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Discrete games

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

r
r
r
r
r

�

�

�

�

-�

6

?

∂G E ⊂ ∂G

z z1z3

z2

z4

House moves randomly the token

Player I wins when reaching E

Player II wins when reaching ∂G \ E

u(z) = Pz( Player 1 wins ) = Pz(E)

u(z) =
1
4

4∑
i=1

u(zi) (Usual MVP)



Discrete games
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∂G E ⊂ ∂G

z z1z3

z2

z4

Toss a fair coin to decide who moves

Player I wins when reaching E

Player II wins when reaching ∂G

u(z) = Pz( Player 1 wins ) = Pz(E)

u(z) =
1
2

(
max

i
u(zi) + min

i
u(zi)

)



Discrete games
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∂G E ⊂ ∂G

z z1z3

z2

z4

Combine Game 2 with probability α

and Game 1 with probability 1− α

u(z) = Pz( Player 1 wins ) = Pz(E)

u(z) =
α

2

(
max

i
u(zi) + min

i
u(zi)

)
+

1− α
4

4∑
i=1

u(zi)



PDE’s and MVP’s on graphs

u : G→ R is harmonic iff

u(z) =
1
4

4∑
i=1

u(zi) , (z ∈ G)

I Birkhoff (graph laplacian).

I Electrical networks.

I Discretization of PDE’s.

I Image processing, image interpolation.



Harmonic functions

Rewrite the discrete MVP

in terms of the horizontal and

vertical second differences:

u(x + h, y) + u(x − h, y)− 2u(x , y) +

u(x , y + h) + u(x , y − h)− 2u(x , y) = 0



Harmonic functions

u(x + h, y) + u(x − h, y)− 2u(x , y) +

u(x , y + h) + u(x , y − h)− 2u(x , y) = 0

Now, remind that if f : R→ R, then

f ′′(a) = lim
h→0

f (a + h) + f (a− h)− 2f (a)

h2



Harmonic functions

u(x + h, y) + u(x − h, y)− 2u(x , y) +

u(x , y + h) + u(x , y − h)− 2u(x , y) = 0

Dividing by h2 and taking limits as h→ 0 we formally obtain
the Laplace equation in two variables

∂2u
∂x2 +

∂2u
∂y2 = 0



Harmonic functions and the direct MVP

The direct Mean Value Property (Gauss, 1840)

Let u be harmonic in a domain Ω ⊂ Rn. Then for any ball
B(x , r) ⊂ Ω, we have

I u(x) =

 
∂B(x ,r)

u (Spherical MVP)

I u(x) =

 
B(x ,r)

u (Volume MVP)



The converse MVP

The basic converse MVP question

Given u : Ω :→ R, what sort of MVP does imply that u is
harmonic in Ω?

Different directions

I Requirements on u and Ω.

I How many radia?

I Asymptotic version of the MVP.

I Contributions due to Cauchy, Darboux, Volterra, Vitali,
Fréchet, Koebe, Sierpinski, Littlewood, Tonelli,
Privalov, Banach...



Converse MVP results

Theorem (Koebe, 1906).

Let u ∈ C(Ω). If for each x ∈ Ω there is a sequence rn(x)→ 0
such that u satisfies the MVP at x (volume or spherical) with
radius rn(x) for all n, then u is harmonic in Ω.



Converse MVP results

One radius theorem (Volterra 1909, Kellogg 1928).

Let Ω ⊂ Rn be a bounded domain and u ∈ C(Ω). Suppose
that for each x ∈ Ω there is a single radius r(x), with
0 < r(x) ≤ dist(x , ∂Ω) such that u satisfies the MVP (either
volume or spherical) at x with radius r(x). Then u is harmonic
in Ω.



Averaging operators

Averaging Operators

Let Ω ⊂ Rn be bounded and r : Ω→ R+ such that
0 < r(x) ≤ dist(x , ∂Ω) for each x ∈ Ω. Define the averaging
operator T0 associated to r as follows

T0u(x) =

 
B(x ,r(x))

u

Remarks

I If r is continuous then T0 : C(Ω)→ C(Ω).

