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Introduction: Topological vs Measurable Dynamics

What are we studying?

We will discuss some properties about Linear Dynamics so:

T : X — X is an operator; X is a (separable, infinite-dimens.) Banach space
(or a continuous map); (or a Polish space)

(X, T) is a linear dynamical system and given x € X we study its T-orbit:
(or a Polish dynamical system)

Orb(x, T) := {T"x : n € No}.
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Introduction: Topological vs Measurable Dynamics

What are we studying?

We will discuss some properties about Linear Dynamics so:

T : X — X is an operator; X is a (separable, infinite-dimens.) Banach space
(or a continuous map); (or a Polish space)

(X, T) is a linear dynamical system and given x € X we study its T-orbit:
(or a Polish dynamical system)

Orb(x, T) := {T"x : n € No}.

We focus on the frequency in which it visit some sets, i.e. in the “bigness” of
N(x,U):={neNo: T"x € U},
the return set from x to U C X; where U is a neighbourhood or U € O(X) ...

O(X) := {U non-empty open subset of X}.
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Introduction: Topological vs Measurable Dynamics

Topological Dynamics: Recurrence and Hypercyclicity Notions

Definition
A vector x € X is said to be:
(i) recurrent/hypercyclic if N(x, U) is infinite ...

VU neighbourhood of x / YU non-empty open subset of X.
U
T
N\
7

x € Rec(T)<:>k|im T x = x / x € HC(T) < Orb(x, T) = X
— 00
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Introduction: Topological vs Measurable Dynamics

Topological Dynamics: Recurrence and Hypercyclicity Notions

A vector x € X is said to be:

(i) recurrent/hypercyclic if N(x, U) is infinite ...
(i) frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...

VU neighbourhood of x / YU non-empty open subset of X.

Given A C Ny its lower density is

— pmine FANO, V]
dens(A) := I}anTOf N1

A\

FRec(T) (Bonilla et al., 2020) / FHC(T) (Bayart and Grivaux, 2006)
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Introduction: Topological vs Measurable Dynamics

Topological Dynamics: Recurrence and Hypercyclicity Notions

A vector x € X is said to be:

(i) recurrent/hypercyclic if N(x, U) is infinite ...

(i) frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...
(i) U-frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...

VU neighbourhood of x / YU non-empty open subset of X.

Definition

Given A C Ny its upper density is

dens(A) := II/Tj:op N1

.

UFRec(T) (Bonilla et al., 2020) / UFHC(T) (Shkarin, 2009).
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Introduction: Topological vs Measurable Dynamics

Topological Dynamics: Recurrence and Hypercyclicity Notions

A vector x € X is said to be:
(i) recurrent/hypercyclic if N(x, U) is infinite ...
(i) frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...
(i) U-frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...
(iv) reiteratively recurrent/hypercyclic if Bd(N(x, U)) > 0 ...
VU neighbourhood of x / YU non-empty open subset of X.

Definition

Given A C Ny its upper Banach density is

=y #AN [m, m+ N]J
Bd(A) := II/T—?:QP (r’ggé —Nr1 )

A

RRec(T) (Bonilla et al., 2020) / RHC(T) (Bés et al., 2016).
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Introduction: Topological vs Measurable Dynamics

Topological Dynamics: Recurrence and Hypercyclicity Notions

Definition

A vector x € X is said to be:
(i) recurrent/hypercyclic if N(x, U) is infinite ...
(i) frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...
(i) U-frequently recurrent/hypercyclic if dens(N(x, U)) >0 ...
(iv) reiteratively recurrent/hypercyclic if Bd(N(x, U)) > 0 ...
VU neighbourhood of x / YU non-empty open subset of X.

o T is (freq., U-freq., reiter.) hypercyclic if there is such a vector

o T is (freq., U-freq., reiter.) recurrent if the set of such vectors is dense

0 < dens(A) < dens(A) < Bd(A) <1 for each A C Ny

FHC(T) € UFHC(T) € RHC(T) C HC(T)
FRec(T) C UFRec(T) C RRec(T) C Rec(T)

Antoni Lopez-Martinez



Introduction: Topological vs Measurable Dynamics

Topological vs Measurable Dynamics |

Topological Dynamics:

