions by Neumann or
Robin conditions?

P4: Can we replace hyperplanes by other types of
submanifolds?

P5: Can we replace hyperplanes by lower dimensional
submanifolds?
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First method: Schwarz reflection principle

Theorem

d ≥ 2, Ω domain in Rd , θ1, θ2 ∈ Sd−1 s.t. 1
π arccos(θ1, θ2) 6∈ Q.

Let u be solution of ∆u + k2u = 0 on Ω s.t.

either

{
u = 0 in θ⊥1 ,
u = 0 in θ⊥2 ,

or

{
u = 0 in θ⊥1 ,
∂nu = 0 in θ⊥2 .

Then u ≡ 0.
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Schwarz reflection principle:

θ⊥j

x

Rjx
u = 0 on θ⊥j ⇒ u(Rjx) = −u(x),

∂nu = 0 on θ⊥j ⇒ u(Rjx) = u(x).

Proof: On θ⊥1 ∩ B(0, r),
u = 0⇒ u(R1R2x) = 0⇒ u((R1R2)nx) = 0.
R1R2 is a rotation of angle 2 arccos(θ1, θ2) /∈ πQ, so the orbit of
θ⊥1 ∩ B(0, r) is dense ⇒ u = 0 on B(0, r)⇒ u = 0 on Ω.
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Second method: Series expansions in R2

Theorem

Ω domain in R2, Li = R(cos θi , sin θi ) with θ1 − θ2 /∈ πQ.
Let u be solution of ∆u + k2u = 0 on Ω s.t. u = 0 on L1 ∪ L2.
Then u ≡ 0.

Remarks:

Only Dirichlet conditions (not really a problem as we will see)

We can replace lines by analytic curves in R2.
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Proof (k = 0): In a neighborhood of 0 the solution can be written,
in polar coordinates, as

u(r , θ) =
∑
m∈Z

cmr
|m|e imθ.

We may assume wlog, θ1 = 0, θ2 = η /∈ πQ.
c0 = u(0, 0) = 0. Assume cm = 0 for m = 0,±1, . . . ,±(n − 1).
Then

u(r , θ)

rn
= cne

inθ + c−ne
−inθ + o(1)⇒

{
cn + c−n = 0,
cne

inη + c−ne
−inη = 0.

This system has determinant −2i sin(nπη) 6= 0⇒ c±n = 0.



Introduction UC for Helmholtz with Dirichlet-Neumann conditions Robin conditions

Proof (k = 0): In a neighborhood of 0 the solution can be written,
in polar coordinates, as

u(r , θ) =
∑
m∈Z

cmr
|m|e imθ.

We may assume wlog, θ1 = 0, θ2 = η /∈ πQ.
c0 = u(0, 0) = 0. Assume cm = 0 for m = 0,±1, . . . ,±(n − 1).
Then

u(r , θ)

rn
= cne

inθ + c−ne
−inθ + o(1)⇒

{
cn + c−n = 0,
cne

inη + c−ne
−inη = 0.

This system has determinant −2i sin(nπη) 6= 0⇒ c±n = 0.



Introduction UC for Helmholtz with Dirichlet-Neumann conditions Robin conditions

Proof (k = 0): In a neighborhood of 0 the solution can be written,
in polar coordinates, as

u(r , θ) =
∑
m∈Z

cmr
|m|e imθ.

We may assume wlog, θ1 = 0, θ2 = η /∈ πQ.
c0 = u(0, 0) = 0. Assume cm = 0 for m = 0,±1, . . . ,±(n − 1).
Then

u(r , θ)

rn
= cne

inθ + c−ne
−inθ + o(1)⇒

{
cn + c−n = 0,
cne

inη + c−ne
−inη = 0.

This system has determinant −2i sin(nπη) 6= 0⇒ c±n = 0.



Introduction UC for Helmholtz with Dirichlet-Neumann conditions Robin conditions

Proof (k = 0): In a neighborhood of 0 the solution can be written,
in polar coordinates, as

u(r , θ) =
∑
m∈Z

cmr
|m|e imθ.

We may assume wlog, θ1 = 0, θ2 = η /∈ πQ.
c0 = u(0, 0) = 0. Assume cm = 0 for m = 0,±1, . . . ,±(n − 1).
Then

u(r , θ)

rn
= cne

inθ + c−ne
−inθ + o(1)⇒

{
cn + c−n = 0,
cne

inη + c−ne
−inη = 0.

This system has determinant −2i sin(nπη) 6= 0⇒ c±n = 0.



Introduction UC for Helmholtz with Dirichlet-Neumann conditions Robin conditions

Outline

1 Introduction

2 UC for Helmholtz with Dirichlet-Neumann conditions

3 Robin conditions



Introduction UC for Helmholtz with Dirichlet-Neumann conditions Robin conditions

A solution with two different Robin conditions

Theorem

Let θ1, θ2 such that θ1 − θ2 /∈ πQ. Let u be solution of
∆u + k2u = 0, (x , y) ∈ Ω,
α1u + β1∂nu = 0, (x , y) ∈ L1,
α2u + β2∂nu = 0, (x , y) ∈ L2,
u(0, 0) = 0.

Then u ≡ 0.
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Proof (k=0): On Lj , ∂nu(r , θj) = 1
r ∂θu(r , θj).Notice that if we use

the same expansion as before, u(0, 0) = c0 = 0. Moreover,

u(r , θ) = (c1e
iθ + c−1e

−iθ)r +
∑
|m|≥2

cmr
|m|e imθ,

1

r
∂θu(r , θ) = i(c1e

iθ − c−1e
−iθ) + i

∑
|m|≥2

mcmr
|m|−1e imθ.

First case, βi 6= 0: Robin conditions imply c1e
iθi − c−1e

−iθi = 0 for
i = 1, 2⇒ c±1 = 0.
Second case, β1 = 0, β2 6= 0 :{

c1e
iθ1 + c−1e

−iθ1 = 0
c1e

iθ2 − c−1e
−iθ2 = 0,

⇒ c±1 = 0.
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What about the condition u(0, 0) = 0?

If we do not assume a priori u(0, 0) = 0 and βi 6= 0 we cannot
conclude c±1 = 0,{

α1c0 + iβ1(c1e
iθ1 − c−1e

−iθ1) = 0,
α2c0 + iβ2(c1e

iθ2 − c−1e
−iθ2) = 0.

However cm = cm(θ1, θ2, c0). Hence, the space of solutions
satisfying Robin conditions has dimension at most 1.
It might happen that the series expansion for the solution diverges.
This seems to depend on how bad is 1

π (θ1 − θ2) approximated by
rationals.
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A case where the condition is required

Definition

A badly approximable number is an x for which there is c > 0 such
that

|mx − l | ≥ c

m
, ∀m, l ∈ Z.

Theorem

If 1
π (θ1 − θ2) is badly approximable then the space of solutions to

Helmholtz (k > 0) equation satisfying Robin conditions on Li has
dimension exactly 1.
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Eskerrik asko!

¡Gracias!

Thank you!
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