Banach-Stone theorem for free Banach lattices

Pedro Tradacete

Instituto de Ciencias Matemáticas (ICMAT), Madrid

Based on joint work with T. Oikhberg, M. Taylor and V. G. Troitsky

XVII Encuentro de la Red de Análisis Funcional y Aplicaciones La Laguna 10 March 2022

T lattice homomorphism: T linear + |Tx| = T|x|

Examples

- C(K)
- $L_p(\mu)$ (and other function spaces such as Orlicz, Lorentz...)
- ℓ_p , c_0 ... (any space with unconditional basis)

Non-examples:

- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarily indecomposable spaces.

T lattice homomorphism: *T* linear + |Tx| = T|x|

Examples:

- C(K)
- $L_p(\mu)$ (and other function spaces such as Orlicz, Lorentz...)
- ℓ_p , c_0 ... (any space with unconditional basis)

Non-examples:

- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarily indecomposable spaces.

T lattice homomorphism: *T* linear + |Tx| = T|x|

Examples:

- C(K)
- $L_p(\mu)$ (and other function spaces such as Orlicz, Lorentz...)
- ℓ_p , c_0 ... (any space with unconditional basis)

Non-examples

- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarily indecomposable spaces.

T lattice homomorphism: *T* linear + |Tx| = T|x|

Examples:

- C(K)
- $L_p(\mu)$ (and other function spaces such as Orlicz, Lorentz...)
- ℓ_p , c_0 ... (any space with unconditional basis)

Non-examples:

- James quasi-reflexive space.
- Bourgain-Delbaen spaces.
- Hereditarily indecomposable spaces.

Let E be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta : E \to FBL[E]$:

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL\(L\) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free *p*-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let E be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta : E \to FBL[E]$:

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free *p*-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let *E* be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta: E \to FBL[E]$:

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL⟨L⟩ for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free *p*-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let *E* be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta : E \to FBL[E]$:

 \forall Banach lattice X and $T: E \to X \exists$ unique lattice homomorphism $\hat{T}: FBL[E] \to X$ making the diagram commute and $\|\hat{T}\| = \|T\|$.

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free *p*-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let *E* be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta : E \to FBL[E]$:

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL\(L\) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free *p*-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let *E* be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta: E \to FBL[E]$:

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL(L) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free *p*-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

Let E be a Banach space. FBL[E] is a Banach lattice, with a linear isometric embedding $\delta : E \to FBL[E]$:

- $FBL[\ell_1(A)]$ for any set A. [de Pagter-Wickstead, 2015]
- FBL[E] for every Banach space E. [Avilés-Rodríguez-T, 2018]
- FBL\(L\) for every lattice L. [Avilés-RodríguezAbellán, 2019]
- Free p-convex, AM-space... [Jardón-Laustsen-Taylor-T-Troitsky, 2022]

For $f \in C_{ph}(B_{E^*})$, let

$$||f||_{FBL[E]} = \sup \Big\{ \sum_{i=1}^n |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^n |x_i^*(x)| \le 1 \Big\}.$$

For $x \in E$, let $\delta_x \in C_{ph}(B_{E^*})$, given by $\delta_x(x^*) = x^*(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

FBL[E] is the $\|\cdot\|_{FBL[E]}$ -closed sublattice generated by $(\delta_x)_{x\in E}$ in $C_{ph}(B_{E^*})$.

- $\delta: E \to FBL[E]$ with $\delta(x) = \delta_x$ is a linear isometry.
- $||f||_{\infty} \le ||f||_{FBL[E]}$, so $FBL[E] \hookrightarrow C_{ph}(B_{E^*})$
- $FBL[E] = C_{ph}(B_{E^*})$ iff $dim(E) < \infty$.