Frequent Recurrence

I

U-frequent Recurrence

I

Reiterative Recurrence

I

Recurrence <=

[

Measurable Dynamics (Ergodic Theory):

Frequent Hypercyclicity

4
U-frequent Hypercyclicity
4

Reiterative Hypercyclicity

4
Hypercyclicity

If pu is a Borel prob. measure with full support (i.e. u(U) > 0 for U € O(X))
we can study the system (X, Z(X), i, T) with the properties:
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Introduction: Topological vs Measurable Dynamics

Topological vs Measurable Dynamics |

Topological Dynamics:

Frequent Recurrence <— Frequent Hypercyclicity
4 4
U-frequent Recurrence — U-frequent Hypercyclicity
4 4
Reiterative Recurrence <— Reiterative Hypercyclicity
4 4
Recurrence <— Hypercyclicity

Measurable Dynamics (Ergodic Theory):

If pu is a Borel prob. measure with full support (i.e. u(U) > 0 for U € O(X))
we can study the system (X, Z(X), i, T) with the properties:

(a) invariance: for each A € %(X) the equality u(T~*(A)) = u(A) holds.
Poincaré Recurrence Theorem =- T is recurrent.
(b) ergodicity: u is T-invariant and if T~!(A) = A then u(A) € {0,1}.
Pointwise Ergodic Theorem = T is frequently hypercyclic.
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Introduction: Topological vs Measurable Dynamics

Topological vs Measurable Dynamics Il

If i is a Borel probability measure with full support (u(U) > 0 for U € O(X))
then from the system (X, Z(X), p, T) we get:

Invariance <~ Ergodicity
77 U
Frequent Recurrence —= Frequent Hypercyclicity
I I
U-frequent Recurrence = U-frequent Hypercyclicity
4 4
Reiterative Recurrence = Reiterative Hypercyclicity
I I
Recurrence = Hypercyclicity
i
Invariance

Does Invariance implies Frequent Recurrence? I
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Topological vs Measurable Dynamics Il

If i is a Borel probability measure with full support (u(U) > 0 for U € O(X))
then from the system (X, Z(X), p, T) we get:

Invariance <~ Ergodicity
4 I
Frequent Recurrence —= Frequent Hypercyclicity
I I
U-frequent Recurrence = U-frequent Hypercyclicity
4 4
Reiterative Recurrence = Reiterative Hypercyclicity
I I
Recurrence = Hypercyclicity
i
Invariance

Lemma 1 (S. Grivaux and A. L-M, 2022)

Let T : (X, B(X),n) — (X, A(X), i) be invariant. Then p(FRec(T)) =1 and

supp(p) C FRec(T).
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Introduction: Topological vs Measurable Dynamics

Invariance = Frequent Recurrence

STEP 1: For each B € #(X) with p(B) > 0 apply the ...

Ergodic Decomposition Theorem

Let T : (X, B(X), 1) = (X, PB(X), 1) be invariant. There is an abstract
probability measure space (M, 7) formed by measures such that for any

A € B(X) we have

u(A) = / V(A) dr(v)
M

and for 7-a.e. measure v € M, T : (X, B(X),v) — (X, B(X),v) is ergodic.

.. obtaining an ergodic measure v on X with (AT LEAST) v(B) > 0.
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Introduction: Topological vs Measurable Dynamics

Invariance = Frequent Recurrence

STEP 1: For each B € #(X) with p(B) > 0 apply the ...

Ergodic Decomposition Theorem

Let T : (X, B(X), 1) = (X, PB(X), 1) be invariant. There is an abstract
probability measure space (M, 7) formed by measures such that for any
A € B(X) we have

u(A) = / V(A) dr(v)
M

and for 7-a.e. measure v € M, T : (X, B(X),v) — (X, B(X),v) is ergodic.

.. obtaining an ergodic measure v on X with (AT LEAST) v(B) > 0.

