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López-Qúılezb, José Maŕıa Bellidoa,c
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Abstract

Basic information on the distribution and habitat preferences of ecologically
important species is essential for their management and protection. In the
Mediterranean Sea there is increasing concern over elasmobranch species be-
cause their biological (ecological) characteristics makes them highly vulnera-
ble to fishing pressure. Their removal could affect the structure and function
of marine ecosystems, inducing changes in trophic interactions at the commu-
nity level due to the selective elimination of predators or prey species, com-
petitors and species replacement. In this study Bayesian hierarchical spatial
models are used to map the sensitive habitats of the three most caught elas-
mobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus
spinax) in the western Mediterranean Sea, based on fishery-dependent bot-
tom trawl data. Results show that habitats associated with hard substrata
and sandy beds, mainly in deep waters and with a high seabed gradient,
have a greater probability registering the presence of the studied species than
those associated with muddy shallow waters. Temperature and chlorophyll-a
concentration show a negative relationship with Scyliorhinus canicula occur-
rence. Our results identify some of the sensitive habitats for elasmobranchs
in the western Mediterranean Sea (GSA06 South), providing essential and
easy-to-use interpretation tools, such as predictive distribution maps, with
the final aim of improving management and conservation of these vulnerable
species.

Keywords: Bayesian hierarchical spatial model, elasmobranch habitat,
Mediterranean Sea, species distribution modelling.
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1. Introduction

There is increasing concern worldwide over elasmobranch species because
their K-selection life-history traits make them susceptible to population de-
pletion as a result of anthropogenic activity, including unsustainable fisheries,
by-catch, and habitat modification [6]. Most elasmobranchs are predators at
or near the top of marine food chains and thus, play an important role in ma-
rine ecosystems, potentially regulating the size and dynamics of their prey
populations [42]. Their removal could affect the structure and function of
marine ecosystems, inducing changes in trophic interactions at the commu-
nity level due to selective removal of predators or prey species, competitors
and species replacement.

In the Mediterranean Sea, this is of particular concern since sharks and
rays make up an important percentage of the by-catch [5] and their mo-
bile nature makes them potentially accessible to several fisheries at various
bathymetric ranges [11]. Bottom trawling is considered responsible for a large
proportion of the by-catch of elasmobranch species in the Mediterranean Sea,
and throughout the world in general [27]. Evidence of changes in the number
of elasmobranchs and the decrease in the abundance of several species (e.g.
Raja clavata and Dipturus batis) over the last decade have been reported for
the whole of the Mediterranean Sea and in particular, for the highly exploited
area of the Gulf of Lions [1]. As a result cartilaginous fishes can be used as
ecological indicators and their study and monitoring is considered essential
for the conservation of the marine ecosystem [42].

In 2009 the European Commission adopted the first Action Plan for the
conservation and management of elasmobranchs [10] with the aim of rebuild-
ing their stocks under threat, and of setting down guidelines for the sustain-
able management of the fisheries concerned. Moreover, the implementation
of an ecosystem approach to fisheries management (EAFM) and marine spa-
tial planning (MSP) contemplates the protection of priority habitats, a policy
of reducing by-catches and the study of current and expected impacts with
a view to preparing efficient strategies for the preservation of the marine
environment and in particular its living marine resources [21].

In order to achieve these purposes the prerequisites are a solid knowledge
of species-environment relationships and the identification of priority areas
using robust analysis of existing information and databases [30]. Habitat and
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species mapping is essential for conservation programmes because it provides
a clear picture of the distribution and extent of these marine resources, and
thus facilitates managing the marine environment [3].

Following Soberón and Peterson [40] and Soberón [39] these objectives
can be achieved by either using Species Distribution Models (SDMs; models
containing biotic or accessibility predictors and/or being limited in spatial
extent) or Ecological Niche based Models (ENMs; for forecasting an approx-
imation to the species’ niche)[14, 49]. On the one hand, the theoretical
framework of ENMs is based on the ecological niche concept which identifies
a niche as a subdivision of the habitat containing the environmental condi-
tions that enable individuals of a species to survive and reproduce, based on
broad-scale variables (climate) that are not affected by species density [37].
On the other hand, SMDs aim to predict quantities of interest at unsampled
locations based on measured values at nearby sampled locations, within the
range of environments sampled by the training data and within the same
general time frame as that in which the sampling occurred.

In line with the SMD context, our study aims to identify sensitive habi-
tats of elasmobranch species and develop probabilistic spatial scenarios as
effective tools for supporting decision-making within the conservation frame-
work. To this end we have analysed a group of georeferenced data of the
presence/absence of the most common demersal cartilaginous species col-
lected from fisheries-dependent bottom trawl sampling carried out along the
continental shelf and slope of the Western Mediterranean Sea (GFCM Ge-
ographical Sub Area 06) during a six-year period of time. In particular,
we have modelled the occurrence data of the three most frequently cap-
tured species: smallspotted catshark (Scyliorhinus canicula, Linnaeus, 1758),
blackmouth catshark (Galeus melastomus, Rafinesque, 1810) and velvet belly
(Etmopterus spinax, Linnaeus, 1758), which comprise more than 80% of the
total demersal elasmobranch abundance caught during the period 2006-2011.
Cluster Analysis (CA) and Multi Dimensional Scaling (MDS) techniques have
been applied to observers’ data in order to verify whether the three species
studied are in fact representative of the whole elasmobranch community of
this area.