I Volterra-Kellogg Theorem is equivalent to saying that if
u ∈ C(Ω) is a fixed point of T0 then u is harmonic in Ω.



Lebesgue’s approach to the Dirichlet Problem

Let Ω ⊂ Rn, bounded and regular. Choose r(x) = dist(x , ∂Ω)
for x ∈ Ω and let T0 be the corresponding averaging operator.

Theorem (Lebesgue, 1912)

Let f ∈ C(∂Ω) and u0 ∈ C(Ω) such that u0|∂Ω = f . Then

{T k
0 u0} → ũ uniformly in Ω as k →∞

where ũ is the solution to the Dirichlet Problem{
4u = 0 in Ω

u = f on ∂Ω



Lebesgue’s approach to the Dirichlet Problem

Remarks

I T0 : C(Ω) :→ C(Ω) is linear and non-expanding:

||T0u − T0v ||∞ ≤ ||u − v ||∞ , (u, v ∈ C(Ω))

I If {T k
0 u0} → ũ uniformly in Ω then ũ is a fixed point of

T0, therefore harmonic by Volterra-Kellogg.

I For f ∈ C(∂Ω), put

Kf = {u ∈ C(Ω) : u|∂Ω = f}

Then Kf is closed in C(Ω) and T0(Kf ) ⊂ Kf . To solve
Dirichlet Problem with boundary data f is equivalent to
seek a fixed point of T0 in Kf .



A nonlinear scenario

The p-laplace operator

For 1 < p <∞, define

∆pu = div(|∇u|p−2∇u)



A nonlinear scenario

The p-laplace operator

For 1 < p <∞, define

∆pu = div(|∇u|p−2∇u)

I Euler-Lagrange equation associated to p-energy.

I (Weak) solutions are called p-harmonic functions.

I p-harmonic functions solve the Dirichlet Problem with
continuous boundary data (in regular domains).

I p-harmonic functions are C1,α for some 0 < α < 1, not C2

in general.



A nonlinear scenario

Two relevant questions

1. Is there a “natural” stochastic process associated to the
p-laplacian?

2. Is there a “natural” MVP related to the p-laplacian?



A nonlinear scenario

Two relevant questions

1. Is there a “natural” stochastic process associated to the
p-laplacian?

2. Is there a “natural” MVP related to the p-laplacian?

Question 2: two main keys

I A representation of ∆p in terms of ∆ and ∆∞.

I Averaging Taylor formula.



Representing ∆p in terms of ∆ and ∆∞

Assume u ∈ C2(Ω). Then, away from the critical set:

∆pu = |∇u|p−2
(

∆u + (p − 2)
∆∞u
|∇u|2

)
where

∆∞u =
∑
i,j

uxi uxj uxi ,xj =< (Hu)∇u,∇u >

is the so called infinity laplacian.



Averaging Taylor

Let Ω ⊂ Rn, u ∈ C2(Ω), x ∈ Ω, h ∈ B(0, r). Denote by Hu(x)
the hessian matrix of u at x . By Taylor:

u(x + h) = u(x)+ < ∇u(x),h > +
1
2
< Hu(x)h,h > +o(r2)



Averaging Taylor

Let Ω ⊂ Rn, u ∈ C2(Ω), x ∈ Ω, h ∈ B(0, r). Denote by Hu(x)
the hessian matrix of u at x . By Taylor:

u(x + h) = u(x)+ < ∇u(x),h > +
1
2
< Hu(x)h,h > +o(r2)

Average over the ball B(0, r) in two different ways:

I

 
B(x ,r)

u (usual average )

I
1
2
(

sup
B(x ,r)

u + inf
B(x ,r)

u
)

(mid-range average)



Averaging taylor

Usual averages

By elementary computation
 

B(x ,r)
u = u(x) +

∆u(x)

2(n + 2)
r2 + o(r2)

