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Hermite-Hadamard inequalities

Jig

C. Hermite J. Hadamard
Theorem 1 (Hermite 1881 & Hadamard 1893)

Let f : R — R concave. Then

f(;a) + @ < 2_13/_: f(x)dx < f <%3 + g) = £(0).
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e " set of compact convex sets in R".
e The center of mass of K € K" is
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Let K € K" and f : K — R concave. Then
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<f (/K X’de|> ~ F(cx).




Hermite-Hadamard for f(x)™

Theorem 2 (Milman & Pajor '00)

Let f : R” — Ry be s.t. log f is concave and i : R" — R, a
probability measure. Then

[ <e(f « “TH TR )
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Let f : R” — Ry be s.t. log f is concave and p: R" — R, a
probability measure. Then

f(x)

Jofe09 = (| T

Let K€ K", f: K — R, concave, and m € N. Then

x)Mdx < f(x¢)™,
7 J )

where xr = [, x fidx.
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Hermite-Hadamard for f(x)™

Theorem 3 (G.M.+19, Dragomir '00)

Let f : Bj — Ry concave and m € N. Then

1 2m+n
F(x)"dx < r<2m+”+1>r<”+2) £(0)™.
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Theorem 3 (G.M.+19, Dragomir '00)
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Theorem 4 (G.M.+19)

Let K € K" with K = —K, f : K — R concave, and m € N.

Then
2m

1
— [ f)mdx <———F(0)™.
IK!/K B <1’

Equality holds iff f is affine and if moreover m > 2 then K is a
generalized cylinder s.t. f =0 in one of its basis.
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Reverse Hermite-Hadamard

Theorem 5 (Alonso-Gutiérrez, Herndndez Cifre, Roysdon, Yepes

Nicolds, Zvavitch '18, G.M.+19)
Let 0 € K e K", f : K — R, concave and m € N. Then
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Reverse Hermite-Hadamard

Theorem 5 (Alonso-Gutiérrez, Herndndez Cifre, Roysdon, Yepes

Nicolds, Zvavitch '18, G.M.+19)
Let 0 € K e K", f : K — R, concave and m € N. Then

—1
m-+n )
( N > f(o)™ ]K|/f dx.

Equality holds iff the graph of f is a cone with basis K x {0} and
apex (0, £(0)).
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Application

e L7 the set of i-dimensional linear subspaces in R".

e For K € K" and H € L7 let PyK be the orthogonal projection of
K onto H.

Theorem 6 (Brunn 1887 & Minkowski 1896)
Let K,C € K". Then

I(1 = NK +AC|n > (1 — \)|K|= + A|C|

for any A € [0, 1]. Equality holds if K = x + tC, for x € R" and
t > 0.
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Theorem 7 (Rogers & Shephard '58)

Let K€ K" and H € L7. Then
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Theorem 8 (Fubini's formula)

Let K€ K" and H € L. Then

|K| < |PyK|max|K N (x + HY)|.
xeH
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Corollary (Spingarn '93, Milman & Pajor '00)

Let K€ K" and H € L?. Then

|K| < |PuK|-|K N (xx + HY)].

Corollary (Jensen 1906)
Let K€ K" and H e L)_;. Then

K| < [PuK] - |K 0 (xpyk + HY)L.




Application

Corollary (G.M.+19)

Let K € K" and H € L7 with PyK = Bj. Then
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Corollary (G.M.+19)

Let K € K" and H € L7 with PyK = Bj. Then

2" 2n—i +1 |+ 2
K< o (50 1 (52 tpuk - Ik )

m2nl

Corollary (G.M.+19)

Let K € K" and H € L7 with PyK = —PyK. Then

2 2

2n—i
K| < ———7IPuK|- KN H|
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Application

Proof of Corollary. By Fubini's formula
K| =/ |K N (x + HY)|dx.
PyK
Let
f:PyK - Ry best f(x)=|KnN(x+ HL)‘ﬁ_

By Brunn-Minkowski inequality f is concave. By Theorem 4

K| 1 y
= f(x)""dx
|PhK|  [PHK| Jpyk )
2n—i ) 2n—i
<7f n—i —_ - K HJ_ . |:|
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