To accomplish spatial prediction, ordinary kriging can be used to obtain
the best linear unbiased predictor. However, accuracy is not always easy
to achieve because there is often a large amount of variability surrounding
the measurements of response and environmental variables, and traditional
prediction methods, such as ordinary kriging, do not account for an attribute

3
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with more than one level of uncertainty. This variability leads to uncertain
predictions, and consequently to uninformed decision making. In order to
solve this problem, we have chosen to use hierarchical Bayesian spatial models
and Bayesian kriging have been used.

In our approach, one of the additional advantages is the possibility of
integrating current modelling approaches (such as GLM and GAM) and un-
certainty analyses into a more general hierarchical framework. Within the
Bayesian framework, full inference about uncertainty, given what we have
observed (the data) and what we know or assume about the process (the
model), comes free with the model predictions [2]. Spatial autocorrelation
can be incorporated into a regression model through random effects that cap-
ture spatial dependence in the data [22]. Since the random effects are model
parameters, they also emerge with a full posterior distribution that allows
quantification of uncertainty. Hierarchical stages can describe conceptual but
unobservable latent processes that are ecologically important, as well as error
in the observation process or gaps in the data [13].

However, until recently, it was computationally quite expensive to cal-
culate these Bayesian hierarchical models with this spatial structure. In
this study we overcome this problem by using the integrated nested Laplace
approximation (INLA) methodology and software (http://www.r-inla.org).
INLA provides accurate approximations to posterior distributions of the pa-
rameters, even in complex models, in a fast computational way [36]. In ad-
dition, INLA can be used through R software, providing a familiar interface
with the programming of the model.

But, more importantly to us, this methodology allows us both to estimate
the processes that drive the distribution of elasmobranchs and also to gener-
ate predictive maps of the distribution of species in the study area, especially
in non-observed locations.

The establishment of regional marine protected areas for protecting sen-
sitive habitats would benefit from an improved understanding of the spatial
distribution of vulnerable species, such as elasmobranchs, and could help
towarrds the more efficient management and control of marine resources.

2. Material and methods

The study area was the Gulf of Alicante (Western Mediterranean), be-
tween 37 15.6’ and 38 30.0’ N, and 1 0.0’ W and 0 30.0’ E (Figure 1).
The Gulf of Alicante has a surface area of 3, 392 km2 and an average shelf

4
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width of approximately 32 km. The largest fleet is the bottom trawl one,
with 169 vessels landing an average of 8,000 t per year. Seabed trawling
usually takes place on the shelf, yielding a multispecific catch with European
hake (Merluccius merluccius) as the main target species. The elasmobranch
species most frequently caught are: Galeus melastomus, Scyliorhinus canic-
ula, Etmopterus spinax, Raja clavata, Raja asterias and Squalus acanthias.
Their distribution and abundance vary according to depth.

2.1. Data

The data set includes 400 hauls of 25 different trawler vessels and has
been provided by the Spanish Oceanographic Institute (Instituto Español de
Oceanograf́ıa, IEO). The IEO provides the national input of the European
Observers Programme for collecting fishery-dependent data. In particular,
they collect samples from the commercial fleet with observers on board. This
sampling has been carried out since 2003, usually involving about 2-3 observer
samplings every month for the trawler fleet, accounting for an average of 10
hauls monthly. From this database we have used the geographical location
and occurrence of the elasmobranch species for each haul. The fisheries were
multispecies and none of the elasmobranchs were target species.

Extrinsic factors influencing the spatial distribution of elasmobranch spe-
cies used were depth, which is often the main gradient along which faunal
changes occur when analyzing shelf and upper slope assemblages [19], type
of substratum [7], slope of seabed and physical characteristics of the water
masses [28].

For ocean processes, chlorophyll-a concentration and Sea Surface Temper-
ature (SST) data can be used to locate thermal and productivity-enhancing
fronts and marine productivity hotspots and thus determine the influence
of such features on species distribution [45]. In addition, SST and Chl-a
are also strong functional links between surface primary productivity and
biological activity at the sea floor through the episodic deposition of partic-
ulate material [32, 23]. Previous studies have shown that the distributions of
many demersal fish species are likely to be influenced by overall ecosystem
productivity [31, 17, 23, 29].

In particular, Chl-a concentration can be used as an index of primary
production of an ecosystem [24]. Obviously, primary production depends on
a range of factors, including light, light penetration and temperature, which
could not be taken into account here due to the absence of data. Nevertheless,
the mean value of Chl-a concentration can be used as an independent index of

5
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primary production in the area of interest, since its variability could modify
trophic conditions of the species’ habitat from oligotrophic to mesotrophic
[20].

