
A characterization of the density
property for translation invariant bases

XV Encuentro de la Red de Análisis Funcional y
Aplicaciones

Bilbao, 7 - 8 de marzo de 2019

Ioannis Parissis

(joint work with Paul A. Hagelstein)

Universidad del Páıs Vasco/Euskal Herriko Unibertsitatea

Friday 8th March, 2019

Ioannis Parissis Density property for ti bases UPV/EHU 1 / 18



1 Differentiation bases and the Busemann-Feller
theorem.

2 The density property for translation invariant
bases

3 A counterexample to a centered de Guzmán
conjecture

4 A few words about the proof

Ioannis Parissis Density property for ti bases UPV/EHU 2 / 18



1 Differentiation bases and the Busemann-Feller
theorem.

2 The density property for translation invariant
bases

3 A counterexample to a centered de Guzmán
conjecture

4 A few words about the proof

Ioannis Parissis Density property for ti bases UPV/EHU 2 / 18



1 Differentiation bases and the Busemann-Feller
theorem.

2 The density property for translation invariant
bases

3 A counterexample to a centered de Guzmán
conjecture

4 A few words about the proof

Ioannis Parissis Density property for ti bases UPV/EHU 2 / 18



1 Differentiation bases and the Busemann-Feller
theorem.

2 The density property for translation invariant
bases

3 A counterexample to a centered de Guzmán
conjecture

4 A few words about the proof

Ioannis Parissis Density property for ti bases UPV/EHU 2 / 18



Contents

1 Differentiation bases and the Busemann-Feller
theorem.

2 The density property for translation invariant
bases

3 A counterexample to a centered de Guzmán
conjecture

4 A few words about the proof

Ioannis Parissis Density property for ti bases UPV/EHU 3 / 18



Differentiation bases

A basis B is a collection of open bounded sets in Rn . Some
important examples of bases are:

- The collection Q consisting of all cubes in Rn with sides // axes.
- The collection b consisting of all Euclidean balls in Rn .
- The collection R consisting of all rectangles in Rn with sides // axes.

We say that B differentiates a class of functions X if for every
f ∈ X we have that⨏

B
f B

1

|B |

∫
B
f (y)dy −−−−−−−−−→

B3x, B∈B
diam(B)→0

f (x), for a.e. x ∈ Rn .

We say that B is a density basis if B differentiates the class
Xdens B {1E : E ⊆ Rn , 0 < |E | < ∞}.
If we are working with an abstract basis B we many times require
additional structure. The basis B is homothecy invariant:

x + λB ∈ B ∀x ∈ Rn , λ > 0, B ∈ B.
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The Maximal Operator

The differentiation properties of B are controlled by the mapping
properties of the corresponding maximal operator:

The non-centered maximal function of f with respect
to B

MB f (x) B sup
B∈B
B3x

⨏
B
| f (y)|dy, x ∈

⋃
B∈B

B, f ∈ L1
loc(R

n).

The typical estimate we are looking for is of the type
MB : Lp → Lp,∞ for some 1 ≤ p < ∞ and then B differentiates Lp .

Question

When does B differentiate L∞? OK if MB is bounded on Lp for some
p < ∞.
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The Busemann-Feller theorem

There exists differentiation bases B which differentiate L∞ (so they
are density bases) but do not differentiate Lp for any p < ∞ (Hayes
’50s and also subsequent slides).

The Busemann-Feller theorem (1939)

If B is a homothecy invariant basis then B is a density basis if and only
if for all α ∈ (0, 1)

CB(α) B sup
0< |E |<∞

1

|E |
|{x ∈ Rn : MB1E (x) > α }| < +∞.

We call CB(α) the halo function of B. Note that C(α) < ∞ is
automatically satisfied for all α if MB is weak-type (p,p) for some
p < ∞.
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Translation invariant bases

The Busemann-Feller theorem gives a quite satisfactory
characterization of density bases in the homothecy invariant case.