STEP 2: Apply to v the Pointwise Ergodic Theorem as in the VERY
WELL-KNOWN Ergodicity = Frequent Hypercyclicity CASE:
3 FREQUENTLY DENSE orbits AROUND B = FRec(T)N B # @

By the arbitrariness of B = p(FRec(T)) = 1.
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Introduction: Topological vs Measurable Dynamics

Topological vs Measurable Dynamics Il

Invariance <— Ergodicity
! r\(*) i)
Frequent Recurrence — Frequent Hypercyclicity
4 4
U-frequent Recurrence — U-frequent Hypercyclicity
U 4
Reiterative Recurrence — Reiterative Hypercyclicity
U I
Recurrence = Hypercyclicity

S. Grivaux and E. Matheron (2014): (*) = under some “natural” assumptions

Frequent Hypercylcicity —(ﬂ) Invariance
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Topological vs Measurable Dynamics Il

Invariance <— Ergodicity
1 ) U
Frequent Recurrence — Frequent Hypercyclicity
1) 4
U-frequent Recurrence = U-frequent Hypercyclicity
41 U
Reiterative Recurrence — Reiterative Hypercyclicity
U I
Recurrence = Hypercyclicity

S. Grivaux and E. Matheron (2014): (*) = under some “natural” assumptions

Frequent Hypercylcicity —(ﬂ) Invariance

S. Grivaux and A. L-M (2022): (%) = under some “natural” assumptions

. . (%) .
Reiterative Recurrence — Invariance
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Constructing Invariant Measures

Topological Assumptions and Examples

Let (X, T) be a Polish dynamical system, i.e.:

(X, 7x) is separable and completely metrizable; T : X — X is 7x-continuous

“Natural” Topological Assumptions

Let 7 be a Hausdorff topology in X. Enumerate the properties:
() T:(X,7)— (X,7) is T-continuous;

(1) 7 C 7x, i.e. T is coarser than 7x;

(I11*) every x € X has a 7x-neighbourhood basis of T-compact sets.
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Constructing Invariant Measures

Topological Assumptions and Examples

Let (X, T) be a Polish dynamical system, i.e.:

(X, 7x) is separable and completely metrizable; T : X — X is 7x-continuous

“Natural” Topological Assumptions

Let 7 be a Hausdorff topology in X. Enumerate the properties:
() T:(X,7)— (X,7) is T-continuous;

(1) 7 C 7x, i.e. T is coarser than 7x;

(I11*) every x € X has a 7x-neighbourhood basis of T-compact sets.

o If (X, 7x) is compact, take 7 = 7x. Compact Dynamical Systems, ...
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Constructing Invariant Measures

Topological Assumptions and Examples

Let (X, T) be a Polish dynamical system, i.e.:

(X, 7x) is separable and completely metrizable; T : X — X is 7x-continuous

“Natural” Topological Assumptions

Let 7 be a Hausdorff topology in X. Enumerate the properties:
() T:(X,7)— (X,7) is T-continuous;

(1) 7 C 7x, i.e. T is coarser than 7x;

(I11*) every x € X has a 7x-neighbourhood basis of T-compact sets.

o If (X, 7x) is compact, take 7 = 7x. Compact Dynamical Systems, ...

e If (X, 7x) is locally compact, take 7 = 7x. Diff. Manifolds, (R", T), ...
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Constructing Invariant Measures

Topological Assumptions and Examples

Let (X, T) be a Polish dynamical system, i.e.:

(X, 7x) is separable and completely metrizable; T : X — X is 7x-continuous

“Natural” Topological Assumptions

Let 7 be a Hausdorff topology in X. Enumerate the properties:
() T:(X,7)— (X,7) is T-continuous;

(1) 7 C 7x, i.e. T is coarser than 7x;

(I11*) every x € X has a 7x-neighbourhood basis of T-compact sets.

o If (X, 7x) is compact, take 7 = 7x. Compact Dynamical Systems, ...
e If (X, 7x) is locally compact, take 7 = 7x. Diff. Manifolds, (R", T), ...

e Given an adjoint operator T : X — X on a dual Banach space (X, || - ||)
take 7 = w™ (weak-star topology) and 7x = 7. (norm topology)
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Constructing Invariant Measures

Invariant Measures from Reiterative Recurrence

“Natural” Topological Assumptions

Let 7 be a Hausdorff topology in X. Enumerate the properties:
() T:(X,7)—= (X,7) is T-continuous;
(I) 7 C 7x, i.e. T is coarser than 7x;

(I11*) every x € X has a 7x-neighbourhood basis of 7-compact sets.