Sea Surface Temperature (SST) is strongly related with primary produc-
tivity and is thus a possible candidate to explain the distribution of the
species [44]. Previous studies on elasmobranchs have implied that SST plays
an important role in their distribution [31, 29] from a physiological stand-
point. The majority of coastal elasmobranchs are ectothermic and changes
in the environmental temperature are rapidly transferred to the body of the
animal, thus impacting most physiological processes [17].

The environmental satellite (SST and chlorophyll-a) data has been ex-
tracted as a monthly mean from the SeaWiFS (http:\\oceancolor.gsfc.
nasa.gov). We have interpolated the raster surface of the SST and chlorophyll-
a variables, using the Spline tool of ArcGIS 10. The Spline method is
an interpolation method that estimates values using a mathematical func-
tion that minimizes overall surface curvature, resulting in a smooth sur-
face that passes exactly through the input points. In particular, we have
used the Tension method, twhich controls the stiffness of the surface ac-
cording to the character of the modelled phenomenon. This method cre-
ates a less smooth surface with values more closely constrained by the sam-
ple data range (http://help.arcgis.com/en/arcgisdesktop/10.0/help/
index.html#//009z0000006q000000.htm) (Figure 2a,2b).

Bathymetry and type of substratum data were obtained from the IEO
geoportal, accessible through the website of the Spanish Institute of Oceanog-
raphy (http:\\www.ieo.es). In order to obtain the value of depth at any
precise location of the study area we have interpolated the bathymetric map,
using GRASS GIS (http://grass.fbk.eu), first rasterizing contours with a res-
olution of 500 m. and then using the function r.surf.contour, following guide-
lines given in the website (http:\\grass.osgeo.org/wiki/Contourlines_
to_DEM) (Figure 2c). Log-transformed bathymetry was included in the anal-
ysis for smoothing the effect and preserving the linearity of this variable.

The slope map has been derived by the bathymetry map, using the Slope
tool of the ArcGIS 10. Slope values reflect the maximum rate of change (in
degrees) in elevation between neighboring values derived with ArcGIS Spatial
Analyst extension (http:\\webhelp.esri.com/arcgisdesktop/10/index.
cfm?TopicName=How%20Slope%20works) (Figure 2d).

The type of substratum polygon shapefile includes a classification of ten
categories and a reduced version with four levels: Sand, Mud, Gravel and

6
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Rock. In order to reduce the level of variability in the analysis, since we
have no observations in all categories, we have used the simplified version
(Figure 2e). Moreover, in the study area there are no areas of gravel, so the
categories have been reduced to the remaining three.

In order to meke it possible to work in the R framework maps have been
transformed into SpatialPolygonsDataFrame objects using the sp R package.

2.2. Multivariate analysis

Our data set includes 23 different elasmobranch species. We used multi-
variate analysis techniques in order to verify whether the three most captured
species (Scyliorhinus canicula, Galeus melastomus and Etmopterus spinax)
were truly representative of the whole elasmobranch community in this area.
In particular, we applied Cluster Analysis (CA) and Multidimensional Scal-
ing (MDS) techniques to analyse the 400 bottom trawl hauls. If results show
a high degree of similarity in the species assemblage of the different hauls, we
can assume that sensitive habitats identified for the three species studied are
shared by the remaning elasmobranch species. Consequently, the conserva-
tion of these habitats would go a long way to protecting the entire community
of elasmobranchs in this area.

Both multivariate analyses were performed on a Euclidean similarity ma-
trix with the average method, considering the occurrence of each species to
identify possible differences between the habitats studied.

2.3. Modelling sensitive habitats

The spatial variation in the probability of occurrence of the three most
captured species (Scyliorhinus canicula, Galeus melastomus and Etmopterus
spinax) was modelled by using a hierarchical Bayesian spatial approach,
specifically a point-reference spatial model. These models are highly suit-
able for situations (such as that of the present study) in which data are
observed at continuous locations occurring within a defined spatial domain
(geo-referenced Bernoulli data). Note that these models can also be consid-
ered as a spatial extension of logistic regression models because the modelling
process describes the variability in the response variable as a function of the
explanatory variables, with the addition of a stochastic spatial effect, which
models the residual spatial autocorrelation [25] .

Specifically, the response variable is a binary variable that represents the
presence (1) or absence (0) of the species in each fishing location sampled:
Zi represents the occurrence. Consequently, the conditional distribution of

7
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the data is Zi ∼ Ber(πij), assuming that observations are conditionally in-
dependent given πij, which is the probability of occurrence at location i
(i = 1, . . . , n) and year j (j = 1, . . . , 6). At the first stage of the hierar-
chical model, we model the observed data (occurrence of elasmobranchs) as
a GLM by using the customary (for binary data) logit link function, but
incorporating a spatial and a possible temporal effect. That is,

logit(πij) = Xβ + Yj +Wi , (2.1)

where β represents the vector of the regression coefficients, X is the matrix
of covariates, Wi represents the spatially structured random effect, Yj is the
component of the temporal unstructured random effect at year j, and the
logit transformation is defined as logit(πij) = log(πij/1− πij).