Let us now consider a basis B which is translation invariant but
not necessarily scale invariant. Immediately one discovers many
pathological examples simply by introducing bad sets in large
scales. Clearly these sets do not affect the differentiation
properties of B but destroy the boundedness properties of MB.

Question: (M. de Guzman, 1975)

If B is just translation invariant is it true that B is a density basis if
and only if there exists (small) r > 0 such that for all α ∈ (0, 1) we have

CB,r (α) B sup
0< |E |<∞

1

|E |
|{x ∈ Rn : MB,r1E (x) > α }| < ∞ ?
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properties of B but destroy the boundedness properties of MB.

Question: (M. de Guzman, 1975)

If B is just translation invariant is it true that B is a density basis if
and only if there exists (small) r > 0 such that for all α ∈ (0, 1) we have

CB,r (α) B sup
0< |E |<∞

1

|E |
|{x ∈ Rn : MB,r1E (x) > α }| < ∞ ?
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A non scale invariant Busemann-Feller
theorem

While we cannot prove de Guzmán’s conjecture we can still prove
a characterization of the density property in the translation
invariant case.

Theorem (P. Hagelstein, I. P.)

Let B be a translation invariant basis. Then B is a density basis if and
only if for every α ∈ (0, 1) there exists r = rα > 0 such that

CB,rα (α) B sup
0< |E |<∞

1

|E |
|{x ∈ Rn : MB,rα 1E (x) > α }| < ∞

Note the reverse order of the quantifiers compared to de Guzmán’s
conjecture. Our radius rα depends on α .
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A counterexample for centered bases, I

We define

MB,r f (x) B sup
B∈B(x )

diam(B)<r

⨏
B
| f (y)|dy, B B

⋃
x ∈Rn

B(x).

Here B(x) is a given collection of sets containing x ∈ Rn . For
example B(x) is the collection of all balls centered at x .
A counterexample to De Guzmán’s conjecture in the centered case
can be constructed as follows. For k ∈ N let

Bk (0) B
{
(−
δ

2
,
δ

2
)∪(s, s+2−kδ ) : 0 < δ < 2−2k , s ∈ (2−k , 2−k+2−2k )

}
.

Then extend by translation invariance B B
⋃

x ∈Rn ∪k ∈N
(
Bk (0) + x

)
.
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2−k

2−2k
0

δ � s
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A counterexample for centered bases, II

Let α ∈ (0, 1), k ∈ N such that 2−k < α/2, and x ∈ R such that
MB1E (x) > α for some E with 0 < |E | < ∞.

By the definition of B there exists I = I1 ∪ I2 ∈ Bk (x) with I1, I2
disjoint, |I1 | = 2k |I2 |, x ∈ I1 and

|E ∩ (I1 ∪ I2)|

|I1 ∪ I2 |
> α =⇒

|I1 ∩ E |

|I1 |
> α/2.

By the Hardy-Littlewood maximal theorem we then get that
CBk (α) . 1/α if 2−k . α . Thus for every α ∈ (0, 1) there exists
r = r (α) such that CB,r (α) < ∞.

We show however that it is impossible to choose a uniform r for
every α ∈ (0, 1) so that CB,r (α) < ∞.

For this let E = [0,δ ] with δ � 2−2k . Then MBk 1E > 1/(1 + 2−k ) on

an interval of length 2−2k .
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A counterexample for centered bases, II

We showed MBk 1E > 1/(1 + 2−k ) on an interval of length 2−2k , and

|E | h δ � 2−2k .

This implies that CB,r ((1 + 2−k )−1) = ∞ if r & 2−k and so that

CB,r (α) = ∞ if r &
1

α
− 1, α → 1−.

However, the positive direction of the theorem shows that B is in
fact a density basis. Thus the characterization via the condition
CB,r (α) < ∞ cannot be valid for r independent of α .

Question

Can De Guzmán’s conjecture still be valid in the uncentered case?
(Uncentered here means that B(x) is the collection of all sets containing
x, not just a predefined collection.)