Main Theorem (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and 7 fulfilling (1), (1) and (I11*)

— for each xo € RRec(T) (reiteratively recurrent point) one can find an
invariant probability measure i, on X such that

X0 € supp(fixp)-

We divide the proof in 2 facts:
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Constructing Invariant Measures

Measures

Constructing Machine”

Bd(N(x0, U)) > 0, U 7-compact = Ju inv. prob. measure with u(U) > 0.

Technical Lemma (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and 7 fulfilling (1), (1) and (I1I*)
= for each xo € X and each Banach limit m : £°°(Np) — R one can find a
(non-negative) invariant finite Borel regular measure p on X such that

u(K) > m(xng,k)) for every T-compact K C X.

Tolg eU TZIU eU T51‘(, eU Thzy € U

v =] - l . L.

. n—=1 n n+l
Tn—ll,U ’TTL‘FlIU ¢ U

(SN S—

XN(xo,U) € £7°(No) ... choose a Banach limit m such that m(x(x,v)) > 0
1#(U) = m(xni,0)) = Bd(N(x0, U)) >0

Antoni Lopez-Martinez



Constructing Invariant Measures

Measures

Constructing Machine”

Bd(N(x0, U)) > 0, U 7-compact = Ju inv. prob. measure with u(U) > 0.

Technical Lemma (S. Grivaux and A. L-M, 2022)

Let (X, T) be a Polish dynamical system and 7 fulfilling (1), (1) and (I1I*)
= for each xo € X and each Banach limit m : £°°(Np) — R one can find a
(non-negative) invariant finite Borel regular measure p on X such that

u(K) > m(xng,k)) for every T-compact K C X.

For xo € RRec(T) = Juy, inv. probability measure such that xo € supp(x,)-

(I*) = 3 a 7x-neighbourhood basis (U,)sen formed by T-compact sets

Fact 1

xo € RRec(T) = Bd(N(xo, Un)) > 0 = 3, with pn(U,) >0VneEN ..

o 1= Z % is invariant and xo € supp(fix, )-
neN
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Constructing Invariant Measures

Reiterative Recurrence = Full Support Invariant Measure

Main Theorem (S. Grivaux and A. L-M, 2022)
Let (X, T) be a Polish dynamical system and 7 fulfilling (1), (1) and (I11*)

— for each xo € RRec(T) (reiteratively recurrent point) one can find an
invariant probability measure i, on X such that

X0 € supp(fixp)-
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Constructing Invariant Measures

Reiterative Recurrence = Full Support Invariant Measure

Main Theorem (S. Grivaux and A. L-M, 2022)
Let (X, T) be a Polish dynamical system and 7 fulfilling (1), (1) and (I11*)

— for each xo € RRec(T) (reiteratively recurrent point) one can find an
invariant probability measure i, on X such that

X0 € supp(fixp)-

If RRec(T) is dense there is an invariant prob. measure p with full support.

There is {x, : n € N} C RRec(T) dense ...
For x, € RRec(T) = Juy, inv. probability measure such that x, € supp(px, )-

u::Z’;ﬁ”

neN

is an invariant probability measure with full support.
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From Reiterative to Frequent Recurrence

Adjoint Operators and Reflexive Spaces

Theorem (S. Grivaux and A. L-M, 2022)

For an adjoint operator T : X — X on a separable dual Banach space X we
have FRec(T) = RRec(T). Moreover, the following statements are equivalent:

(i) T is frequently recurrent;
(i) T is U-frequently recurrent;

(iii) T is reiteratively recurrent;

(iv) T admits an invariant probability measure with full support.

(1) Tisadjoint = T : (X,w") = (X, w") is continuous;
(||) w* C TN
(111*) Alaoglu-Bourbaki = closed balls are w*-compact and || - ||-neighbour.

Lemma 1

Given xo € RRec(T) there is py, invariant with xo € supp(px,) C  FRec(T)

@ True whenever X is reflexive ... LP and £P-spaces (1 < p < o0)
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From Reiterative to Frequent Recurrence

Product Dynamical Systems

When T : X — X has a property ...

Usual Question
Does T® T : X®& X — X & X has that property?