Wi is assumed to be Gaussian with a given covariance matrix σ2
WH(φ),

depending on the distance between locations, and with hyperparameters σ2
W

and φ representing respectively the variance and the range of the spatial
effect:

W ∼ N(0, σ2
WH(φ)) . (2.2)

2.4. Bayesian inference

Once the model has been determined, the next step is to estimate its
parameters. Following Bayesian reasoning, the parameters are treated as
random variables, and prior knowledge has to be incorporated via the cor-
responding prior distributions of the said parameters. In particular, for the
parameters involved in the fixed effects, we use the Gaussian distribution β
∼ N(0, 100). In this second stage of the hierarchical model the uncertainty
about the parameters used in the first level is incorporated and propagated
across model stages to more accurately reflect overall inferential uncertainty.

In the third, and final, level of hierarchy, prior knowledge about the hy-
perparameters is expressed. For the temporal effect we assume, following Rue
and Held [35], LogGamma prior distribution on the log-precision λy (a=1,
b= 5e -05). The choice of the priors of the hyperparameters of the spatial
effect will be described in the following section.

As usual in this context, the resulting hierarchical Bayesian model has no
closed expression for the posterior distribution of all the parameters, and
thus numerical approximations are needed. Here, due to speed of com-
putational processing, we use the integrated nested Laplace approximation
(INLA) methodology and software (http://www.r-inla.org) as an alternative
to the Markov chain Monte Carlo (MCMC) method.

8
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2.5. The INLA framework

To better understand the idea behind this modelling, the key is to think
of these models as a particular case of the Structured Additive Regression
(STAR) models called Latent Gaussian models [36]. In these models the
mean of the response variable Zi is linked to a structured predictor that
accounts for the effects of various covariates in an additive way. Gaussian
prior distributions are assigned to all the components of the additive predictor
which is the latent Gaussian model.

Here, the latent models represent the elasmobranch occurrence phenom-
ena that exists independently of whether species are observed in a given
location or not. Thus, we are not building hierarchical models solely for
discretely observed data, but for approximations of entire processes defined
on continuous domains. Until recently, the problem was the infeasibility of
fitting the particular case of continuously indexed Gaussian models, as is the
case with our spatial component W .

Lindgren et al. [26] have proposed a solution to this problem: the Stochas-
tic Partial Differential Equation (SPDE) approach. This alternative solution
is an explicit link between Gaussian models and the Gaussian Markov Ran-
dom model [35]. The benefits are that the Markov property makes the co-
variance matrix sparse, enabling the use of efficient (and faster) numerical
algorithms and the use of the Matérn covariance function, which is a highly
flexible and general family of functions in spatial statistics.

Under this perspective, the equation 2.2 changes as follows:

W ∼ N(0, Q(κ, τ)) . (2.3)

Now the spatial effect depends on two different parameters: κ and τ , which
determine the range of the effect and the total variance, respectively. Hyper-
priors for κ and τ are centered in values such that the range is about 20% of
the diameter of the region and the variance is equal to 1 [26].

Here, the two major bonuses are that INLA can be used through R, pro-
viding a familiar interface with the model specification (see Lindgren [25] for
a detailed explanation of the INLA syntaxis) and that inference and predic-
tion in unsampled locations could be were performed simultaneously.

INLA provides a variety of approximation strategies for the posterior
distributions. In this study we have used the default ones: the simplified
Laplace approximation for marginalization, and the Central Composite De-
sign for the numerical integration of the hyperparameters. These are the

9
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default and recommended settings providing reasonable accuracy with max-
imum computational efficiency (Held et al., 2010)[15].

2.6. Model prediction

Once the inference has been carried out, the next step is to predict the
occurrence of elasmobranchs in the rest of the area of interest, especially in
unsampled locations. Here, we adopted a Bayesian kriging, which allows for
the incorporation of parameter uncertainty into the prediction process by
treating the parameters as random variables.

A common method for performing prediction with a Bayesian kriging is to
take observations and construct a regular lattice over them. In this study, we
have considered a more computationally efficient approach. Using the INLA
SPDE module we created a triangulation around the sampled points in the
region of interest (Figure 3). As opposed to a regular grid, a triangulation is
a partition of the region into triangles, satisfying constraints on their size and
shape in order to ensure smooth transitions between large and small triangles.
Initially, observations are treated as initial vertices for the triangulation, and
extra vertices are added heuristically to minimize the number of triangles
needed to cover the region subject to the triangulation constraints. These
additional vertices are used as prediction locations.

The triangulation approach has a number of advantages over a regular
grid. Firstly, the triangulation is denser in regions where there are more
observations and consequently there is more information, and more detail is
needed. Secondly, it saves computing time, because prediction locations are
typically much lower in number than those in a regular grid. And thirdly, it
is possible to take boundary effects into account by generating a mesh with
small triangles in the domain of interest, and using larger triangles in the
extension used to avoid boundary effects.