For $f \in C_{ph}(B_{E^*})$, let

$$||f||_{FBL[E]} = \sup \Big\{ \sum_{i=1}^n |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^n |x_i^*(x)| \le 1 \Big\}.$$

For $x \in E$, let $\delta_x \in C_{ph}(B_{E^*})$, given by $\delta_x(x^*) = x^*(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

FBL[E] is the $\|\cdot\|_{FBL[E]}$ -closed sublattice generated by $(\delta_x)_{x\in E}$ in $C_{ph}(B_{E^*})$.

- $\delta : E \to FBL[E]$ with $\delta(x) = \delta_x$ is a linear isometry.
- $||f||_{\infty} \le ||f||_{FBL[E]}$, so $FBL[E] \hookrightarrow C_{ph}(B_{E^*})$
- $FBL[E] = C_{ph}(B_{E^*})$ iff $dim(E) < \infty$.

For $f \in C_{ph}(B_{E^*})$, let

$$||f||_{FBL[E]} = \sup \Big\{ \sum_{i=1}^n |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^n |x_i^*(x)| \le 1 \Big\}.$$

For $x \in E$, let $\delta_x \in C_{ph}(B_{E^*})$, given by $\delta_x(x^*) = x^*(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

FBL[E] is the $\|\cdot\|_{FBL[E]}$ -closed sublattice generated by $(\delta_x)_{x\in E}$ in $C_{ph}(B_{E^*})$.

Notice:

- $\delta : E \to FBL[E]$ with $\delta(x) = \delta_x$ is a linear isometry.
- $||f||_{\infty} \le ||f||_{FBL[E]}$, so $FBL[E] \hookrightarrow C_{ph}(B_{E^*}]$
- $FBL[E] = C_{ph}(B_{E^*})$ iff $dim(E) < \infty$.

La Laguna 2022

For $f \in C_{ph}(B_{E^*})$, let

$$||f||_{FBL[E]} = \sup \Big\{ \sum_{i=1}^n |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^n |x_i^*(x)| \le 1 \Big\}.$$

For $x \in E$, let $\delta_x \in C_{ph}(B_{E^*})$, given by $\delta_x(x^*) = x^*(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

FBL[E] is the $\|\cdot\|_{FBL[E]}$ -closed sublattice generated by $(\delta_x)_{x\in E}$ in $C_{ph}(B_{E^*})$.

- $\delta : E \to FBL[E]$ with $\delta(x) = \delta_x$ is a linear isometry.
- $||f||_{\infty} \le ||f||_{FBL[E]}$, so $FBL[E] \hookrightarrow C_{ph}(B_{E^*})$
- $FBL[E] = C_{ph}(B_{E^*})$ iff $dim(E) < \infty$.

For $f \in C_{ph}(B_{E^*})$, let

$$||f||_{FBL[E]} = \sup \Big\{ \sum_{i=1}^n |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^n |x_i^*(x)| \le 1 \Big\}.$$

For $x \in E$, let $\delta_x \in C_{ph}(B_{E^*})$, given by $\delta_x(x^*) = x^*(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

FBL[E] is the $\|\cdot\|_{FBL[E]}$ -closed sublattice generated by $(\delta_x)_{x\in E}$ in $C_{ph}(B_{E^*})$.

- $\delta : E \to FBL[E]$ with $\delta(x) = \delta_x$ is a linear isometry.
- $\|f\|_{\infty} \leq \|f\|_{\mathit{FBL}[E]}$, so $\mathit{FBL}[E] \hookrightarrow C_{\mathit{ph}}(B_{E^*})$
- $FBL[E] = C_{ph}(B_{E^*})$ iff $dim(E) < \infty$.

For $f \in C_{ph}(B_{E^*})$, let

$$||f||_{FBL[E]} = \sup \Big\{ \sum_{i=1}^n |f(x_i^*)| : \sup_{x \in B_E} \sum_{i=1}^n |x_i^*(x)| \le 1 \Big\}.$$

For $x \in E$, let $\delta_x \in C_{ph}(B_{E^*})$, given by $\delta_x(x^*) = x^*(x)$.