Therefore

 
B(x ,r)

u = u(x) +
∆u(x)

2(n + 2)
r2 + o(r2)



Averaging taylor

Mid-range averages

From Taylor:

u
(
x + r

∇u(x)

|∇u(x)|
)

= u(x) + r |∇u(x)|+ ∆∞u(x)

2|∇u(x)|2
r2 + o(r2)

u
(
x − r

∇u(x)

|∇u(x)|
)

= u(x)− r |∇u(x)|+ ∆∞u(x)

2|∇u(x)|2
r2 + o(r2)

where

∆∞u =< (Hu)∇u,∇u >=
∑
i,j

uxi uxj uxi ,xj



Averaging taylor

Mid-range averages

Suppose

sup
B(x ,r)

u ≈ u
(
x + r

∇u(x)

|∇u(x)|
)
, inf

B(x ,r)
u ≈ u

(
x − r

∇u(x)

|∇u(x)|
)

Then

1
2

(
sup

B(x ,r)
u + inf

B(x ,r)
u
)

= u(x) +
∆∞u(x)

2|∇u(x)|2
r2 + o(r2)



Averaging taylor

Conclusion

If u ∈ C2(Ω), x ∈ Ω and ∇u(x) 6= 0 then
 

B(x ,r)
u = u(x) +

∆u(x)

2(n + 2)
r2 + o(r2)

1
2

(
sup

B(x ,r)
u + inf

B(x ,r)
u
)

= u(x) +
∆∞u(x)

2|∇u(x)|2
r2 + o(r2)



Averaging taylor

Conclusion

If u ∈ C2(Ω), x ∈ Ω and ∇u(x) 6= 0 then
 

B(x ,r)
u = u(x) +

∆u(x)

2(n + 2)
r2 + o(r2)

1
2

(
sup

B(x ,r)
u + inf

B(x ,r)
u
)

= u(x) +
∆∞u(x)

2|∇u(x)|2
r2 + o(r2)

and, having in mind the representation

∆pu = |∇u|p−2
(

∆u + (p − 2)
∆∞u
|∇u|2

)



Averaging taylor

Conclusion

If u ∈ C2(Ω), x ∈ Ω and ∇u(x) 6= 0 then
 

B(x ,r)
u = u(x) +

∆u(x)

2(n + 2)
r2 + o(r2)

1
2

(
sup

B(x ,r)
u + inf

B(x ,r)
u
)

= u(x) +
∆∞u(x)

2|∇u(x)|2
r2 + o(r2)

we finally obtain that ∆pu(x) = 0 iff

u(x) =
α

2
(

sup
B(x ,r)

u + inf
B(x ,r)

u
)

+ (1− α)

 
B(x ,r)

u + o(r2)

where α =
p − 2
p + n

.



Recent approaches

I Optimal lipschitz extensions and ∆∞ (Aronsson, 60’s,
Archer-LeGruyer...)

I Image processing (Caselles- Morel-Sbert 86...)

I Stochastic games (Peres-Shramm-Sheffield-Wilson
2009, Peres-Sheffield 2008, Manfredi-Parviainen-Rossi
2010-13)

I Asymptotic MVP (Manfredi-Parviainen-Rossi 2010,
Lindqvist-Manfredi 2018, Arroyo-Llorente 2018).

I One radius MVP (Arroyo-Llorente 2015, 2018).



A nonlinear one-radius MVP

I Ω ⊂ Rn bounded.
I r : Ω→ R+ continuous such that 0 < r(x) ≤ dist(x , ∂Ω)

for each x ∈ Ω.
I α ∈ [0,1].



A nonlinear one-radius MVP

A nonlinear averaging operator

Define Tα : C(Ω)→ C(Ω) by

Tαu(x) =
α

2

(
sup

B(x ,r(x))
u + inf

B(x ,r(x))
u
)

+ (1− α)

 
B(x ,r(x))

u



A nonlinear one-radius MVP

Tαu(x) =
α

2

(
sup

B(x ,r(x))
u + inf

B(x ,r(x))
u
)

+ (1− α)

 
B(x ,r(x))

u

Remarks

I No Volterra-Kellogg unless α = 0. Fixed points of Tα and
p-harmonic functions are different classes.