After obtaining the prediction in the selected location, there are addi-
tional functions that linearly interpolate the results within each triangle into
a finer regular grid. As a result of the process, for each point of the area we
obtain a predictive posterior distribution of elasmobranch occurrence for the
whole study area. This means that for each posterior distribution, unlike the
mean and confidence interval produced by classical analyses, we are able to
make explicit probability statements about the estimation of elasmobranch
occurrence.
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2.7. Model selection

Models were compared considering two criteria: the Deviance Informa-
tion Criterion, usually denoted as DIC [41], which is computed routinely by
INLA as the default criterion for comparing hierarchical models; and the
Conditional Predictive Ordinate (CPO), which has been used as a predictive
measure (of the models). In particular, as indicated by Roos and Held [34],
we computed the mean logarithmic CPO (LCPO). Lower values for both
DIC and LCPO represent the best compromise between fit and parsimony.

2.8. Model evaluation and calibration

The dataset was randomly split into two main subsets: a training dataset
including 70% of the total observations, and a validation dataset containing
the remaining 30% of the data. The relationship between occurrence data
and the environmental variables was modelled by using the training dataset
and the quality of predictions was then assessed by using the validation
dataset. We repeated validation 10 times for the best model for each species
and results were averaged over the different random subsets.

We performed a validation procedure to formally evaluate overall model
prediction using the area under the receiver-operating characteristic curve
(AUC) [12], specificity, sensitivity and kappa.

AUC measures the ability of a model to discriminate between those sites
where a species is present and those where it is absent, and has been widely
used in the species distribution modelling literature [8]. AUC ranges from 0
to 1, with values below 0.6 indicating a performance no better than random,
values between 0.7-0.9 considered as useful, and values > 0.9 as excellent.
AUC is tabulated through the confusion matrix indicating the true positive
(TP), false positive (FP), false negative (FN), and true negative (TN) pre-
dictions. We can summarize that there are two types of prediction errors:
false positive (FP) and false negative (FN). FP leads to an over-prediction
while FN or omission error, leads to an under-prediction. From the confusion
matrix we calculated the specificity, sensitivity and kappa criteria.

Specificity is the proportion of TN correctly predicted and reflects a
model’s ability to predict an absence given that a species in fact does not
occur at a location. Sensitivity is the proportion of TP correctly predicted
and reflects a model’s ability to predict a presence given that a species in
fact occurs at a location.

Kappa measures the proportion of correctly classified units after account-
ing for the probability of chance agreement. It requires a threshold to be

11
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applied to the predictions in order to convert them to presence-absence pre-
dictions. Kappa provides an index that considers both FP and FN errors.
In this study, a maxKappa is used for each model generated.

All the analyses described in this paper were carried out using the R 2.15
software [33].

3. Results

The similarity dendrogram for the bottom trawl hauls revealed the exis-
tence of three different assemblages for the elasmobranchs, which were con-
firmed by the MDS analysis (Figure 4).

Picked dogfish (Squalus acanthias) and common eagle ray (Myliobatis
Aquila) form a separate group, bull ray (Pteromylaeus bovines) are in a
group of their own, and all the other elasmobranch species are included in
one single group. This latter group includes 20 out of the 23 of elasmobranch
species caught in the study area, including the three most caught species
which are the ones used in this study.

A total of 400 trawl fishery operations were observed during a period of
six years. In the case of the smallspotted catshark (Scyliorhinus canicula),
its presence was recorded in 204 of these hauls, that of the blackmouth cat-
shark (Galeus melastomus) in 135 and that of the velvet belly (Etmopterus
spinax) in 54. The main predictors of elasmobranch habitats in the western
Mediterranean Sea were depth, slope and type of substratum.

SST and chlorophyll-a concentration show a negative relationship with
species occurrence but affect only the distribution of S. canicula (Table 1).
The final models with the best fit for G. melastomus and E. spinax do not
include SST and chlorophyll-a concentration as relevant variables (Table 1).

No important yearly differences were found in this area for the occurrence
of these species. All the models that include the temporal effect, show higher
Deviance Information Criterion (DIC) than those without it.

The model selected for its best fit (based on the lowest DIC and LCPO)
with S. canicula has log-transformed bathymetry, type of substratum, slope,
SST and chlorophyll-a concentration as covariates, and a stochastic spatial
component that accounts for the residual spatial autocorrelation. Table 1
presents a numerical summary of the posterior distributions of the fixed ef-
fects for this final model. This summary contains the mean, the standard
deviation, the median and a 95% credible interval, which is a central interval
containing 95% of the probability under the posterior distribution.

