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Introduction



Motivation Question

Lebesgue Differentiation Theorem

1
—_— f— f(x aexecR", forall felP(R"”
Q06 Jageny " 70 ) &

Q(x,r) is a cube centered at x and sidelength r.
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Some Notation

Definition

B := {Collection of bounded open sets on R"}
R, := {Open rectangles on R"}

Q, := {Open cubes on R"}

Remark

They are all homothecy invariant.

Definition
Maximal operator associated to B:
Mpf(x) := sup —: Bl / Ifl, felP(R"), xeR".

BeB
xeB
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Definition
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o [P(R™):= {f measurable : (/ |f|”) o 1f]]Lorny < oo}
Rn

For all f € LP(R") (1 < p < 00) we have
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Introduction

Definition

1

o [P(R™):= {f measurable : (/ |f|”) o 1f]]Lorny < oo}
Rn

o ||f]|ip.oc := {The smallest Cy that verifies (*)}
o [P°(R") := {f measurable : ||f||.pc0(mn) < 00}

For all f € LP(R") (1 < p < 00) we have

[ e R ()] > A < 8 ©



Introduction

Definition
We say that T is strong-type (p, p) if T : LP — LP is bounded.
We say that T is weak-type (p, p) if T : LP — LP*° is bounded,

cP
H{x e R": |Tf(x)| > A} < ST / |f(x)|Pdx, X>0,
JRA

for some C > 0.



Introduction

Definition
We say that T is strong-type (p, p) if T : LP — LP is bounded.
We say that T is weak-type (p, p) if T : LP — LP*° is bounded,
cP
H{x e R": |Tf(x)| > A} < ST / |f(x)|Pdx, X>0,
JR"
for some C > 0.

Lemma

T is of weak-type (p, p) (1 < p < o) if and only if for every E with
0<|El <0

|77 < Gl



Strong Maximal Theorem

Strong Maximal Theorem (Jessen, Marcinkiewicz, Zygmund 1935)
The estimate

[{x € R" : Mg, f(x )>)‘}‘<C/ I <1+Iog+)\|)

holds for every A > 0, with log™ t = max{0, log t}. It follows that R,
differentiates functions f for which

/ 1£1(1 + log™* [F)™* < oo,
K

for every compact set K C R”.



Duality link between analysis and
geometry



Duality approach

Duality approach for general B (A. Cérdoba - R. Fefferman).
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Duality approach for general B (A. Cérdoba - R. Fefferman).
Definition (Covering property V)

Let 1 < g < oo. We say that B has the covering property V, if there
exist ¢, ¢, > 0 such that for every finite collection {B;}}L; C B there
exists a finite subcollection {By}M., such that

N Mo
() | UBj| <cal| U Bk| (We don't lose much of the measure)
j=1 k=1
M N |3
(i) || 2= 1p, <olUB (Control of the overlap)
k=1 La(R") j=1




Duality approach

Duality approach for general B (A. Cérdoba - R. Fefferman).
Definition (Covering property V)

Let 1 < g < oo. We say that B has the covering property V, if there
exist ¢, ¢, > 0 such that for every finite collection {B;}}L; C B there
exists a finite subcollection {By}M., such that

N Mo
() | UBj| <cal| U Bk| (We don't lose much of the measure)
j=1 k=1
M N |3
(i) || 2= 1p, <olUB (Control of the overlap)
k=1 La(R") j=1

Proposition
Let 1 < p < o0 and % + % = 1. The maximal operator Mg is of
weak-type (p, p) if and only if B has the covering property V.



Proof: V, = weak-type (p, p)

Consider
Ex ={xeR": Mpf(x) > A}
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Proof: V, = weak-type (p, p)

Consider
N
K C U Bj
j=1

such that

1 /
— f(y)ldy > A
51, IF0ey

By the property (i) of V,

N

Us

Jj=1

K| <




Proof: V, = weak-type (p, p)

Consider
N
K C U Bj
j=1
such that

1 /
=7 [ 1f)ldy > A
1Bl Jg,
By the property (i) of V,

N
KI<|UBi|<a
j=1

ue

M
<2 [ S 15,0)l0)d
R ) —1



Proof: V, = weak-type (p, p)

Consider
N
K C U Bj
j=1
such that

1 /
=7 [ 1f)ldy > A
1Bl Jg,
By Holder's inequality and (ii) of Vy:

U

M M
= C
K1<|Usj|<alU & < [ S 10)fmi
j=1 = " k=1
1
Haider C1 i el M |7
lek I le@ny < =2\ U B 1flnqee)-
LP' (R") Jj=1




Proof: V, = weak-type (p, p)

Consider
N
K C U Bj
j=1

such that

1/
— f(y)ldy > A
B Js "V

With a few more simple computations:

P
Kl < 22 62 s

and let K " E).
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Proof: weak-type (p,p) = V,y

Let {Bj}j"’:1 C B, and suppose without loss of generality that

|By| > -+ > |Bpl.
We extract a subcollection as follows:
- Bi=8

- Selected {B,}_,, m < N, choose the first B € {B;i}}L1\ (B},
verifying:

S| 1
'Bm U B« <518

k<m

The overlapping is less than 50% in measure.