Theorem (Avilés-Rodríguez-T, 2018)

FBL[E] is the $\|\cdot\|_{FBL[E]}$ -closed sublattice generated by $(\delta_x)_{x\in E}$ in $C_{ph}(B_{E^*})$.

- $\delta : E \to FBL[E]$ with $\delta(x) = \delta_x$ is a linear isometry.
- $||f||_{\infty} \leq ||f||_{FBL[E]}$, so $FBL[E] \hookrightarrow C_{ph}(B_{E^*})$
- $FBL[E] = C_{ph}(B_{E^*})$ iff $dim(E) < \infty$.

Every linear operator $T: E \to F$ between Banach spaces extends uniquely to a lattice homomorphism \overline{T} as follows

$$FBL[E] - - \stackrel{\overline{T}}{-} - \rightarrow FBL[F]$$

$$\delta_E \uparrow \qquad \qquad \delta_F \uparrow$$

$$E \xrightarrow{T} F$$

Proposition

- T is injective iff T is injective.
- \bigcirc T is surjective iff \overline{T} is surjective.

In particular, if E and F are linearly isomorphic (resp. isometric), then FBL[E] and FBL[F] are lattice isomorphic (resp. isometric).

Every linear operator $T: E \to F$ between Banach spaces extends uniquely to a lattice homomorphism \overline{T} as follows

Proposition

- T is injective iff \overline{T} is injective.
- 2 T is surjective iff \overline{T} is surjective.

In particular, if E and F are linearly isomorphic (resp. isometric), then FBL[E] and FBL[F] are lattice isomorphic (resp. isometric).

Every linear operator $T: E \to F$ between Banach spaces extends uniquely to a lattice homomorphism \overline{T} as follows

$$FBL[E] - - \stackrel{\overline{T}}{-} - \rightarrow FBL[F]$$

$$\delta_E \uparrow \qquad \qquad \delta_F \uparrow$$

$$E \xrightarrow{T} F$$

Proposition

- T is injective iff \overline{T} is injective.
- 2 T is surjective iff \overline{T} is surjective.

In particular, if E and F are linearly isomorphic (resp. isometric), then FBL[E] and FBL[F] are lattice isomorphic (resp. isometric).

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ か ९ ○ ○

Suppose $T: FBL[E] \rightarrow FBL[F]$ is a lattice homomorphism.

Note $\varphi \in FBL[E]^*$ is a lattice homomorphism iff $\varphi = x^*$ for some $x^* \in E^*$ (i.e. $\varphi(f) = f(x^*)$)

Hence, for every $y^* \in F^*$ the composition $y^* \circ T$ corresponds to x^* for some $x^* \in E^*$.

Thus, we can define $\Phi_T : F^* \to E^*$ by

$$\Phi_T y^*(x) := T\delta_X(y^*)$$
 $y^* \in F^*, x \in E.$

- $\Phi_T:F^*\to E^*$ satisfies
 - **(a)** is positively homogeneous, $\Phi_T(\lambda y^*) = \lambda \Phi_T(y^*)$ for $\lambda \geq 0$;
 - is weak* to weak* continuous on bounded sets;
- ① $Tf = f \circ \Phi_T \text{ for } f \in FBL[E]$.

Suppose $T : FBL[E] \to FBL[F]$ is a lattice homomorphism.

Note $\varphi \in FBL[E]^*$ is a lattice homomorphism iff $\varphi = \widehat{x^*}$ for some

$$x^* \in E^*$$
 (i.e. $\varphi(f) = f(x^*)$)

Hence, for every $y^* \in F^*$ the composition $\hat{y}^* \circ T$ corresponds to \hat{x}^* for some $x^* \in E^*$.

Thus, we can define $\Phi_T : F^* \to E^*$ by

$$\Phi_T y^*(x) := T\delta_x(y^*)$$
 $y^* \in F^*, x \in E$.