12
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Species predictor mean sd Q0.025 Q0.5 Q0.975

S. canicula (Intercept) 0.23 2.14 -4.23 0.73 4.32
Log Depth 1.06 0.63 -0.32 1.04 2.05

Seabed(Mud) -0.32 0.42 -1.16 -0.33 0.51
Seabed(Rock) -1.91 0.95 -3.87 -1.88 -0.12

Slope 0.21 0.11 -0.51 0.22 0.74
Chlorophyll-a -13.96 7.83 -29.96 -13.82 1.24

SST -0.52 0.27 -0.22 -0.51 1.05
G. melastomus (Intercept) -1.72 2.91 7.53 -1.89 4.94

Log Depth 0.33 -0.27 0.25 0.35 0.85
Seabed(Mud) 0.41 -0.50 0.40 0.42 1.29
Seabed(Rock) -0.72 1.28 -3.36 -0.68 1.69

Slope 0.19 0.02 -0.06 0.20 0.33
E. spinax (Intercept) -2.35 12.76 -32.34 -2.72 28.65

Log Depth 5.45 3.63 2.70 5.35 10.39
Seabed(Mud) 0.08 0.85 -1.61 0.09 1.73
Seabed(Rock) -0.73 1.28 -3.36 -0.68 1.70

Slope 0.09 0.03 -0.06 0.08 0.10

Table 1: Numerical summary of the posterior distributions of the fixed effects for the
best model of the three species studied. This summary contains the mean, the standard
deviation, the median and a 95% credible interval, which is a central interval containing
95% of the probability under the posterior distribution.
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Results showed a positive relationship between bathymetry and the pres-
ence of S. canicula (posterior mean = 1.06; 95% CI = [-0.32,2.05]). Con-
versely, chlorophyll-a concentration showed a negative relation with respect
to the presence of this species (posterior mean = -13.96; 95% CI = [-29.96,1.24]).
For low SST values, the occurrence of S. canicula is higher (posterior mean
= -0.52; 95% CI = [-0.22,1.05]). Rock substratum is the type of seabed that
shows the lowest estimated probability of occurrence (posterior mean = -1.91;
95% CI = [-3.87,-0.12]) with respect to the reference level (sand substratum).
Muddy substrata also showed a lower estimated coefficient than the reference
level (posterior mean = -0.32; 95% CI = [-1.16,0.51]), leaving sandy substrata
as the kind of sediment granulometry category with the highest probability
of the presence of S. canicula. A positive correlation is characterized by a
high slope gradient and the probability of occurrence (posterior mean = 0.21;
95% CI = [-0.51,0.74]) of S. canicula. As can be appreciated in Figure 5(a),
the median posterior probability of the occurrence of S. canicula in the Gulf
of Alicante, is greater over a high slope gradient, in deeper waters where
chlorophyll-a and SST values are higher, and where there are sandy seabeds.

Habitats associated with hard substrata and sandy beds, mainly from
deeper waters and with a high slope gradient, show a greater probability of
the presence of G. melastomus than those associated with mud from shallow
waters and low slope gradient (Table 1 and Figure 5(b)). Table 1 showed a
positive relation between log-bathymetry and the presence of G. melastomus
(posterior mean = 0.33; 95% CI = [0.25, 0.85]). Rock substratum is the
type of seabed that shows the highest estimated probability of occurrence
(posterior mean = -0.72; 95% CI = [-3.36,1.69]) with respect to the reference
level (sand substratum). Muddy substrata showed a lower estimated coeffi-
cient than the reference level (posterior mean = 0.41; 95% CI = [0.40,1.29]).
High slope gradient positively influences the probability of occurrence of G.
melastomus (posterior mean = 0.19; 95% CI = [-0.06,0.33]). Figure 4(b)
shows high median posterior probability of occurrence of G. melastomus over
steeper slopes, in deeper waters and where there are rocky and sandy seabeds.

The results for E. spinax are very similar to those for G. melastomus.
The best model fit for this species included depth, slope of seabed and type
of substratum as relevant covariates. Table 1 shows a positive relation be-
tween log-bathymetry (posterior mean = 5.45; 95% CI = [2.70,10.39]), slope
(posterior mean = 0.09; 95% CI =[-0.06,0.10]) and E. spinax occurrence.
Habitats associated with hard substrata (posterior mean = -0.73; 95% CI
= [-3.36,1.70]) show the highest estimated probability of occurrence with re-

14



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

spect to the reference level (sand substratum), the lowest corresponding to
muddy beds (posterior mean = 0.08; 95% CI = [-1.61,1.73]).

Figure 5(c) shows a map of the median posterior probability of occurrence
of E. spinax, with a marked influence of depth. High probabilities appear in
deep water, and low probabilities in coastal waters.

Model prediction performance statistics of all models are presented in
Table 2. All models have achieved AUC values greater than 0.80, which
indicates an excellent degree of discrimination between those locations where
a species is present and those where it is absent. All maxKappa values are
between 0.55 and 0.70, which represents a good degree of similarity between
the occurrence of the species and the available real evidence. Specificity and
sensitivity also show high values (> 0.8), reflecting a high ability of the model
to predict true negative and true positive predictions correctly.