TaT: XX — XoX
(y) — (Tx,Ty)

There are negative and positive answers; and open problems:

o T hypercyclic 7= T @& T hypercyclic;

o T reiteratively hypercyclic => T @& T reit.hypercyclic;
o T U-frequently hypercyclic = T & T U-freq. hypercyclic;

o T frequently hypercyclic 7:77> T @& T freq. hypercyclic;

m
o T recurrent = T @ T recurrent.
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From Reiterative to Frequent Recurrence

Product Dynamical Systems

When T : X — X has a property ...

Usual Question
Does T® T : X®& X — X & X has that property?

T, =T¢ 0T : X0 X — X&---0X
—_————

n n n

(X1y .y %n)  — (Tx1,y ..., TXn)

Corollary (S. Grivaux and A. L-M, 2022)

For an adjoint operator T : X — X on a separable dual Banach space X, then
the following statements are equivalent:

(i) for every n € N, T, is frequently recurrent;
(ii) for every n € N, T, is U-frequently recurrent;

(iii) for every n € N, T, is reiteratively recurrent;

(iv) T is reiteratively recurrent.
y
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From Reiterative to Frequent Recurrence

Product Dynamical Systems

When T : X — X has a property ...

Usual Question
Does T® T : X®& X — X & X has that property?

T=T1& - Ty : X1®--- Xy — XiD---bXn

(x1, .0y xn)  —  (Tixi,..., Tnxn)

Theorem (S. Grivaux and A. L-M, 2022)

Fix N € N and foreach 1 < i< N let T; : X; — X; be an adjoint operator on
a separable dual Banach space X;. For the direct sum operator

T=T1® - @ Ty on the direct sum space X = X1 @ --- @ X,

N
we have the equality FRec(T) = H RRec(T7).

i=1

A\
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From Reiterative to Frequent Recurrence

Proof for Product Dynamical Systems

T=T1&--- Ty XiD--- DXy — X1D---PD Xy
(X17-~-7Xn) — (Tle,..., TNXN)

We clearly have the inclusion
N
FRec(T) C [ [ RRec(T).
i=1

For xo = (x1,...,xn) € X with x; € RRec(T;), ux, Ti-invariant, x; € supp(fix;)-

Since
N

B(X,7x) = [ [ #(X: ),

i=1
the product measure px, 1= H,N:1 tx; on X1 @ --- @ Xy is T-invariant, so

Lemma

1 -
Xo = (x1, ..., xn) € supp(ftx,) C  FRec(T).

Antoni Lopez-Martinez



From Reiterative to Frequent Recurrence

Inverse Dynamical Systems

When T : X — X has a property ... and T~ : X — X exists ...

Usual Question

Does T~!: X — X has that property?

Examples

There are positive and negative answers:
o T hypercyclic <= T ! hypercyclic;
o T reiteratively hypercyclic <= T ! reit.hypercyclic;
o T U-frequently hypercyclic = T ! U-freq. hypercyclic;
o T frequently hypercyclic = T~ freq. hypercyclic;

o T recurrent <= T ! recurrent.

.

Antoni Lopez-Martinez



From Reiterative to Frequent Recurrence

Inverse Dynamical Systems

When T : X — X has a property ... and T~ : X — X exists ...

Usual Question

Does T~!: X — X has that property?

T is adjoint <= T~ is adjoint

Theorem (S. Grivaux and A. L-M, 2022)

For an invertible adjoint operator T : X — X on a sep. dual Banach space X,

RRec(T) = FRec(T) = FRec(T—!) = RRec(T1).

T is reiteratively (and then U-frequently and frequently) recurrent iff so is T~ !.

Note that (X, B(X), T, u1) invariant = (X, %(X), T, i) invariant since
(T A) = u(T(A) " °TE W(THT(A) = (A)
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From Reiterative to Frequent Recurrence

Conclusion

In closing ...

@ PART 1: Invariant Measure = there are Frequently Recurrent Points;
o PART 2(): Reiterative Recurrent Points = there are Invariant Measures;
o PART 3™): Reiterative Recurrence <= Frequent Recurrence;

o FINALLY: good prop. for PRODUCT and INVERSE dynamical systems.

(*) = under some “natural” assumptions ...
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Thank you for your attention
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