- $\Phi_T:F^*\to E^*$ satisfies
 - **(a)** is positively homogeneous, $\Phi_T(\lambda y^*) = \lambda \Phi_T(y^*)$ for $\lambda \geq 0$,
 - is weak* to weak* continuous on bounded sets;

 - ① $Tf = f \circ \Phi_T \text{ for } f \in FBL[E].$

Suppose $T : FBL[E] \rightarrow FBL[F]$ is a lattice homomorphism.

Note $\varphi \in FBL[E]^*$ is a lattice homomorphism iff $\varphi = \widehat{x^*}$ for some $x^* \in E^*$ (i.e. $\varphi(f) = f(x^*)$)

Hence, for every $y^* \in F^*$ the composition $\widehat{y^*} \circ T$ corresponds to $\widehat{x^*}$ for some $x^* \in E^*$.

Thus, we can define $\Phi_T : F^* \to E^*$ by

$$\Phi_T y^*(x) := T \delta_X(y^*) \qquad y^* \in F^*, x \in E.$$

- $\Phi_T:F^*\to E^*$ satisfies
 - ① is positively homogeneous, $\Phi_T(\lambda y^*) = \lambda \Phi_T(y^*)$ for $\lambda \geq 0$;
 - is weak* to weak* continuous on bounded sets;
- ① $Tf = f \circ \Phi_T \text{ for } f \in FBL[E]$.

Suppose $T : FBL[E] \rightarrow FBL[F]$ is a lattice homomorphism.

Note $\varphi \in FBL[E]^*$ is a lattice homomorphism iff $\varphi = \widehat{x^*}$ for some $x^* \in E^*$ (i.e. $\varphi(f) = f(x^*)$)

Hence, for every $y^* \in F^*$ the composition $\widehat{y^*} \circ T$ corresponds to $\widehat{x^*}$ for some $x^* \in E^*$.

Thus, we can define $\Phi_T : F^* \to E^*$ by

$$\Phi_T y^*(x) := T\delta_x(y^*)$$
 $y^* \in F^*, x \in E$.

- $\Phi_T:F^*\to E^*$ satisfies
 - ① is positively homogeneous, $\Phi_T(\lambda y^*) = \lambda \Phi_T(y^*)$ for $\lambda \geq 0$;
 - is weak* to weak* continuous on bounded sets;
- ① $Tf = f \circ \Phi_T \text{ for } f \in FBL[E].$

Suppose $T : FBL[E] \rightarrow FBL[F]$ is a lattice homomorphism.

Note $\varphi \in FBL[E]^*$ is a lattice homomorphism iff $\varphi = \widehat{x^*}$ for some

 $x^* \in E^*$ (i.e. $\varphi(f) = f(x^*)$)

Hence, for every $y^* \in F^*$ the composition $\widehat{y^*} \circ T$ corresponds to $\widehat{x^*}$ for some $x^* \in E^*$.

Thus, we can define $\Phi_T: F^* \to E^*$ by

$$\Phi_T y^*(x) := T\delta_x(y^*)$$
 $y^* \in F^*, x \in E$.

Lemma (Laustsen-T)

 $\Phi_T:F^*\to E^*$ satisfies

- **1** is positively homogeneous, $\Phi_T(\lambda y^*) = \lambda \Phi_T(y^*)$ for $\lambda \geq 0$;
- is weak* to weak* continuous on bounded sets;
- **1** Tf = $f \circ \Phi_T$ for $f \in FBL[E]$.

Suppose E, F are Banach spaces so that E^*, F^* are smooth. $T: FBL[E] \to FBL[F]$ is a surjective lattice isometry iff $T = \overline{U}$, for some surjective isometry $U: E \to F$.

Since E^* is smooth, for every $x^* \in E^* \setminus \{0\}$ there is a unique $f_{x^*} \in E^{**}$ such that $||f_{x^*}|| = ||x^*|| = \sqrt{f_{x^*}(x^*)}$.