AUC maxKappa sensitivity specificity
S. canicula 0.88 0.63 0.87 0.81

G. melastomus 0.84 0.69 0.95 0.90
E. spinax 0.90 0.72 0.84 0.92

Table 2: Model prediction performance statistics for the three species studied. AUC (Area
Under the receiver-operated characteristic Curve), maxKappa, sensitivity and specificity.

4. Discussion

4.1. Biological conclusions

Fishery-dependent data were used to improve our understanding of habi-
tat utilization by elasmobranchs in the western Mediterranean Sea. In this
study we used data from observers on board commercial trawlers, which rep-
resent one of the most important, but often underestimated, sources of data
for the study of demersal fish. The methodology used is a Bayesian spatial
hierarchical model that makes possible to assess the influence of the covari-
ates on the presence/absence of species, as well as to predict the probability
of occurrence in non-sampled areas. We have also introduced the spatial-
tempoarl component into the study, an important effect which is commonly
overlooked in most fishery studies that use traditional methods.

The estimated parameters have contributed to quantify habitat use and
reveal important relationships of environmental variables with each species’

15
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habitat. With the available data, the main predictors of elasmobranch habi-
tats in the western Mediterranean were found to be depth, slope of seabed
and type of substrate.

Elasmobranch species from the Gulf of Alicante show different optimum
depths, which may indicate certain of fine-tuned bathymetric segregation,
although they were in fact found to coexist on shelf and slope bottoms.

However, the direct effect of depth on species occurrence is expected to
be relatively small in relation to the indirect effects of bathymetry due to
its correlation with many crucial environmental and biological parameters.
Due to this, in the absence of such data (e.g. CTD data for oceanographic
characteristics in the near bottom), a good knowledge of the bathymetric
distribution of species could explain the spatial pattern and it is essential for
fisheries management.

From our results, we can summarize that, in our study area, E. spinax
inhabits the deepest stratum, G. melastomus the middle and upper slope
and S. canicula the shelf and the middle slope. On the upper slope, maps
show a habitat overlap between G. melastomus and E. spinax, and on the
middle slope a slight overlap betweenG. melastomus and S. canicula. Habitat
overlap does not necessarily imply competition, except when resources are
in short supply. Otherwise, on rich shelf bottoms, species that are spatially
segregated are not driven to differentiate their diets and may easily converge
in the use of resources in overlapping areas.

Our spatial results are in accordance with a recent trophic study of these
species in the Balearic Islands [46]. S. canicula and G. melastomus both
prey mainly on euphausiids and share the habitat. However, in our study,
G. melastomus expressed a wider and deeper distribution trend with respect
to S. canicula. A possible explanation for this could be a phenomenon of
competitive exclusion due to the exploitation of similar resources. Based on
the competitive exclusion principle, other species are forced to retreat to the
bathymetric and/or geographic range to which they are most highly adapted
in relation to the other potential inhabitants. In this case G. melastomus
retreat to a depth interval of between 400 m. and 700 m., usually home
to the biomass peak of decapod crustaceans, which constitute an important
part of the diet of this species. E. spinax feeds preferentially on cephalopods,
while euphausiids are only a small part of the diet. This different trophic
pattern with respect to G. melastomus would be a mechanism for reducing
competition in the deepest stratum.

In general, our results show a negative relationship between all the elas-
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mobranch species studied and depth, and high slope gradient values. In ad-
dition, for S. canicula, the probability of their presence is higher where SST
and chlorophyll-a concentration values are lower. This may be explained by
the fact that shallow sunlight waters above the continental shelf are usually
areas of high productivity and SST mean values, while the deeper waters
away from coastlines usually lack sunlight and nutrients, and present low
values of chlorophyll-a concentration and SST.

This study confirms the importance of the type of substratum in the
patterns of elasmobranch spatial distribution, as substrate type was included
among the best models for all species. Our analysis shows that elasmobranchs
prefer hard and sandy substrates while muddy ones affect their occurrence
negatively. This preference has already been documented [38] and is probably
it is partly attributable to the distribution of their preferred prey, which as
mentioned earlier, are crustaceans [16].

These patterns were also consistent with those from other studies report-
ing on habitat utilization by various species (e.g. R. brachyura, R. montagui
and S. stellaris in [9]; R. clavata in [18]; S. canicula in [47]).

Although the present study was limited to three species, multivariate
analysis of elasmobranch assemblage show that 20 out of 23 species of elas-
mobranchs caught in this area are always fished jointly with one of the species
examined. These results indicate that sensitive habitats identified for the
three species studied are shared by the other, less frequently caught elasmo-
branchs. The preservation of these habitats may be useful for protecting the
majority of the species of the elasmobranch community in this area. How-
ever a more thorough analysis should be done to verify with which of the
species studied a given elasmobranch species is usually fished and what kind
of habitat shared.