Ioannis Parissis Density property for ti bases UPV/EHU 13 / 18



A counterexample for centered bases, II

We showed MBk 1E > 1/(1 + 2−k ) on an interval of length 2−2k , and

|E | h δ � 2−2k .

This implies that CB,r ((1 + 2−k )−1) = ∞ if r & 2−k and so that

CB,r (α) = ∞ if r &
1

α
− 1, α → 1−.

However, the positive direction of the theorem shows that B is in
fact a density basis. Thus the characterization via the condition
CB,r (α) < ∞ cannot be valid for r independent of α .

Question

Can De Guzmán’s conjecture still be valid in the uncentered case?
(Uncentered here means that B(x) is the collection of all sets containing
x, not just a predefined collection.)

Ioannis Parissis Density property for ti bases UPV/EHU 13 / 18



A counterexample for centered bases, II

We showed MBk 1E > 1/(1 + 2−k ) on an interval of length 2−2k , and

|E | h δ � 2−2k .

This implies that CB,r ((1 + 2−k )−1) = ∞ if r & 2−k and so that

CB,r (α) = ∞ if r &
1

α
− 1, α → 1−.

However, the positive direction of the theorem shows that B is in
fact a density basis. Thus the characterization via the condition
CB,r (α) < ∞ cannot be valid for r independent of α .

Question

Can De Guzmán’s conjecture still be valid in the uncentered case?
(Uncentered here means that B(x) is the collection of all sets containing
x, not just a predefined collection.)

Ioannis Parissis Density property for ti bases UPV/EHU 13 / 18



A counterexample for centered bases, II

We showed MBk 1E > 1/(1 + 2−k ) on an interval of length 2−2k , and

|E | h δ � 2−2k .

This implies that CB,r ((1 + 2−k )−1) = ∞ if r & 2−k and so that

CB,r (α) = ∞ if r &
1

α
− 1, α → 1−.

However, the positive direction of the theorem shows that B is in
fact a density basis. Thus the characterization via the condition
CB,r (α) < ∞ cannot be valid for r independent of α .

Question

Can De Guzmán’s conjecture still be valid in the uncentered case?
(Uncentered here means that B(x) is the collection of all sets containing
x, not just a predefined collection.)

Ioannis Parissis Density property for ti bases UPV/EHU 13 / 18



A counterexample for centered bases, II

We showed MBk 1E > 1/(1 + 2−k ) on an interval of length 2−2k , and

|E | h δ � 2−2k .

This implies that CB,r ((1 + 2−k )−1) = ∞ if r & 2−k and so that

CB,r (α) = ∞ if r &
1

α
− 1, α → 1−.

However, the positive direction of the theorem shows that B is in
fact a density basis. Thus the characterization via the condition
CB,r (α) < ∞ cannot be valid for r independent of α .

Question

Can De Guzmán’s conjecture still be valid in the uncentered case?
(Uncentered here means that B(x) is the collection of all sets containing
x, not just a predefined collection.)

Ioannis Parissis Density property for ti bases UPV/EHU 13 / 18



Contents

1 Differentiation bases and the Busemann-Feller
theorem.

2 The density property for translation invariant
bases

3 A counterexample to a centered de Guzmán
conjecture

4 A few words about the proof

Ioannis Parissis Density property for ti bases UPV/EHU 14 / 18



The Busemann-Feller consequence

One direction of the theorem is an easy consequence of a more
general result of Busemann and Feller (BF). If B is a
differentiation basis and for each α ∈ (0, 1), for each nested
sequence of bounded measurable sets {Ak } such that |Ak | → 0,
and for each sequence of positive numbers rk → 0 we have

|{x ∈ Rn : MB,rk 1Ak (x) > α }|
k
→ 0,

then B is a density basis. We can easily check that our
assumption implies the BF condition. Indeed we just need to fix
α ∈ (0, 1) and chose k sufficiently large so that rk < rα , with rα as
in our theorem.