Let us define the semi-inner product on *E**.

$$[y^*, x^*] = \begin{cases} f_{X^*}(y^*) & x^* \neq 0 \\ 0 & x^* = 0. \end{cases}$$

Theorem (Ilišević-Turnšek '20)

$$F(x) = \sigma(x) Ux.$$

Suppose E, F are Banach spaces so that E^*, F^* are smooth. $T: FBL[E] \to FBL[F]$ is a surjective lattice isometry iff $T = \overline{U}$, for some surjective isometry $U: E \to F$.

Since E^* is smooth, for every $x^* \in E^* \setminus \{0\}$ there is a unique $f_{x^*} \in E^{**}$ such that $||f_{x^*}|| = ||x^*|| = \sqrt{f_{x^*}(x^*)}$.

Let us define the semi-inner product on E*:

$$[y^*, x^*] = \begin{cases} f_{x^*}(y^*) & x^* \neq 0 \\ 0 & x^* = 0. \end{cases}$$

Theorem (Ilišević-Turnšek '20)

$$F(x) = \sigma(x)Ux.$$

Suppose E, F are Banach spaces so that E^*, F^* are smooth. $T: FBL[E] \to FBL[F]$ is a surjective lattice isometry iff $T = \overline{U}$, for some surjective isometry $U: E \to F$.

Since E^* is smooth, for every $x^* \in E^* \setminus \{0\}$ there is a unique $f_{x^*} \in E^{**}$ such that $||f_{x^*}|| = ||x^*|| = \sqrt{f_{x^*}(x^*)}$.

Let us define the semi-inner product on E^* :

$$[y^*, x^*] = \begin{cases} f_{x^*}(y^*) & x^* \neq 0 \\ 0 & x^* = 0. \end{cases}$$

Theorem (Ilišević-Turnšek '20)

$$F(x) = \sigma(x)Ux.$$

Suppose E, F are Banach spaces so that E^*, F^* are smooth. $T: FBL[E] \to FBL[F]$ is a surjective lattice isometry iff $T = \overline{U}$, for some surjective isometry $U: E \to F$.

Since E^* is smooth, for every $x^* \in E^* \setminus \{0\}$ there is a unique $f_{x^*} \in E^{**}$ such that $||f_{x^*}|| = ||x^*|| = \sqrt{f_{x^*}(x^*)}$.

Let us define the semi-inner product on E^* :

$$[y^*, x^*] = \begin{cases} f_{x^*}(y^*) & x^* \neq 0 \\ 0 & x^* = 0. \end{cases}$$

Theorem (Ilišević-Turnšek '20)

$$F(x) = \sigma(x)Ux$$
.

Lemma

Let $x^*, y^* \in E^*$ of norm 1.

$$\lim_{t \to 0} \frac{\max_{\pm} \|x^* \pm ty^*\| - \|x^*\| - |[y^*, x^*]t|}{t} = 0$$

Proposition

$$|[\Phi_T x^*, \Phi_T y^*]| = |[x^*, y^*]|$$

... $\Phi_T = \pm U^*$ for some linear isometry $U: E \to F$.

Lemma

Let $x^*, y^* \in E^*$ of norm 1.

$$\lim_{t \to 0} \frac{\max_{\pm} \|x^* \pm ty^*\| - \|x^*\| - |[y^*, x^*]t|}{t} = 0$$

Proposition

$$|[\Phi_T x^*, \Phi_T y^*]| = |[x^*, y^*]|$$

... $\Phi_T = \pm U^*$ for some linear isometry $U: E \to F$.

Lemma

Let $x^*, y^* \in E^*$ of norm 1.

$$\lim_{t \to 0} \frac{\max_{\pm} \|x^* \pm ty^*\| - \|x^*\| - |[y^*, x^*]t|}{t} = 0$$

Proposition

$$|[\Phi_T x^*, \Phi_T y^*]| = |[x^*, y^*]|$$

... $\Phi_T = \pm U^*$ for some linear isometry $U : E \to F$.

Thank you for your attention!

Research funded by Grants CEX2019-000904-S and PID2020-116398GB-I00 funded by: MCIN/AEI/

https://www.icmat.es/congresos/2022/BSBL/