Finally, it should be noted that although the fishery-dependent data that
we used were collected with a systematic sampling design, Bayesian spa-
tial models may also aid analyses of data with geographically uneven levels
of survey effort because such bias can be incorporated within the spatial
random-effect term, thereby reducing its influence on estimates of the ef-
fects of environmental variables. By treating spatial effects as a variable of
interest, hierarchical Bayesian spatial models can suggest the identity of ad-
ditional environmental covariates that may improve model fit or the existence
of area effects that may limit population viability.

However, some other data are available for elasmobranch species from
online databases, such as Fishbase and the Global Biodiversity Information
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Facility (GBIF). These databases include presence-only data and provide
probability maps on a more extensive spatial scale. Macro-scale studies al-
low for a broader and more complete view of ecosystem status, but their
use often leads to a compromise in the analysis, because the quality and
quantity of data available for large ecosystems and long time-series are often
lower. Mapping sensitive habitats of vulnerable species within a region for
conservation planning requires the highest level of accuracy. Here, Bayesian
interpolations are sufficiently reliable for the purpose of effective decision
making and a range of evaluation criteria demonstrated the good predictive
performance and properties of this approach as well as its advantages in term
of ecological interpretability.

4.2. Applicability of the results for fisheries management

Improved knowledge of the spatial distribution of commercially impor-
tant fish species and their relationships with the marine environment could
form an integral aspect of a precautionary approach [43]. There is growing
worldwide support for the argument that fisheries should be conducted in a
way that is robust to environmental change, and thus that fish stocks should
never be exploited to a point where they cease to be resilient to environmental
change.

In order to achive this purpose, the European Marine Strategy Frame-
work Directive has specifically requested the incorporation of any existing
knowledge about environmental drivers in the assessment of ecosystems and
fisheries and in advice [48].

Implementing plans and control schemes that would target specific species
assemblages, based on a good knowledge of the species’ spatial distribution
in relation to the environment, could serve as a sustainable approach to fish-
eries management and also for other marine activities and uses [29]. The
establishment of marine protected areas for protecting sensitive habitats, in
line with the recent trends for a holistic ecosystem-based approach to man-
agement and Marine Spatial Planning, would also benefit from an improved
understanding of the spatial distribution of vulnerable species such as elas-
mobranchs.

To achieve these objectives, predictive habitat maps, such as those gen-
erated by the approach presented here, could be useful source of information
in the selection of areas for improved regional management or technical mea-
sures adoption.
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We believe that the use of this approach for constructing maps of the
spatial distribution of vulnerable species may help the design of integrated
programmes for the more efficient management and control of marine re-
sources.

5. Conclusions

Species habitat analysis should be able to identify those areas within the
distribution of a species that contribute most to sustain the long-term viabil-
ity of a population. Although it may be complicated to define the boundaries
of sensitive habitats, the definition of these areas, combined with an efficient
fishery management that recognizes the importance of such areas, represents
the first step towards facilitating an EAFM approach [45]. However, accuracy
is not always easy to achieve because there is often a large amount of variabil-
ity surrounding the measurements of response and environmental variables
[22]. This variability leads to uncertain predictions, and consequently to un-
informed decision making. It is therefore important to develop tools which
account for measurements with significant variability. Here, we have shown
a Bayesian spatial hierarchical model that makes it possible to identify sen-
sitive habitats together with a full specification of associated uncertainty. In
our study we have improved knowledge of the habitat utilisation of elasmo-
branchs in the Gulf of Alicante and provided practical tools for conservation
planning and resource management. However, as both species and environ-
mental data are sampled over a limited period of time and area of space, the
models fitted can only reflect a snapshot view of the expected relationship.
Future studies should compare the spatial distribution of these species from
a fishery-independent scientific survey, which is often considered as being a
more reliable abundance index because of its scientifically rigorous design [4].
However, this first approximation could be serve to promote a greater effort
in data collection and to identify the areas on which future research attempts
should concentrate.
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Figure legends

Figure 1: Map of the study area with the sampling locations indicated
by black dots.

Figure 2: The spatial patterns of the environmental variables used to map
the habitat models, including (A) satellite derived Chlorophyll-amean values;
(B) satellite derived sea surface temperature mean values; (C) bathymetric
map; (D) slope map; (E) seabed sediment type map.

Figure 3: The triangulation of the Gulf of Alicante. The ( ) mark the
fishing locantions.

Figure 4: Analysis Cluster dendrogram (4a) and MDS ordination (4b) of
elasmobranch species caught during bottom trawl commercial hauls carried
out in the Gulf of Alicante.

Figure 5: Median of the posterior probability of the presence of the stud-
ied elasmobranchs: S. canicula (5a); G. melastomus (5b); E. spinax (5c).
Sampling locations for the presence ( ) and the absence ( ) were plotted.
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Highlights

Bayesian hierarchical spatial models were used to map the sensitive habi-
tats of elasmobranchs.

Habitat associated with hard, sandy and high slope seabeds, mainly from
deep waters, have a higher probability of presence.

The studied species show different optimum depths, which could indicate
certain of bathymetric segregation.

Maps of predicted probability of occurrence were provided to improve
fishery management
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