Proof: weak-type (p,p) = V,y

We have selected {B}¥_, such that, defining

E =B\ B
j<k
it holds

M M
~ 1 -~ ~ ~
|Ek|2§\Bk| & UEk:UBk.
k=1 k=1



Proof: weak-type (p,p) = V,y

We have selected {B}¥_, such that, defining

E =B\ B
j<k
it holds

M M
& 1, o - .
Bl > 51Bdl & U &= B«
k=1 k=1

To prove (/):

B not
selected

U BCU{B:W>;}C{MB(IU&)>;}.
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We have selected {B}¥_, such that, defining
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it holds
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Proof: weak-type (p,p) = V,y

We have selected {B}¥_, such that, defining

E =B\ B
j<k
it holds

M M
~ 1 -~ ~ ~
|Ek|2§\Bk| & UEk:UBk.
k=1 k=1

To prove (/):

M~
UBk.

k=1

U B‘ < '{Mg(lugk) > ;H < @

B not
selected



Proof: weak-type (p,p) = V,y

To prove (ii) we define the linear and weak-type (p, p) operator
M

i) =3 (5 [, k A1)y ) 12,() < Mif ().

k=1 ‘Bk|

10



Proof: weak-type (p,p) = V,y

To prove (ii) we define the linear and weak-type (p, p) operator

M

i) =3 (5 [, k A1)y ) 12,() < Mif ().

k=1 ‘Bk|

Computing the adjoint of T and evaluating at lUk g, We get

M
. | Ex|
Ty, 8) = 3121

10



Proof: weak-type (p,p) = V,y

Therefore

|~

i ~ | P
U &
(=il

M
/ Zlékf‘ <2
R

" k=1

/ T*(lukék)f’ :2’/ . Tf' SchHf”Lp(Rn)
Rn Uk Br

11



Proof: weak-type (p,p) = V,y

Therefore

U

k=1

M
/Z1ékf‘<2 T (1 5) ’ ’/ '<2c £l Loy
" k=1 R" « Bi

Taking the supremum over all f € LP(R") with ||f]|,»rny < 1 we obtain

<2c] O

o

M

>1,

k=1

1
o

11



Some remarks

Remark 1
The covering property V. implies weak-type (1,1).
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Some remarks

Remark 1
The covering property V. implies weak-type (1,1).

Remark 2

The differentiation basis given by all cubes Q,, verifies the property Vi,
(Vitali's covering lemma). We conclude that Q,, differentiates L!(R").

12



Strong Maximal Theorem




Strong Maximal Theorem

e Setting: rectangles in R". For simplicity, we will restrict to R?. Let
R be the set of all rectangles in R? with sides parallel to the axes.
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Strong Maximal Theorem

e Setting: rectangles in R". For simplicity, we will restrict to R?. Let
R be the set of all rectangles in R? with sides parallel to the axes.

e My, is not weak-type (1,1). The following does not hold for any ¢

xR : My () > A} < § [ 1oy

13



Strong Maximal Theorem

New covering property V.,: we say that B has the covering property
Vexp if there exist ¢1, c; > 0 such that for every finite collection
{RJ}JN:1 C B there exists a finite subcollection {Rx}¥_, such that

N Mo
) |UR| <a|U Rk,
=1 k=1
M M
i) / exp <921§k> = 11 < 0o U R.| for 6 small.
L& k=1 k=1

14



Strong Maximal Theorem: V., = boundedness

Vexp implies the strong maximal theorem in R2.

Theorem
If B has the covering property Vi, then

|{x € R? : Mgf(x) > A < C/2 @ <1+Iog+ V(;)> dx,

R

where log* t := max{0, log t}.