I Tα is not linear, unless α = 0.

I Tα is non-expanding: ||Tαu − Tαv ||∞ ≤ ||u − v ||∞.

I If f ∈ C(∂Ω) and Kf = {u ∈ C(Ω) : u|∂Ω = f} then
Tα(Kf ) ⊂ Kf .



The Dirichlet Problem for Tα

Problem

Let Ω ⊂ Rn bounded, r : Ω→ R+ continuous, with
0 < r(x) ≤ dist(x , ∂Ω) for x ∈ Ω and α ∈ [0,1].

Which assumptions on Ω, r and α imply that the Dirichlet
Problem {

Tαu = u in Ω

u = f on ∂Ω

has a unique solution in C(Ω)?



The Dirichlet Problem for Tα

Previous results

I α = 0 (classical case).

I α = 1. Archer-LeGruyer (1998).

I 0 ≤ α < 1, r(x) ≡ ε (Manfredi-Parviainen-Rossi,
Luiro-Saksman).



The Dirichlet Problem for Tα

Theorem (Arroyo-Llorente, 2015, 2018)

Let Ω ⊂ Rn be strictly convex, and 0 ≤ α < 1. Suppose that
r : Ω→ R+ is continuous and

δ1 dist(x , ∂Ω) ≤ r(x) ≤ δ2 dist(x , ∂Ω)

where 0 < δ1 ≤ δ2 < 1− α. Then the Dirichlet Problem{
Tαu = u in Ω

u = f on ∂Ω

has a unique solution in C(Ω).



Existence: key steps

I Given f ∈ C(∂Ω), choose u0 ∈ C(Ω) such that u0|∂Ω = f .



Existence: key steps

I Given f ∈ C(∂Ω), choose u0 ∈ C(Ω) such that u0|∂Ω = f .

I Key point: to show that {T k
αu0} is equicontinuous in Ω.
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I Given f ∈ C(∂Ω), choose u0 ∈ C(Ω) such that u0|∂Ω = f .

I Key point: to show that {T k
αu0} is equicontinuous in Ω.

I Local equicontinuity. Archer-LeGruyer estimates for T1 +
local estimates for T0.



Existence: key steps

I Given f ∈ C(∂Ω), choose u0 ∈ C(Ω) such that u0|∂Ω = f .

I Key point: to show that {T k
αu0} is equicontinuous in Ω.

I Local equicontinuity. Archer-LeGruyer estimates for T1 +
local estimates for T0.

I Boundary equicontinuity. Invariant convexity trick: to
show that co(GT k

αu) ⊂ co(Gu), where Gu stands for the
graph of u.



Existence: key steps

I Given f ∈ C(∂Ω), choose u0 ∈ C(Ω) such that u0|∂Ω = f .

I Key point: to show that {T k
αu0} is equicontinuous in Ω.

I Local equicontinuity. Archer-LeGruyer estimates for T1 +
local estimates for T0.

I Boundary equicontinuity. Invariant convexity trick: to
show that co(GT k

αu) ⊂ co(Gu), where Gu stands for the
graph of u.

I Final argument showing that non-expansiveness of Tα
actually implies that {T k

α} converges to a fixed point.



Further comments and directions

I Relax the strict convexity assumption.

I Seek a more direct argument towards uniform
convergence of the iterates {T k

αu0}.

I Existence in metric measure spaces.

I If rε(x) = ε r(x), suppose that Tαuε = uε, where
uε ∈ C(Ω) and uε|∂Ω = f ∈ C(∂Ω). Is it true that uε → u
uniformly in Ω as ε→ 0, where ∆pu = 0 in Ω?

I Asymptotic MVP for the p-laplacian in higher dimensions.