It remains to show that if B is a translation invariant density basis
then the conclusion of the theorem holds.
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The necessity part of the theorem, I

Assuming our conclusion fails (for contradiction) there exists
α ∈ (0, 1) and sets Sk, ` ⊂ R

n of finite and positive measure with

|{x ∈ Rn : M2−k 1Sk, ` (x) > α }| ≥ 2` |Sk, ` |, ∀(k, `) ∈ N2.

By pigeonholing and using that M2−k is a local operator we can
then find a unit cube Q and for each ` ∈ N a set E` B S`,` ∩ 3Q of
positive and finite measure such that

|F` B {x ∈ Q : M2−`1E`
(x) > α }| &n 2` |E` |, |E` | .n 2−` |F` |.

Choose a positive integer n` such that |3Q | h n` |F` | and construct
a sequence of sets {Ẽm}m as follows

E1, . . . ,E1︸      ︷︷      ︸
n1 terms

,E2, . . . ,E2︸      ︷︷      ︸
n2 terms

, . . . ,E`, . . . ,E`︸      ︷︷      ︸
n` terms

, . . . .

Construct similarly a sequence of sets {F̃m}m starting from {F`}`.
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E1, . . . ,E1︸      ︷︷      ︸
n1 terms

,E2, . . . ,E2︸      ︷︷      ︸
n2 terms

, . . . ,E`, . . . ,E`︸      ︷︷      ︸
n` terms

, . . . .

Construct similarly a sequence of sets {F̃m}m starting from {F`}`.

Ioannis Parissis Density property for ti bases UPV/EHU 16 / 18



The necessity part of the theorem, I

Assuming our conclusion fails (for contradiction) there exists
α ∈ (0, 1) and sets Sk, ` ⊂ R

n of finite and positive measure with

|{x ∈ Rn : M2−k 1Sk, ` (x) > α }| ≥ 2` |Sk, ` |, ∀(k, `) ∈ N2.

By pigeonholing and using that M2−k is a local operator we can
then find a unit cube Q and for each ` ∈ N a set E` B S`,` ∩ 3Q of
positive and finite measure such that

|F` B {x ∈ Q : M2−`1E`
(x) > α }| &n 2` |E` |, |E` | .n 2−` |F` |.

Choose a positive integer n` such that |3Q | h n` |F` | and construct
a sequence of sets {Ẽm}m as follows
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The necessity part of the theorem, II

With these definitions we can conclude (remember n` |F` | h 1)∑
m

|Ẽm | =
∑̀

n` |E` | .
∑̀

n`2
−` |F` | . 1,

∑
m

|F̃m | = +∞

By a Borel-Cantelli type of argument we can now find translations
{τm}m such that almost every point of Rn is contained in infinitely
many of the sets {τm F̃m}m .

By this construction and translation invariance we can now find a
strictly increasing sequence {mj }j such that almost every x ∈ Rn

satisfies

x ∈
∞⋂
j=1

{
Q : M2−mj 1τmj Emj

> α
}
⊆

∞⋂
j=1

{
Q : M2−j1τmj E > α

}
,

E B
⋃
m

τmẼm , |E | < +∞.
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τmẼm , |E | < +∞.

Ioannis Parissis Density property for ti bases UPV/EHU 17 / 18



Concluding the proof

We have proved that if the necessity statement of the theorem is
negated then for almost every x ∈ Rn we have

x ∈
∞⋂
j=1

{
Q : M2−j1E > α }, |E | < ∞.

We conclude that there exists α > 0 such that, for almost every
x ∈ Rn there exists a sequence of sets {Rx, j }j ⊂ B with
diam(Rx, j ) ≤ 2−j , and such that

|Rx, j ∩ E |

|Rx, j |
> α , ∀j ≥ 1.

But B is a density basis so for almost all x ∈ Ec we must have

lim
j→∞

|Rx, j ∩ E |

|Rx, j |
= 0

which is clearly a contradiction. We used |E | < ∞ to show that Ec

actually contains a set of positive measure.
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