15



Strong Maximal Theorem: V., = boundedness

Sketch of proof:

e Instead of Holder's, use Young's inequality (Holder's is a particular
case):
st < ¢ps (1 + log™ 5) + exp (0t) — 1,

where s, t > 0 and 6 > 0.
M M
~ f
U Ri| < c1/ (Zl,@()/)) FWl (/i/)|dy
k=1 IR \ 21
Young f f M
< Cl./m{z C9% <1+Iog+ H/{”>+exp (921,§k(y)> 1] dy

(ii) M-
< U
k=1

K| < a

+ c160

16



Strong Maximal Theorem: R, has V.,

Theorem
The differentiation basis of rectangles R satisfies the Vey,, covering
property.
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Strong Maximal Theorem: R, has V.,

Theorem

The differentiation basis of rectangles R satisfies the Vey,, covering
property.

Sketch of proof (inductive selection scheme): Let M1(R), MN2(R) denote
the projections of R € R, on the x and y axis (resp.).

o Let {RJ}JN:1 C R, ordered by [Ma(Ry)| > -+ > [Ma( Ry)|.
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Strong Maximal Theorem: R, has V.,

Theorem
The differentiation basis of rectangles R satisfies the Vey,, covering
property.
Sketch of proof (inductive selection scheme): Let M1(R), MN2(R) denote
the projections of R € R, on the x and y axis (resp.).

o Let {RJ}JN:1 C R, ordered by [Ma(Ry)| > -+ > [Ma( Ry)|.

o Fix Rtl = Rl.

e Having selected {l%k}ﬂ’:l, m < N, choose the first
Re {RJ}JNzl\{Rk}T:l verifying either

~ 1
R (u<eRs)| < 5IRI

or RN (Uj<klf\>k) = 0.

17



Strong Maximal Theorem: R, has V.,

Sketch of proof: claim {l%k}le satisfies the V., estimates.
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e The selection scheme allows us to show that the 1D slices of the
{Rk}]_, satisfy similar sparseness properties.

e Fix y € M(R), R not selected. Then,

~ 1
(2D) ‘Rﬁ(uKkRk) > SIR| =

= (10) [(R) N (Uil (R0)| > 31T (R,

and these are 1D averages.
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Strong Maximal Theorem: R, has V.,

Sketch of proof: claim {l%k}le satisfies the V., estimates.

e The selection scheme allows us to show that the 1D slices of the
{Rk}]_, satisfy similar sparseness properties.

e Fix y € M(R), R not selected. Then,

~ 1
(2D) ‘Rﬁ(uKkRk) > SIR| =

= (10) [(R) N (Uil (R0)| > 31T (R,

and these are 1D averages.

1
UJ m(r)c {x €R: Mr,1 | yay)(x) > 2}

R not i<k
selected

18



Strong Maximal Theorem: R, has V.,

Sketch of proof: i)
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Strong Maximal Theorem: R, has V.,

N
UR| <G

Jj=1

Sketch of proof: i)

Mo
U Rk
k=1

e Maximal operator Mg, is Hardy-Littlewood maximal operator M;.
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N
UR| <G

Jj=1

Sketch of proof: i)
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U Rk
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e Maximal operator Mg, is Hardy-Littlewood maximal operator M;.
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M
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Strong Maximal Theorem: R, has V.,

Sketch of proof: i) <G .

N
U R;

Jj=1

Mo
U Rk
k=1

e Maximal operator Mg, is Hardy-Littlewood maximal operator M;.

e weak-type properties of M; prove the estimates

M
U m®)|<alldnmR).
Rln?td k=1

e Integrate in y.

19



Strong Maximal Theorem: R, has V.,

2 lexp (eZM:lﬁ,k) - 1] <0G

Sketch of proof: ii) /
R

20



Strong Maximal Theorem: R, has V.,

M M
Sketch of proof: ii) / [exp (92 11@) — 1] <0G U Ry
k2 k=1 k=1

e Take the exponential series expansion

/]R2Zpl (k . ) ii

M P

> 1z

k=1

Lr(R?)

20



Strong Maximal Theorem: R, has V.,

M M
Sketch of proof: ii) / [exp (92 11@) — 1] <0G U Ry
k2 k=1 k=1

e Take the exponential series expansion

P 0o gp M P
L5 (5m) - 255
k=1 p=1 k=1 LP(R2)
e Estimate the LP(IR?) norms of the overlaps from the slices
M a2 M
> Loy < c?||J MR-
k=1 LP(R?) k=1

20



Conclusion




Conclusion
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Conclusion

e Boundedness of maximal operator equivalent to covering properties
of the differentiation basis. Equivalence is provided by duality.
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Conclusion

e Boundedness of maximal operator equivalent to covering properties
of the differentiation basis. Equivalence is provided by duality.

e Rectangles # cubes in covering terms, but boundedness properties

still hold: strong maximal theorem.

21



Thanks for your attention!
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